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Abstract

This paper describes a probabilistic framework for
graph-clustering. We commence from a set of pairwise dis-
tances between graph-structures. From this set of distances,
we use a mixture model to characterize the pairwise affinity
of the different graphs. We present an EM-like algorithm for
clustering the graphs by iteratively updating the elements of
the affinity matrix. In the M-step we applying eigendcompo-
sition to the affinity matrix to locate the principal clusters.
In the M-step we update the affinity probabilities. We apply
the resulting unsupervised clustering algorithm to two prac-
tical problems. The first of these involves locating shape-
categories using shock trees extracted from 2D silhouettes.
The second problem involves finding the view structure of a
polyhedral object using the Delaunay triangulation of cor-
ner features.

1. Introduction

Graph clustering is an important, yet relatively under-
researched topic in machine learning [1, 2, 3]. The impor-
tance of the topic stems from the fact that it is an impor-
tant tool for learning the class-structure of data abstracted in
terms of relational graphs. Problems of this sort are posed
by a multitude of unsupervised learning tasks in knowledge
engineering, pattern recognition and computer vision. The
process can be used to structure large data-bases of rela-
tional models [4] or to learn equivalence classes. One of the
reasons for limited progress in this area has been the lack
of algorithms suitable for clustering relational structures. In
particular, the problem has proved elusive to conventional
central clustering techniques. The reason for this is that it
has proved difficult to define what is meant by the mean
or representative graph for each cluster. However, Munger,
Bunke and Jiang [5] have recently taken some important
steps in this direction by developing a genetic algorithm for
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searching for median graphs. A more fruitful avenue of in-
vestigation may be to pose the problem as pairwise clus-
tering. This requires only that a set of pairwise distances
between graphs be supplied. The clusters are located by
identifying sets of graphs that have strong mutual pairwise
affinities. There is therefore no need to explicitly identify
an representative (mean, mode or median) graph for each
cluster. Unfortunately, the literature on pairwise clustering
is much less developed than that on central clustering.

When posed in a pairwise setting, the graph-clustering
problem requires two computational ingredients. The first
of these is a distance measure between relational structures.
The second is a means of performing pairwise clustering on
the distance measure. There are several distance measures
available in the literature. For instance, in the classical pat-
tern recognition literature, Haralick and Shapiro [6] have
described a relational distance measure between structural
descriptions, while Sanfeliu and Fu [7] have extended the
concept of edit distance from strings to graphs. There have
also been attempts to use an information theoretic approach.
Here Wong and You [8] have computed the entropy for ran-
dom graphs, while Boyer and Kak [9] have used mutual
information. More recently, Christmas, Kittler and Petrou
[10], and Wilson and Hancock [11] have developed prob-
abilistic measures of graph-similarity. Turning our atten-
tion to pairwise clustering, there are several possible routes
available. The simplest is to transform the problem into a
central clustering problem. For instance, it is possible to
embed the set of pairwise distances in a Euclidean space us-
ing a technique such as multi-dimensional scaling and to ap-
ply central clustering to the resulting embedding. The sec-
ond approach is to use a graph-based method [12] to induce
a classification tree on the data. Finally, there are mean-field
methods which can be used to iteratively compute cluster-
membership weights [13]. These methods require that the
number of pairwise clusters be known a priori.

In this paper we use a maximum likelihood framework
for graph clustering recently developed by Robles-Kelly
and Hancock[18]. The problem is posed as one of pairwise



clustering which is parameterized using two sets of indica-
tor variables. The first of these are cluster membership vari-
ables which indicate to which cluster a graph belongs. The
second set of variables are affinity weights which convey the
strength of the similarity relations between pairs of graphs
belonging to the same cluster. Our clustering algorithm is
an iterative one in which both sets of indicator variables are
updated using a process which bears similarities with the
EM algorithm.

We focus on two applications of the graph clustering
method. The first of these is concerned with the unsu-
pervised learning of shape-categories. This involves the
abstraction of 2D binary shapes using shock-trees. Com-
mencing from a data-base of silhouettes, we extract the
Hamilton-Jacobi skeleton and locate the shocks which cor-
respond to singularities in the evolution of the object bound-
ary under the eikonal equation. We compute the similarity
of the shapes using weighted tree edit distance. The sec-
ond application involves identifying the view-structure of
3D objects from 2D images. Here the graphs are Delau-
nay triangulations of corner features. The distance measure
between the graphs furnished by a recently reported matrix
factorization method [21].

