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Abstract. We study the dynamical properties of two new relaxation
labeling schemes described in terms of differential equations, and hence
evolving in continuous time. This contrasts with the customary approach
to defining relaxation labeling algorithms which prefers discrete time.
Continuous-time dynamical systems are particularly attractive because
they can be implemented directly in hardware circuitry, and the study
of their dynamical properties is simpler and more elegant. They are also
more plausible as models of biological visual computation. We prove that
the proposed models enjoy exactly the same dynamical properties as the
classical relaxation labeling schemes, and show how they are intimately
related to Hummel and Zucker’s now classical theory of constraint satis-
faction. In particular, we prove that, when a certain symmetry condition
is met, the dynamical systems’ behavior is governed by a Liapunov func-
tion which turns out to be (the negative of) a well-known consistency
measure. Moreover, we prove that the fundamental dynamical properties
of the systems are retained when the symmetry restriction is relaxed. We
also analyze the properties of a simple discretization of the proposed dy-
namics, which is useful in digital computer implementations. Simulation
results are presented which show the practical behavior of the models.

1 Introduction

Relaxation labeling processes are a popular class of parallel, distributed compu-
tational models aimed at solving (continuous) constraint satisfaction problems,
instances of which arise in a wide variety of computer vision and pattern recog-
nition tasks [1,9]. Almost invariably, all the relaxation algorithms developed
so far evolve in discrete time, i.e., they are modeled as difference rather than
as differential equations. The main reason for this widespread practice is that
discrete-time dynamical systems are simpler to program and simulate on digital
computers. However, continuous-time dynamical systems are more attractive for
several reasons. First, they can more easily be implemented in parallel, analog
circuitry (see, e.g., [4]). Second, the study of their dynamical properties is sim-
plified thanks to the power of differential calculus, and proofs are more elegant
and more easily understood. Finally, from a speculative standpoint, they are
more plausible as models of biological computation [7].

Recently, there has been some interest in developing relaxation labeling
schemes evolving in continuous time. In particular, we cite the work by Stod-
dart [16] motivated by the Baum-Eagon inequality [12], and the recent work
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by Li et ai. [10] who developed a new relaxation scheme based on augmented
Lagrangian multipliers and Hopfield networks. Yu and Tsai [19] also used a
continuous-time Hopfield network for solving labeling problems. All these stud-
ies, however, are motivated by the assumption that the labeling problem is formu-
lated as an energy-minimization problem, and a connection to standard theories
of consistency [8] exists only when the compatibility coefficients are assumed to
be symmetric. This is well-known to be a restrictive and unrealistic assumption.
When the symmetry condition is relaxed the labeling problem is equivalent to

a variational inequality problem, which is indeed a generalization of standard .

optimization problems [8].

In this paper, we study the dynamical properties of two simple relaxation
labeling schemes which evolve in continuous time, each being described in terms
of a system of coupled differential equations. The systems have been introduced
in the context of evolutionary game theory, to model the evolution of relative
frequencies of species in a multi-population setting [18], and one of them has
also recently been proposed by Stoddart et al. [16], who studied its properties
only in the case of symmetric compatibilities. Both schemes are considerably
simpler that Hummel and Zucker’s continuous-time model [8] which requires
a complicated projection operator. Moreover, the first scheme has no normal-
ization phase, and this makes it particularly attractive for practical hardware
implementations. Since our models automatically satisfy the constraints imposed
by the structure of the labeling problem, they are also much simpler than Yu
and Tsai’s [19] and Li et al.’s [10] schemes, which have to take constraints into
account either in the form of penalty functions or Lagrange multipliers.

The principal objective of this study is to analyze the dynamics of these relax-
ation schemes and to relate them to the classical theory of consistency developed
by Hummel and Zucker [8]. We show that all the dynamical properties enjoyed
by standard relaxation labeling algorithms do hold for ours. In particular, we
prove that, when symmetric compatibility coefficients are employed, the models
have a Liapunov function which rules their dynamical behavior, and this turns
out to be (the negative of) a well-known consistency measure. Moreover, and
most importantly, we prove that the fundamental dynamical properties of the
systems are retained when the symmetry restriction is relaxed. We also study the
properties of a simple discretization of the proposed models, which is useful in
digital computer implementations. Some simulation results are presented which
show how the models behave in practice and confirm their validity.

