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Abstract. This paper focuses on how to perform unsupervised learning of tree
structures in an information theoretic setting. The approach is a purely struc-
tural one and is designed to work with representations where the correspondences
between nodes are not given, but must be inferred from the structure. This is in
contrast with other structural learning algorithms where the node-correspondences
are assumed to be known. The learning process fits a mixture of structural models
to a set of samples using a minimum descriptor length formulation. The method
extracts both a structural archetype that describes the observed structural varia-
tion, and the node-correspondences that map nodes from trees in the sample set
to nodes in the structural model. We use the algorithm to classify a set of shapes
based on their shock graphs.

1 Introduction

Graph-based representations have been used with considerable success in computer vi-
sion in the abstraction and recognition of object shape and scene structure. Concrete
examples include the use of shock graphs to represent shape-skeletons [11], the use of
trees to represent articulated objects and the use of aspect graphs for 3D object represen-
tation. The attractive feature of structural representations is that they concisely capture
the relational arrangement of object primitives, in a manner which can be invariant
to changes in object viewpoint. However, despite the many advantages and attractive
features of graph representations, the methodolo gy available for learning structural rep-
resentations from sets of training examples is relatively limited. As a result, the process
of constructing shape-spaces which capture the modes of structural variation for sets
of graphs has proved to be elusive. Hence, geometric representations of shape such as
point distribution models [10, 4], have proved to be more amenable when variable sets
of shapes must be analyzed.

Recently there has been considerable interest in learning structural representations
from samples of training data, in particular in the context of Bayesian networks [3, 1],
mixtures of tree-classifiers [8], or general relational models [2]. The idea is to associate
random variables with the nodes of the structure and to use a structural learning process
to infer the stochastic dependency between these variables. Although these approaches
provide a powerful way to infer the relations between the observable quantities of the
model under examination, they rely on the availability of correspondence information
for the nodes of the different structures used in learning. However, in many cases the
identity of the nodes and their correspondences across samples of training data are not to
hand, Instead, the correspondences must be recovered using a graph matching technique
during the learning process. Hence, there is a chicken and egg problem in structural
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learning. Before the structural model can be learned, the correspondences with it must
be available, and yet the model itself must be to hand to locate correspondences.

The aim in this paper is to develop a framework for the unsupervised learning of
generative models of tree-structures from sets of examples. We pose the problem as
that of learning a union structure from the set of examples with hidden or unknown
correspondences. The structure is constructed through a set of edit operations. Associated
with each node of the structure is a random variable which represents the probability
of the node. There are hence three quantities that must be estimated. The first of these
are the correspondences between the nodes in the training examples and the estimated
union structure. Secondly, there is the union structure itself. Finally, there are the node
probabilities. _

We cast the estimation of these three quantities in an information theoretic setting.
The problem is that of learning a mixture of trees to represent the classes of tree present
in the training data. We use as our information criterion the description length for the
union structure and its associated node probabilities given correspondences with the set
of training examples [9]. An important contribution is to demonstrate that the descrip-
tion length is related to the edit distance between the union structure and the training
examples. >From our analysis it follows that the edit costs are directly related to the
entropy associated with the node probabilities. We perform three sets of updates. First,
correspondences are located so as to minimize the edit distance. Secondly, the union
structure is edited to minimize the description length. Thirdly, we make maximum like-
lihood estimates of the node probabilities. It is important to note that the union model
underpinning our method assumes node independence on the training samples. Using a
mixture of unions we condition this independence on the class. This conditional inde-
pendence assumption, while often unrealistic, 1s at the basis of the naive Bayes model [6]
which has proven to be robust and effective for a wide range of classification problems.
We apply the resulting framework to the problem of learning a generative model for sets
of shock trees.

2 Tree Edit-Distance

This section introduces the tree edit-distance framework, explains how it can be used
to estimate node-correspondences, and gives an overview of the algorithm we use to
approximate it.

The idea behind edit distance is that it is possible to identify a set of basic edit
operations on nodes and edges of a structure, and to associate with these operations a
cost. The edit-distance is found by searching for the sequence of edit operations that
will make the two graphs isomorphic with one-another and which have minimum cost.
The optimal sequence can be found using only structure reducing operations. This can
be explained by the fact that we can transform node insertions in one tree into node
removals in the other. This means that the edit distance between two trees is completely
determined by the subset of residual nodes left after the optimal removal sequence, or,
equivalently, by the nodes that are in correspondence. In particular the distance between
two trees ¢ and t’ is:

Dt = Y. m+ Y, m+ Y, miy e
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Here r; and ; are the costs of removing ¢ and j respectively, M is the set of pairs of
nodes from ¢ and ¢’ that match, m; ; is the cost of matching 4 to 7, and Dom(M) and
Im(M) are the domain and image of the relation M. Letting Nt be the set of nodes of
tree ¢, the distance can be rewritten as:

Dit,t) =Y rm+ > ri+ 3 i =r3).