2. Graph Affinity

We pose the problem of graph-clustering as that of find-
ing pairwise clusters in the distribution of graph distance.
The process of pairwise clustering is somewhat different to
the more familiar one of central clustering. Whereas cen-
tral clustering aims to characterize cluster-membership us-
ing the cluster mean and variance, in pairwise clustering it
is the relational similarity of pairs of objects which are used
to establish cluster membership. Although less well studied
than central clustering, there has recently been renewed in-
terest in pairwise clustering aimed at placing the method on
a more principled footing using techniques such as mean-
field annealing [13].

To commence, we require some formalism. We are in-
terested in grouping a set of graphs G = {G1, .....,G|m|}
whose index set is M. The set of graphs is characterized
using a matrix of pairwise similarity weights. The elements
of this weight matrix are computed using a graph distance
d; ; between the graphs indexed ¢ and j. The methods used
to compute this distance are application dependent and are
described in Section 4 of this paper.

We adopt the following picture of the graph cluster-
ing process. The picture revolves around the idea that the
graphs can be embedded in a n-dimensional space R™. Here
we treat the embedding space as a latent representation.
Hence we are not concerned with a specific embedding pro-
cedure. However, a number of concrete possibilities exist.
For instance, features could be extracted from the graph

adjacency structure and subjected to principal components
analysis, or the pattern of pairwise distances could be sub-
Jjected to multidimensional scaling. Hence, each graph be-
comes a point in the embedding space. We assume that for
each distinct cluster of graphs the embedded position vec-
tors follow a spherically symmetric Gaussian distribution.
For the cluster with index w, the covariance matrix is o, I,
where n is the n X n identity matrix. Suppose that z;,, and
T, Tepresent the embedded position vectors for the graphs
G; and G;, and that the graphs both belong to the cluster
indexed w. The difference in position between the graphs,
ie. z;, — zj, will be drawn from the normal distribution
N(0,4021). As a result the distance measure
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will follow a 2 distribution with n degrees of freedom.
Given a distance d;; between two points ¢ and j, we can,
estimate the probability that the two points belong to the
same cluster w’, using the x? distribution provided that we
know the cluster variance ai, . The estimated probability is:

P{iandjEw'}zP{xf,>—fd—%-}. )
407,

Using this simple model, we can define the similarity
matrix W setting its coefficients W;; to the probability that
the graphs ¢ and j belong to the same cluster. In other
words:

dz.
Wi; =P {Xf; > 40:; } . 3)

3. Clustering

The aim in graph-clustering is to update a set of simi-
larity weights which partition the set of graphs into disjoint
subsets. Let S, represent the index-set of the cluster of
graphs indexed w. Since the different clusters are disjoint
S NSyun = B ifw’ # w".

In this paper we are interested using matrix factoriza-
tion methods to locate the clusters. One way of viewing
this is to search for the permutation matrix which re-orders
the elements of W into non-overlapping blocks. However,
when the elements of the matrix W are not binary in nature,
then this is not a straightforward task. However, Sarkar and
Boyer [14] have shown how the same-sign eigenvectors of
the matrix of similarity-weights can be used to for cluster-
ing. Using the Rayleigh-Ritz theorem, they observe that the
scalar quantity v:Wv, where W is the weighted adjacency
matrix, is maximized when v is the leading eigenvector of
W. Moreover, each of the subdominant eigenvectors cor-
responds to a disjoint cluster. We confine our attention to
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the same-sign eigenvectors (i.e. those whose correspond-
ing eigenvalues are real and positive, and whose compo-
nents are either all positive or are all negative in sign). If
a component of a same-sign eigenvector is non-zero, then
the corresponding node belongs to the cluster associated
with the eigen-modes of the similarity weight matrix. The
eigenvalues A;, Az.... of W are the solutions of the equation
|[W —AI| = 0 where I is the | M| x | M| identity matrix. The
corresponding eigenvectors vy, , Va,, .... are found by solv-
ing the equation W), = )\;v,,. Let the set of same-sign
eigenvectors be represented by 2 = {w|A, > OA[(v7 (i) >
0Vi)vvZ (i) < 0Vi])}. Since the same-sign eigenvectors are
orthogonal, this means that there is only one value of w for
which v7 (z) # 0. In other words, each node i is associated
with a unique cluster. We denote the set of nodes assigned
to the cluster with modal index w as S, = {i|v? (i) # 0}.