The outline of the paper is as follows. In Section 2, we briefly review Hummel
and Zucker’s consistency theory, which is instrumental for the subsequent devel-
opment. In Section 3 we introduce the models and in Section 4 we present the
main theoretical results, first for the symmetric and then for the non-symmetric
case. Section 5 describes two ways of discretizing the models, and proves some
results. In Section 6 we present our simulation results, and Section 7 concludes
the paper.
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2 Consistency and its properties

The labeling problem involves a set of objects B = {b,,--- ybn} and a set of
possible labels A = {1,--- ;m}. The purpose is to label each object of B with
one label of A. To accomplish this, two sources of information are exploited. The
first one relies on local measurements which capture the salient features of each
object viewed in isolation; classical pattern recognition techniques can be practi-
cally employed to carry out this task. The second source of information, instead,
accounts for possible interactions among nearby labels and, in fact, incorporates
all the contextual knowledge about the problem at hand. This is quantitatively
expressed by means of a real-valued four-dimensional matrix of compatibility
coefficients R = {r;;(X, u)}. The coefficient 7;;(}, 1) measures the strength of
compatibility between the hypotheses “b; has label \” and “b; has label p:” high
values correspond to compatibility and low values correspond to incompatibil-
ity. In our discussion, the compatibilities are assumed to be nonnegative, i.e.,
ri; (A, ) > 0, but this seems not to be a severe limitation because all the inter-
esting concepts involved here exhibit a sort of “linear invariance” property [12].
In this paper, moreover, we will not be concerned with the crucial problem of
how to derive the compatibility coefficients. Suffice it to say that they can be
either determined on the basis of statistical grounds (11, 15] or, according to a
more recent standpoint, adaptively learned over a sample of training data [14,
13].

The initial local measurements are assumed to provide, for each object b; € B,
an m-dimensional vector p7 = (p?(1),-+-,p?(m))7 (where “I" denotes the usual
transpose operation), such that p?(A\) > 0,4 =1...n, A € 4, and YTar) =1,
i =1...n. Each pY()) can be regarded as the initial, non-contextual degree of
confidence of the hypothesis “b; is labeled with label \.” By simply concatenating
77,79, , 3 we obtain a weighted labeling assignment for the objects of B that
will be denoted by 5° € R, A relaxation labeling process takes as input the
initial labeling assignment p° and iteratively updates it taking into account the
compatibility model R.

At this point, we introduce the space of weighted labeling assignments:

K:{ﬁeRﬂm ’pg(A)ZD, i=1l...n, A€ A and Zp,:()\)zl, i=1...n}
A=1

which is a linear convex set of R*™ . Every vertex of K represents an unambiguous
labeling assignment, that is one which assigns exactly one label to each object.
The set of these labelings will be denoted by K*:

H{*z{ﬁGKng(z\)z(Jorl, =1, )tezi} ;

Moreover, a labeling j in the interior of K (i.e., 0 < pi(A) < 1, for all i and ))
will be called strictly ambiguous.

Now, let p € K be any labeling assignment. To develop a relaxation algorithm
that updates $ in accordance with the compatibility model, we need to define,
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for each object b; € B and each label A € A, what is called a support function.
This should quantify the degree of agreement between the hypothesis that b; is
labeled with A, whose confidence is expressed by p;()\), and the context. This
measure is commonly defined as follows:

T m

a(hp) =D 3 (A wps (u) - 1)

i=1 p=1

Putting together the instances g;();5), for all the p;()), we obtain an nm-
dimensional support vector that will be denoted by §(5).!
The following updating rule

1y = _ PEAEE(N)
B 2, Pi(p) g (1) @)

wheret =0, 1,... denotes (discrete) time, defines the original relaxation labeling
operator of Rosenfeld, Hummel, and Zucker [15], whose dynamical properties
have recently been clarified [12]. In the following discussion we shall refer to it
as the “classical” relaxation scheme.