IENT jeNt <i,j>eM

Hence the distance is minimized by the set of correspondences that maximizes the utility

UM)= D (ritrj—my). )

<i,j>eEM

Let O be the set of matches that satisfy the constraints residing on the tree, then the
node correspondence that minimize the edit distance 1s

M* = argmaxU(M). 3)
MeO

Let us assume that we know the utility of the best match rooted at every descendent
of nodes i and j of t and t' respectively. We aim to find the set of siblings with greatest
total utility. To do this we make use of a derived structure: the association graph. The
nodes of this structure are pairs drawn from the Cartesian product of the descendents of
i and j and each pair correspond to a particular association between a node in one tree
to a node in the other. That is, for each pair of nodes a and b, children of ¢ and 7, we
have an association node (a,b). We connect two such associations if and only if there
is no inconsistency between the two associations, that is the corresponding subtree is
obtainable. Furthermore we assign to the association (a, b) a weight equal to the utility
of the best match rooted at a and b. The maximum weight clique of this graph is the set
of consistent siblings with maximum total utility, hence the set of children of ¢ and j
that guarantee the optimal isomorphism. Given a method to obtain a maximum weight
clique, we can use it to obtain the solution to our isomorphism problem. We refer to [13]
for heuristics for the weighted clique problem.

3 Edit-Intersection and Edit-Union

As shown in the previous section, the edit distance between two trees is completely
determined by the set of nodes that do not get removed by edit operations, that is, in a
sense, the intersection of the sets of nodes. We would like to extend the approach to more
than two trees so that we can represent the structural variations present in a set of examples
trees T.. To this end we assume that there is an underlying “structure model”,which
determines a distribution of tree structures, and that each tree is a sample drawn from
that distribution. In this way edit operations are linked to sampling error, and their cost to
the error probability. We, then, need a way to estimate the underlying structural model.
Our model has three components: a set of nodes, a partial order relation between these
nodes and a sampling probability for each node. Sampling from this distribution means
sampling nodes according to their probability and extracting the minimal descriptions
of the order relation restricted to the sampled nodes.
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Restricting the analysis to the structural part of the model, our interpretation is
equivalent to having a generating hierarchical structure, namely the tree-union, and
obtaining the various tree samples by applying structure-reducing edit operations to it.
The sampling process applies to this structure the edit operation F; with probability 1—6?,
where 6° is the sampling probability of node <. Hence, given the structure of the tree-
union, the set of correspondences C : (|J, N'*) — A from the nodes of the tree samples
to the nodes of the union, and the sampling probability of each node © : N — [0, 1],
we can express the probabilty of sampling a tree ¢ as:

o(tC,0) = [ E:tlc, 6%, “)
teN

where E;(t|6°) is the sampling probability of node i and is defined as:

o if3jeNtCl) =i
1 -6 otherwise.

Ei(8]6") = { )
That is E;(t|6%) is 6° if tree ¢ samples node 4, 1 — % otherwise. The probability of a
sample set D is, hence, P(D|C, ©) = [],., B(t/C, O).

4 Estimating the Structural Model

To estimate the structural part of the model we need to obtain the set of nodes of the
model and correspondences from the nodes in the samples to the nodes of the model.
With this correspondences, the nodes of the model span every node in the samples, and
hence, the node set can be considered the “union” of the set of nodes of the samples. We
refer to [14] for an analysis of the properties of the structure behind this “tree-union”.

Formally, we would like to find the set of nodes V, the sampling probability of each
node © : N — [0, 1], and the set of correspondences C : (U; N*) = N from the nodes
of the tree samples to the nodes of the union. To this purpose, given a sample set D, we
could use a maximum likelihood estimator

= argglax [P(D|c,0)].

In many real-world problems the underlying structural model might not be single:
when dealing with shock graphs, for example, samples drawn from a single shape-
class might be related to a single structural model, but it is reasonable to assume that the
structures of the skeletons of shapes that are perceptually very different are not generated
by a single model. For this reason, when fitting a generative model of tree distribution,
we want to allow for the samples to be drawn from multiple tree-union models . Namely
we would like to fit a mixture of tree-unions.