4. Maximum Likelihood Framework

In this paper, we are interested in exploiting the factor-
ization property of Sarkar and Boyer [14] to develop a max-
imum likelihood method for updating the similarity-weight
matrix W. We commence by facto-rising the likelihood-
function over the set of modal clusters of the similarity-
weight matrix. Since the set of modal clusters are disjoint
we can write:

Pw) =[] P(®.), @)

WEQ

where P(®,,) is the probability distribution for the set of
similarity-weights belonging to the modal-cluster indexed
w. To model the component probability distributions, we
introduce a cluster membership indicator s;,, which models
the degree of affinity of the graph indexed i to the cluster
with modal index w.

Using these variables, we develop a model of probability
distribution for the similarity-weights associated with the
individual clusters. We assume that the distribution can be
factorized over the set of pairwise associations &, = S, x
S, — {(%,4)|i € M} with each cluster and write

P®,)= J[ PW:y). )
(i,7)€®.,

To model the probability distribution for the individual link-
weights, we adopt the Bernoulli distribution

p(Wij) = W55 (1 — Wy )t siwsie, (6)
This distribution takes on its largest values when either the

similarity weight W;; is unity and s;, = Sjw = 1, or if the
similarity-weight W; ; = 0 and s;, = s;, = 0.

With these ingredients the log-likelihood function for the
observed pattern of similarity-weights is:

L= 2

{S@ijw InW,;j+(1—'s,-usjw)In(l—Wg’j)}.
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Posed in this way the structure of the log-likelihood
function has two features which are reminiscent of the
expectation-maximization algorithm. First, the modes of
the link-weight matrix play the role of mixin g components.
The product of cluster-membership variables s;,,s jw plays
the role of an a posteriori measurement probability. Sec-
ond, the similarity-weights are the parameters which must
be estimated. However, there are important differences. The
most important of these is that the modal clusters are dis-
Joint. As a result there is no mixing between them.

Based on this observation, we will exploit an EM-like
process to update the similarity-weights and the cluster-
membership variables. In the “M” step we will locate max-
imum likelihood similarity-weights. In the “E” step we will
use the revised similarity-weight matrix to update the modal
clusters. To this end we index the similarity-weights and
cluster memberships with iteration number and aim to opti-
mize the quantity

QYT ™) =
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The revised similarity-weights are indexed at iteration n.+ 1
while the cluster-memberships are indexed at iteration n.

4.1. Expectation

To update the cluster-membership variables we have
used a gradient-based method. We have computed the
derivatives of the expected log-likelihood function with re-
spect to the cluster-membership variable

aQ(W(n+1) IW(ﬂ)) i Z s[n) In Wig‘fl+1) (9)

(n+1) ¥ Ju (n+1)”
6si: JESL 1- Wijn
Since the associated saddle-point equations are not tractable
in closed form, we use the soft-assign ansatz to update the
cluster membership assignment variables. As a result the
update equation for the cluster membership indicator vari-
ables is:
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we initialize the cluster membership variables using the
same sign eigenvectors and set

I A0
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4.2. Maximization

Once the revised cluster membership variables are to
hand then we can apply the maximization step of the algo-
rithm to update the similarity-weight matrix. The updated
similarity-weights are found by computing the derivatives
of the expected log-likelihood function

QWD W)
aw D B
ij

(n) (n) 1 1
Z Siw Sjw T (n+1) (nt1)y (n+1)
o= Wi A=Wy 1-W
(12)
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and solving the saddle-point equations % =
ij

0. As a result the updated link-weights are given by
Wf}?‘Jrl) = & X.ea s séz). In other words, the
similarity-weight for the pair of nodes (,7) is simply the
average of the product of individual node cluster member-
ships. Since each graph is associated with a unique cluster,
this means that the updated similarity-weight matrix is com-
posed of non-overlapping blocks. Moreover, the similarity-
weights are are guaranteed to be in the interval [0, 1].

4.3. Algorithm description

Finally, to summarize, the iterative steps of the algorithm
are as follows:

e (1): Initialization: Compute the eigenvectors of the
initial current link-weight matrix W(®). Each same-
sign eigenvector whose eigenvalue is positive is used
to seed a different component of the mixture model.

e (2) Expectation: Compute the updated cluster-
membership variables using the E-step.
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e (3) Maximization: Update the link-weights using the
M-step to compute the updated link weight matrix
wm,

e Repeat steps (2) and (3) until convergence is reached.
5 Graph-distances

In this section, we provide details of how to compute the
distances required in the two graph-clustering applications
explored in the experimental section of this paper.