We now briefly review Hummel and Zucker’s theory of constraint satisfac-
tion [8] which commences by providing a general definition of consistency. By
analogy with the unambiguous case, which is more easily understood, a weighted
labeling assignment p € K is said to be consistent if

2_pNaG) > Y uNaxip), i=1...n (3)
A=1

A=1

for all o € K. Furthermore, if strict inequalities hold in (3), for all ¥ # 5, then p
is said to be strictly consistent. It can be seen that a necessary condition for P
to be strictly consistent is that it is an unambiguous one, that is pe K.

In [8], Hummel and Zucker introduced the average local consistency, defined
as

n

A(p) = Z PIFACIACY (4)

i=1 A=1

and proved that when the compatibility matrix R is symmetric, e, ri(Ap) =
T3, A) for all 4,7, A, 1, then any local maximum 5 € K of A is consistent. Ba-
sically, this follows immediately from the fact that, when R is symmetric, we
have VA(p) = 2¢, VA(p) being the gradient of A at . Note that, in general,
the converse need not be true since, to prove this, second-order derivative infor-
mation would be required. However, by demanding that p be strictly consistent,
this does happen [12].

! Henceforth, when it will be clear from context, the dependence on § will not be

stated.
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3 Continuous-time relaxation labeling processes

The two relaxation labeling models studied in this paper are defined by the
following systems of coupled differential equations:

%Pi(’\) =pi(A) (q«(J\) > pi()a (u)) (5)

and

ai(N) — 30, pi(p)ai (1)
2ou Pilw)ai(p)

For the purpose of the present discussion, g;(X) denotes the linear support as
defined in equation (1). As a matter of fact, many of the results proved below do
not depend on this particular choice. More generally, the only requirements are
that the support function be nonnegative and, to be able to grant the existence
and uniqueness of the solution of the differential equations, that it be of class
C? [6].

In the first model we note that, although there is no explicit normalization
process in the updating rule, the assignment space K is invariant under dynam-
ics (5). This means that any trajectory starting in K will remain in K. To see
this, simply note that:

> Gr0) = X p) (qim - zpi(p)qf(p)) =0
A A B

which means that the interior of K is invariant. The additional observation that
the boundary too is invariant completes the proof. The same result can be proven
for the other model as well, following basically the same steps. The lack of
normalization makes the first model, which we call the standard model, more
attractive than Hummel and Zucker’s projection-based scheme [8], since it makes
it more amenable to hardware implementations and more acceptable biologically.
The interest in the other model, called the normalized model and also studied
by Stoddart [16], derives from the fact that, in a way, it is the continuous-time
translation of the classical Rosenfeld-Hummel-Zucker relaxation scheme [15].
This will be clearer when we show the discretizations of the models. We note
that, using a linear support function (1), the dynamics of the models is invariant
under a rescaling of the compatibility coeflicients ri; (A, p). That is, if we define
a set of new compatibility coefficients 7;(A, u) = ari (A, 1) + 8, with & > 0 and
B 2 0, the orbit followed by the model remains the same, while the speed at
which the dynamics evolve changes by a factor a.

As stated in the Introduction, one attractive feature of continuous-time sys-
tems is that they are readily mapped onto hardware circuitry. In [17] we show a
circuit implementation for the standard and the normalized models, respectively.
As expected, the standard model leads to a more economic implementation.

Sh) =) ©
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The fixed (or equilibrium) points of our dynamical systems are characterized
by ;%ﬁ = 0 or, more explicitly, by p:(}) [q;(}\) - Z#pg[u)q‘g(ﬂ)] = 0 for all
i=1...n, A € A. This leads us to the condition

pi(N) > 0= g:(N) = > pi(u)ai(u) )

which is the same condition we have for the Rosenfeld-Hummel-Zucker and
Hummel-Zucker models.

The next result follows immediately from a characterization of consistent
labelings proved in [12, Theorem 3.1].

Proposition 1. Let p € K be consistent. Then § is an equilibrium point for
the relazation dynamics (5) and (6). Moreover, if p is strictly ambiguous the
converse also holds.

This establishes a first connection between our continuous-time relaxation
labeling processes and Hummel and Zucker’s theory of consistency.

4 The dynamical properties of the models

In this section we study the dynamical properties of the proposed dynamical
systems. Specifically, we show how our continuous-time relaxation schemes are
intimately related to Hummel and Zucker’s theory of consistency, and enjoy all
the dynamical properties which hold for the classical discrete-time scheme (2),
and Hummel and Zucker’s projection-based model.

Before going into the technical details, we briefly review some instrumental
concepts in dynamical systems theory; see [6] for details. Given a dynamical sys-
tem, an equilibrium point Z is said to be stable if, whenever started sufficiently
close to Z, the system will remain near to # for all future times. A stronger
property, which is even more desirable, is that the equilibrium point Z be asymp-
totically stable, meaning that Z is stable and in addition is a local attractor, i.e.,
when initiated close to Z, the system tends towards Z as time increases. One of
the most fundamental tools for establishing the stability of a given equilibrium
point is known as the Liapunov’s direct method. It involves seeking a so-called
Liapunov function, i.e., a continuous real-valued function defined in state space
which is non-increasing along a trajectory.

4.1 Symmetric compatibilities

We present here some results which hold when the compatibility matrix R is sym-
metric, i.e., ri; (A, 1) = r5:(p, A), for all 4,5 = 1...n and A, i € A. The following
instrumental lemma, however, holds for the more general case of asymmetric
matrices.
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Lemma 1. For all p € K we have

d
L g
q(p) 5720,

wo»

where represents the inner product operator, for both the standard and nor-
malized relazation schemes (5) and (6).

Proof: Let p be an arbitrary labeling assignment in K. For the standard model
we have:

a(p) - %iﬁ =Y a(Wp:(N) (q:’ (A) - Eps(#)qs'(#))
1,A I

2
- Z[zp,.mqm - (Epi()\)qs()\)) }
i A A

Using the Cauchy-Schwartz inequality we obtain, for all i = 1. .. n,

(ZPs(A)%(A)) = (Z Vpi(A) - Pi()\)qg()\))
A A
< 2o - Do pNEN) =D (N ()
A A A

Hence, since 3, pi(A)gf () > (32, pi(N)ai(X)?, we have ¢(p) - 45 > 0.
The proof for the normalized model is identical; we just observe that:

2 6N (6 = T, pilm)aii))
24 Pi(pw)ai(p)

>
@(ﬁ)'%ﬁ=z
O

A straightforward consequence of the previous lemma is the following impor-
tant result, which states that, in the symmetric case, the average local consis-
tency is always non-decreasing along the trajectories of our dynamical systems.

heorem 1. If the compatibility matriz R is symmetric, we have

d
—A(p) >
7A@ 20

for all p € K. In other words, —A is a Liapunov function for the relazation
models (5) and (6).
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Proof: Assuming ri;(A, ) = rji(g, A), we have:

LAB) = 03 r O wps () 2N

ix jp
d
= qln) —p >
¢(p) P20

|

As far as the normalized scheme is concerned, this result has been proven
by Stoddart [16]. By combining the previous result with the fact that strictly
consistent labelings are local maxima of the average local consistency (see [12,
Proposition, 3.4]) we readily obtain the following proposition.

Theorem 2. Let p be a strictly consistent labeling and suppose that the com-
patibility matriz R is symmetric. Then p is an asymptotically stable stationary
point for the relazation labeling processes (5) and (6) and, consequently, is a
local attractor.

Therefore, in the symmetric case our continuous-time processes have ex-
actly the same dynamical properties as the classical Rosenfeld-Hummel-Zucker
model [12] and the Hummel-Zucker projection-based scheme [8].