5.1. Shock Tree Edit Distance

The first practical problem tackled in this paper is the
clustering of 2D binary shapes based on the similarity of
their shock-trees. The idea of characterizing boundary
shape using the differential singularities of the reaction
equation was first introduced into the computer vision lit-
erature by Kimia, Tannenbaum and Zucker [15]. The idea
is to evolve the boundary of an object to a canonical skele-
tal form using the reaction-diffusion equation. The skeleton
represents the singularities in the curve evolution, where in-
ward moving boundaries collide. The reaction component
of the boundary motion corresponds to morphological ero-
sion of the boundary, while the diffusion component intro-
duces curvature dependent boundary smoothing. Once the
skeleton is to hand, the next step is to devise ways of using
it to characterize the shape of the original boundary. Here
we follow Zucker, Siddiqi, and others, by labeling points on
the skeleton using so-called shock-classes [16]. According
to this taxonomy of local differential structure, there are dif-
ferent classes associated with behavior of the radius of the
maximal circle conatined within the shape. The so-called
shocks distinguish between the cases where the local maxi-
mal circle has maximum radius, minimum radius, constant
radius or a radius which is strictly increasing or decreas-
ing. We abstract the skeletons as trees in which the level in
the tree is determined by their time of formation [17, 16].
The later the time of formation, and hence their proximity
to the center of the shape, the higher the shock in the hi-
erarchy. While this temporal notion of relevance can work
well with isolated shocks (maxima and minima of the radius
function), it fails on monotonically increasing or decreasing
shock groups. To give an example, a protrusion that ends
on a vertex will always have the earliest time of creation,
regardless of its relative relevance to the shape.

To overcome this drawback, we augment the structural
information given by the skeleton topology and the relative
time of shock formation, with a measure of feature impor-
tance. We opt to use a shape-measure based on the rate of
change of boundary length with distance along the skeleton.
To compute the measure we construct the maximal circle,
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Figure 1. Pairwise affinities computed using weighted tree edit distance.

which is tangent to the two nearest boundary points at each
location on the skeleton.

This measurement has previously been used in the liter-
ature to express relevance of a branch when extracting or
pruning the skeleton, but is has recently been shown that its
geometric and differential properties make it a good mea-
sure of shape similarity [19].

Given this representation we can cast the problem of
computing distances between different shapes as that of
finding the tree edit distance between the weighted graphs
for their skeletons.

Tree edit distance is a generalization to trees of String
edit distance. The edit distance is based on the existence of
a set B of basic edit operation on a tree and a set C of costs,

where ¢, € C' is the cost of performing the edit operation
b € B. The choice of the basic edit operations, as well
as their cost, can be tailored to the problem, but common
operations include leaf pruning, path merging, and, in case
of an attributed tree, change of attribute. Given two trees
T, and T3, the set B of basic edit operations, and the cost
of such operation C' = ¢, b € N, we call an edit path from
T, to T3 a sequence by, . . ., b, of basic edit operations that
transform T} into T5. The length of such pathis [ = ¢, +
-+ ++cp,, ; the minimum length edit path from T} to T is the
path form T3 to 7% with minimum length. The length of the
minimum length path is the tree edit distance.

With our measure assigned to each edge of the tree, we
define the cost of matching two edges as the difference of
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the total length ratio measure along the branches. The cost
of eliminating an edge is equivalent to the cost of matching
it to an edge with zero weight, i.e. one along which the total
length ratio is zero.

Using the edit distance of the shock trees we generate a
similarity measure by weighting the nodes with the border
length ratio normalized by the total length of the border of
the shape. That is the length of the fraction of the border
spanned by the shock group divided by the total length of
the border. In this way the sum of the weights in a tree is
1 and the measure is scale invariant. The similarity of the
shapes is computed by adding the minimum weight for each
matched node, that is duy,w = »; min(w;, w;), where w;
and w! are the weight of the nodes that are matched together
by our tree edit distance algorithm.

5.2. View Graphs

The second practical problem studied is that of locating
the view-structure of 3D objects from 2D images captured
from different poses. The image sequence used in our study
is taken from the CMU/VASC database and consists of a
series of views of a model-house. The images are shown in
Figure 3. The graphs used in this part of our study are con-
structed by extracting corner features and computing their
Delaunay triangulations. The extracted graphs are shown in
Figure 4. We use a simple matrix method to compute the
distance between pairs of graphs corresponding to different
viewpoints [21].

To be more formal, we are interested in learning the view
structure from a set of images I, I, .., Ij, ..., Iy whose
point-features have been abstracted using Delaunay graphs.
Suppose that the features in the image I; have been ab-
stracted using the graph G; = (Vi, E;). Here V; is denotes
the of nodes, i.e. the index-set for the point-features and
E; C V; x V; is the edge-set for the Delaunay graph. The
graph index i = 1, ...V runs over the set of images in their
view-order. For each graph G;, we construct the adjacency
matrix A;. This is a |Vi| x |V;| matrix whose element with
row index a and column index b is:

1 if(a,b) € E;
Ai(a,b) = ] 13
(a,5) {O otherwise. 3
For the graphs G; and G; the distance is:
d; ; = Tr[AT (1 - ©)A,C), (14)

where C is a |V;| x |V;| matrix of correspondence indicators
and I is a matrix whose elements are each unity. The matrix
of correspondence indicators C' is found by using matrix
factorization to minimize d; j [21].
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6. Experiments

In this section we experiment with the application of our
clustering algorithm to shock graphs and Delaunay triangu-
lations.

6.1. Shock Graphs

The silhouettes used to generate the shock graphs used
in our experiments are shown in Figure 1. There are 25
different shapes. These include brushes, tools, spectacles,
various animals and human hands. The table lists the initial
values of the affinity weight matrix W©.

A 2D visualization of the set of tree edit-distances for the
shapes obtained using multidimensional scaling is shown
in figure 2. This illustrates the difficulty of the clustering
problem, since no clear structure emerges.

(®)

Figure 3. (a) Initial similarity matrix for the
weighted tree edit distances; (b) Final similar-
ity matrix for the weighted tree edit distances.

Figure 3a shows the matrix of pairwise similarity
weights for the weighted trees for the different shapes. Here
the redder the entry, the stronger the similarity; the bluer the
entry, the weaker the similarity. The order of the entries in
the matrix is the same as the order of the shapes in Fig-
ures 1. After seven iterations of the clustering algorithm
the similarity weight matrix shown in Figure 3b is obtained.
Distinct clusters appear as the seven extracted clusters, in
order of extraction, are:

8 2 2 4
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Figure 2. First and second principal component of the edit distances of the shapes.

In other words, the hands, tools, spectacles and animals
form clusters. However, there are shapes which leak be-
tween these clusters.

The problems encountered above are due to the fact that
certain shapes straddle the true shape-classes and cause
cluster-merging. When a pruned set of 16 shapes is used,
then the following set of clusters emerges:
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- WNE
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~7
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o ek

This is a much better set of clusters that reflect the true
shape-classes in the data. This would suggest that more ef-
fort needs to be expended in developing a better tree edit-
distance for the shock-graphs.

6.2. Delaunay Graphs

In Figure 4 we show the different views of a model house
used in our view clustering experiments. The features used
to abstract the images as graphs are corners. Overlayed on
the images of the Delaunay triangulations of the corners, i.e.

the graphs used in our experiments. In Figure 5 we show the
initial and final pairwise similarity matrices for the graphs.
Here we locate two clusters. The first of these corresponds
to the first three graphs. The second corresponds to the re-
maining seven graphs. The cluster boundary corresponds to
a transition in which the front face of the house changes its
direction of affine skew.

Figure 4. House view graphs.

7. Conclusions

This paper has presented a study of the problem of clus-
tering graphs. We have investigated two problems the first
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of these involves shock-trees. Here we gauge the similarity
of the trees using weighted edit distance. The second prob-
lem involves clustering the Delaunay triangulations of cor-
ner features extracted from polyhedral objects in different
poses. Here graph-distances are computed using a matrix-
based factorization method.

(a)

Figure 5. (a) Initial similarity matrix for the
house distances; (b) Final similarity matrix
for the house distances.

To identify distinct groups of graphs, we develop a max-
imum likelihood algorithm for pairwise clustering. This
takes as its input, a matrix of pairwise similarities between
shock-trees computed from the edit distances. The algo-
rithm is reminiscent of the EM algorithm and has inter-
leaved iterative steps for computing cluster-memberships
and for updating the pairwise similarity matrix. The number
of clusters is contolled by the number of same-sign eigen-
vectors of the current similarity matrix. Experimental eval-
uation of the method shows that it is capable of extracting
clusters of trees or graphs which correspond closely to the
shape-categories present.
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