4.2 Arbitrary compatibilities

In the preceding subsection we have restricted ourselves to the case of symmet-
ric compatibility coeflicients and have shown how, under this circumstance, the
proposed continuous-time relaxation schemes are closely related to the theory of
consistency of Hummel and Zucker. However, although symmetric compatibili-
ties can easily be derived and asymmetric matrices can always be made symmet-
rical (i.e., by considering R+ RT), it would be desirable for a relaxation process
to work also when no restriction on the compatibility matrix is imposed [8]. This
is especially true when the relaxation algorithm is viewed as a plausible model
of how biological systems perform visual computation [20].

We now show that the proposed relaxation dynamical systems still perform
useful computations in this case, and their connection with the theory of consis-
tency continues to hold. The main result is the following:

Theorem 3. Let j € K be a strictly consistent labeling. Then § is an asymptoti-
cally stable equilibrium point for the continuous-time relazation labeling schemes
defined in equations (5) and (6).

Proof: The first step in proving the theorem is to rewrite the models in the
following way:

Zp=F()
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where, for alli=1...n and A € A,
F;(N)(®) = pi(M) (q&()‘) =t ZP:‘(#)Q:&(M))

for the standard model, and

s gi(N)
o =a) (E“ pi()gi (k) 1)
for the normalized model.

Let DF(p) be the differential of F' in p. We will show that if 5 is strictly
consistent all eigenvalues of DF(p) are real and negative. This means that 7 is a
sink for the dynamical system and therefore an asymptotically stable point [6].

We begin by recalling that a strictly consistent labeling is necessarily non-
ambiguous. Denoting by A(7) the unique label assigned to object b;, we have:

6 HXEAG
B si()‘):{1 :f,\i).g; = i

where § is the Kronecker delta, i.e., 0zy = 1if = y, and §,, = 0 otherwise.
Furthermore, we have ¢; (A(#)) > gi(2) for all X # A(9).

We first prove the theorem for the standard model. Deriving F' with respect
to pi(p), :; have:

828; (B) = &ij0x, (Qs(J\) - pilw)a: (u)) +

1

pi()) (% - 8i;ai(p) — ijpi(ﬂ) g;j((g) (8)

If we arrange the assignment vector in the following way:
P=E(A),,21(Am)s 5 Pa(A)s e 5 Pa(Am))T

and define the matrices Ci; = (Cy; (A, p))a,u as Cij (A, 1) = %, the differential
takes the form:

Cn Ciz ... Ciq

Co1 Cha ... Cap
DF = ) i1 g A

C‘nl Cn‘Z s Cnn
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We can show that, if 7 is strictly consistent, Cj; = 0if ¢ # j. In fact, we
have:

Op;(p) dp;i(p) dp;(p)

_—- (Y _ 9as(0®)\ _
MO Bpi(p) ~ " apilp)

OB (5) = (5‘3‘(") 3 i) SE ‘“))

In this case the differential takes the form:

011 0
DF = =
0 Cnn

Analyzing the matrices Cj; we can see that these too take a particular form
on strictly consistent assignments. In fact we have:

gﬁ;}) (B) = dx (fh(ﬁ) = Zpi(ﬂ)% (M]) +

9gi(}) Ogi (1)
pi(A) (W —qi(o) — zpjps(ﬂ) api(p))

= 0 (6(A) — @ (M) + Sangs) (8

aps( )
= 0xp (6:(A) — q: (A(D))) = xny2i(p)

-y 94 (7))
& Api(p)

As we can notice, the non-zero values of Cj; are on the main diagonal and
on the row Cj;(Ap) with A = A(¢). Thus the eigenvalues of Cj; are the elements
on the main diagonal. These are:

{qi(z\) —qi(A(§) for A # A3), 9)

—qi ()\(i)) otherwise.

Since p is strictly consistent, ¢i(A) < ¢i(A(z)) so all the eigenvalues are real and
negative and not lower than —g;(A(¢)). This tells us that the assignment is a
sink, and hence an asymptotically stable point for the dynamical system.

We now prove the theorem for the normalized model. The fundamental steps
to follow are the same as for the standard model; we mainly have to derive the
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new values for the partial derivatives:

AF;(N) e 0ij0xpqi(A) +pi()\)%
9p;(p) 2 u Pilp)a ()
PNa(N) (8i5ai(0) + T, pi(w) 3593 :
i 2 — Q450
(pri(#)qi(u))
8aqi !A!
() _Bpile) %:(N)gi(p)
=0ij0xp — e 0@ dap %00 5:;:5»(3)W

g (A1
qe )apafj‘ -

- 5“(1) a(\(0))2 ij6xp

_6:.}6Ap ()(\( ) 613(5,\,\(3 q1(p))) 6ij6AF‘

As the standard model, we have Cj; = 0 for i # j, and the matrices Cj; are
non-zero only on the main diagonal and on the row related to the assignment
A(%). Once more, then, the eigenvalues are equal to the elements on the main
diagonal. These are:

gi(A(d))
-1 otherwise.

(A —gi (A1 .
{ﬂ-)-&i-ul for A # (i), (10)

Thus the eigenvalues are all real and negative and not lower than —1, i.e.,
stnictly consistent assignments are sinks for system (6). O

The previous theorem is the analog to the fundamental local convergence
result of Hummel and Zucker [8, Theorem 9.1], which is also valid for the clas-
sical relaxation scheme (2) [12, Theorem 6.4]. Note that, unlike Theorem 2, no
restriction on the structure of the compaitibility matrix is imposed here.

5 Discretizing the models

In order to simulate the behavior of the models on a digital computer, we need
to make them evolve in discrete rather than continuous time steps. Two well
known techniques to approximate differential equations are the Euler method
and the Runge-Kutta method. With the Euler method we have:

i) = PN + hFF (M) (D) (11)

where h is the step size. This equation is advantageous since it can be computed
in a very efficient way, so it is the ideal candidate for our simulations. We will
prove that, given a certain integration step h, this model enjoys all the dynamical
properties shown for the continuous models it approximates.
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In order to determine the difference in global behavior between the continuous
models and the discrete approximations, we also use a finer discretization model:
the TV grade Runge-Kutta method. This has been done on the assumption that
this model would have a global dynamic behavior very similar to that of the
continuous models. We have chosen the following Runge-Kutta scheme:

1. .. - 2o L.
p§+h(A) = p:()\) s Ekl (%, )\) + Ekz('&,x) + 6k3(3, A) + Ekz;(?:,/\)
where the coefficients k1, ky, k3, k4 represent:

k(N =hEO)E)
ka(i,X) = hE() (5 + 1)
k3(i, A) = hE;(X) (B + 3Ks)
ka(i, X) = hE;(A)(P + k3)
We will prove that the models discretized with Euler’s method are well de-

fined, that is, they map points in the assignment space K onto K. Euler’s scheme
applied to our standard relaxation model (5) gives:

P () = pEY) + hot (V) (q;?(A) - > phwd (u))

We note that when h equals 1 the process is identical to the one recently pro-
posed by Chen and Luh [2,3]. Their model imposes strict constraints on the
compatibility coefficients to insure that K be invariant with respect to iterations
of the process. However, it can be proven that, if an appropriate integration step
h is chosen, it is not necessary to impose such constraints.

It is easy to prove that ), p;(A) always equals 1:

S oot =1+h (Z PENEEMN) = D PN Y plw)dt (x-s)) =y
A A A n
But we have to prove that the iteration of the process never leads to negative
assignments.
Proposition 2. Let h < 1/¢;(A\;p) for all i,\, 5. Denoting by E the function
generated applying Euler’s scheme to the model (5), then for all § € K, we have
E;(M)(p) = 0.
Proof: We have:

I >pEHN) + hpi(N) (qf- () =D pk(w) %)

=Pl + k() (400 = 1 ) 2 ) — k) E =0
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which proves the proposition. O

If we use the linear support function (1), the integration step can be:
1

h <
max;y {Ej maxy, rij(A, N)}

It can readily be seen that this model also corrects deviation from the as-
signment space, provided that p{(A) > 0. In fact, given 3, pi(A) = 1 + & we
have:

STptR) =3 pH) + R Y PN (qe-(/\) = EPE(H)Q?(&))
S y A I

(1 - ZPE(A)) Zp?(#)qf(#)]
X "

=l+e-chy pi(udi(p)

:(1 +E) +h

I
Qﬁs far as the normalized model is concerned, Euler’s scheme yields:

pi(N)gi ()
>, P gk (1)

As can eagily be seen, with A = 1, this is the same equation that defines the
classical model. Thus for h = 1 the model is well defined.

With an £ lower than 1 the resulting assignment is a convex linear combina-
tion of § and the assignment resulting from applying one iteration of the classical
method to p. Since the assignment space K is convex, the resulting assignment
will also be in K.

We can see that this model is also numerically stable. In fact, with h =1, if
we have p;(A) > 0, the model corrects any deviation from K in one step. On the
other hand, with h < 1, if 3~, p{(}) =1 + &, we have:

Pt ) = (1= Rpi(N) + A

¢ g AL HC) I .
;ps+h(k)—;(1—h)pi(ﬂ+;h——~—-—zppmqm (1—h)(1+e)+h

=(1 — he)

That is, the iteration of the model reduces the deviation from K at every step.

It is easy to prove that strictly consistent assignments are local attractors for
these discrete models. In order to do this we must note that the differential of E
is I + hDF; so, given an eigenvalue a of DF'| there is an eigenvalue of DE equal
to 1+ ha. Furthermore, this property defines all eigenvalues of DE. As we have
seen in (9), the eigenvalues of DF calculated for the standard model are all not
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lower than mas; { —q; (/\(z’ ) } and all strictly lower than 0; so, for any integration

step lower than 1/¢;(A)} for all ¢ and all A, we have , for any eigenvalue b of DE,
b=1+ha>1~hy =0and b= I+ha < 1. Thus, strictly consistent assignments
are hyperbolic attractors for the system [5]. The eigenvalues of DF calculated
for the normalized model are all not lower than —1 and all strictly lower than
0 (10); so, for h < 1 the eigenvalues of DE are all not lower than 0 and all
strictly lower than 1. Thus, in this case as well, strictly consistent assignments
are hyperbolic attractors for the system.

6 Experimental results

In order to evaluate the practical behavior of the proposed models we conducted
two series of experiments. Our goal was to verify that the models exhibit the same
dynamical behavior as the classical relaxation scheme (2). The experiments were
conducted using both the Euler and the Runge-Kutta discretizations described
in the previous section.

The first set of simulations were conducted over the classical “triangle” prob-
lem introduced as a toy example in the seminal paper by Rosenfeld, Hummel and
Zucker [15]. The problem is to label the edges of a triangle as convex, concave,
right- or left-occluding. Here, only eight possible labelings are possible (see [15]
for details). The compatibility coefficients used were the same as those given
in [15]. As a first control we verified whether the models’ behaviors differ, start-
ing from the eight initial assignments given in [15]. From these starting points
all the models gave the same sets of classifications. After this preliminary test,
we generated 100 random assignments and used them as starting points for each
model. The iterations were stopped when the sum of Kullback’s I-directed diver-
gence between two successive assignments was lower than 10~7. All the models
converged to a non-ambiguous assignment. Moreover the Euler discretizations
of our dynamics gave the same results as the classical model for all initial as-
signments, while the Runge-Kutta discretizations gave a different result only
for one initial assignment. This single assignment was reached with the highest
number of iterations of all the assignments generated. This is probably due to
the symmetry of the problem: a similar problem can be seen with a uniform
probability distribution among assignments. The iteration of each model should
converge to the a priori probability of each classification, that is 3/8 for each
occluding edge and 1/8 for convex or concave edges. What really happens is that
the assignments start by heading towards the a priori distribution, but, after a
few iterations, they head towards a non-ambiguous assignment. This happens
because the a priori probability is not a hyperbolic attractor for the system. It
is possible that a similar problem affected the only initial assignment that gave
different results: the models headed toward different non-ambiguous solutions
from a unique non-hyperbolic equilibrium that separates the orbits. The average
number of iterations that the models needed to reach the stopping criterion is
shown in Table 1.
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Model Iterations
classical (eq. (2)) 79.1
standard, discretized with Euler’s scheme 118.8
normalized discretized with Runge-Kutta scheme 81.4
standard, discretized with Runge-Kutta scheme 87.2

Table 1. Average number of iterations for the triangle labeling problem.

The second set; of simulations was carried out by generating random sets of
(asymmetric) compatibility matrices. This is the set of tests which most effec-
tively point out differences in the dynamic behavior of the models. Since there
was no underlying scheme on the pattern of compatibility coefficients, we do
not expect the models to converge to a non-ambiguous assignment each time.
In fact, in our experiments, the classical model converged to a non-ambiguous

whether, when the classical model converges to a non-ambiguous assignment,
the other models converge to the same assignment. Ten random coefficients ma-
trices were generated for this experiment and for each matrix the various models
were started from ten random assignments. Hence we made a hundred tests for
each model. The assignment space dimension was five objects (n = 5 Jand three
labels (m = 3). The stopping criterion was the same as the previous set of exper-
iments. Here, the classical model (2) converged to a non-ambiguous assignment
22 times. The Runge-Kutta discretization of both models converged to the same
assignments 20 times, while Euler discretization of the standard model reported
the same assignments 17 times. Table 2 reports the average number of iterations
needed to reach the stopping criterion.

: Q/assignment only 22% of the time. The aim of this set of tests was to verify

Model Iterations
classical (eq. (2)) 294.0
standard, discretized with Euler’s scheme 643.1
normalized discretized with Runge-Kutta scheme 260.1
standard, discretized with Runge-Kutta scheme 324.5

Table 2. Average number of iterations for the random compatibility experiments.

7 Conclusions

In this paper we have presented and analyzed two relaxation labeling processes.
In contrast with the standard approach, these models evolve through continuous-
time rather than discrete-time dynamics. This fact permits the design of analog
hardware implementations, makes the study of its properties simpler and more
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elegant, and makes the model more plausible biologically. We have analyzed
the dynamical behavior of the models and shown how it is intimately related
to Hummel and Zucker’s classical theory of consistency. We have proven that
the models enjoy exactly the same dynamical properties which have already
been proven for the classical processes. The dynamics of the models discretized
through Euler’s scheme has also been studied. Experimental results confirm the
validity of the proposed models.
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Abstract. Accurate localization and tracking of facial features are cru-
cial for developing high quality model-based coding (MPEG-4) systems.
For teleconferencing applications at very low bit rates, it is necessary
to track eye and lip movements accurately over time. These movements
can be coded and transmitted to a remote site, where animation tech-
niques can be used to synthesize facial movements on a model of a face.
In this paper we describe the integration of simple heuristics which are
effective in improving the results of well-known facial feature detection
with robust techniques for adapting a dynamic mesh for animation. A
new method of generating a self-adaptive mesh using an extended dy-
namic mesh (EDM) is proposed to overcome the convergence problem
of the dynamic-motion-equation method (DMM). The new method con-
sisting of two-step mesh adaptation (called coarse-to-fine adaptation)
can enhance the stability of the DMM and improve the performance of
the adaptive process. The accuracy of the proposed approach is demon-
strated by experiments on eye model animation. In this paper, we focus
our discussion only on the detection, tracking, modeling and animation
of eye movements.

1 Introduction

From the image analysis point of view, images can be considered as having struc-
tural features or objects such as contours and regions. These image features or
objects have been exploited to encode images at very low bit rates. Research
on this approach, known as model-based coding, which is related to both image
analysis and computer graphics, has recently intensified. Up to now, most of the
contributions to 3D model-based coding have focused on human facial images.
Although a number of schemes for model-based coding have been proposed [4,
13], automatic facial feature detection and tracking along with facial expression
analysis and synthesis still poses a big challenge to the problem of finding accu-
rate features and their motion.

A variety of approaches have been proposed for detection of facial features. These
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Research Council.