The mixture model is parametrized by the number of mixtures k, their sampling
probability «;, and the various union models U;. The Union models are defined by their
correspondences C; and sampling probabilities ©;. That is the probabbility of a tree ¢ is

k
P(t|a,C,0) = Y " 0y ®(t|Crm, Orn) (6)

m=1
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Here we use the Minimum Description Length (MDL) principle to describe the cost
of the mixture model and the model representing it. Here the model is captured by the
mixing proportions ¢, the union structures and the sampling probabilities 67 for each
union i and node 1. To describe the data, we need, for each tree sample, to describe from
which union model the sample was drawn. additionally, for each node in the union, we
need to describe whether the node was present in the sample. Asymptotically the cost
of describing the mixing components ¢; and the component each one of n samples 18
drawn from is bo unded by nI (&), where I(&) = — Z:‘;: | @m log(a,) 1s the entropy
of the mixture distibution . The cost of describing a the structure of a union mode
can be considered proportional to the number of nodes, while the cost of describing
the sampling probability ;" of node n of union i and the existence of such node in
each samples of na; samples generated by union ¢ is asymptotically no; I (67). Here
I(87) = — theta} log(67) — (1 —67) log(1 — 67) is the entropy of the node sampling
probability. Hence, given a model H with & unions, each with d; nodes and probability
«; of being sampled, and node correspondences C, the descriptor length is:

k dm

LL(H) = nl(a) + > > [namI(6},) +c]. )

m=1 j=1

In this equation, c is the length per node of the description of the structure of the edit
union, in our experiments set to 1, while the sample probability 67, is estimated from
the correspondences as the fraction of trees generated by union m that sample node j.

5 Minimizing the Descriptor Length

Finding the global minimum of the descriptor length is an intractable combinatorial prob-
lem, so we have to resort to some local search technique. A common approach to mini-
mizing the descriptor length of a mixture model is to use the Expectation-Maximization
algorithm. Unfortunately, the complexity of the maximization step on our union-tree
model grows dramatically with the number of trees in the union. This means that, when
we relax the membership variables for the EM algorithm, each union will effectively
include every sample-tree.

We have chosen a different approach that would allow us to limit the complexity of
the maximization. The approach we have used is as follows.

— Start with an overly-specific model: a structural model per sample-tree, where each
model is equiprobable and structurally identical to the respective sample-tree, and
each node has sample probability 1.

— Tteratively generalize the model merging two tree-unions. The mixture components
to be merged are chosen in such a way that their merger maximally decreases the
descriptor length.

— The algorithm stops when there are no merges left that would decrease the descriptor
length.

Both the EM algorithm and our approach are descent methods in the sense that each
iteration strictly decreases the objective function. The main difference is in the direction
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of descent. The update direction of the EM algorithm is closer to the gradient, while
our approach is, basically, a coordinate descent method: at each iteration we move only
along one of the coordinates in the parameter space. The greatest advantage of coordinate
descent methods is the extremely low space and time complexity of each it eration step.
Furthermore, in our particular case, we are guaranteed convergence to a local minimum
with at most a linear number of merges.

5.1 Merging Two Unions

The main requirement of our minimization algorithm is that we can optimally merge
two union models. That is that we can find the optimal structure that generates every
tree-sample previously assigned to the two models.

From equation 7 we see that the descriptor length is linear with respect to LL;(H:),
the descriptor length of union i. That is LL(H) = nl(a) + zfn=1 LL(Hrm), where
Ll (Hm) = Ejﬁl [na,I(6%,) + c|. Here na, is simply the number of samples
assigned to component rn and the remaining part of the equation is linear in the nodes.

Given two tree unions U; and U,, we need to construct a union U whose struc-
ture respects the the hierarchical constraints present in U; and U, and that minimizes
LL,.(#). Since U; and Uy already assign node correspondences from the samples to
the model, we can simply find the correspondences from the nodes in U; and Us to U
and transitively extending the correspondences from the samples to the final model U.

Reduced to two structures, the correspondence problem is
reduced to finding the set of nodes in U; and Us that are in ® ®
common. Starting with the two structures, we merge the set of
nodes that would reduce the descriptor length by the largest
amount while still satisfying the hierarchical constraint. That
is we merge nodes v and w of U; with node v’ and w’ of Uy
respectively if and only if v ~ w < v' ~» w', where @ ~» b
indicates that a is an ancestor of b. Assuming that the structures
of U; and U, are trees, finding the set of nodes to be merged
is equivalent to solving a tree-edit distance problem where the
utility of a match is equivalent to the advantage in descriptor
length we obtain through the merger. Let n; and ny be the
number of samples in U; and Us respectively, and p, and p,
the number of times nodes v and v’ are sampled in U; and U,
respectively, the sampling probability of the two qodcs if they

are not matched is v = —E:— and fv' = —Zx— respectively, while the sampling

Fig. 1. The Union is de-
fined by the common
nodes.

Ty +na ni+naz
probability of the node if the two are merged is fvv’ = %. Hence, the advantage
in descriptor length we obtain through the merger is:
Uv,v") = (n1 +n2) [I(6v) + I(6v") — I(6vv)] +c. ®)

From an edit distance point of view this is equivalent to saying that the cost of
removing node v is 7, = (n1 + n2)I(6v) + ¢, while the cost of matching v to v’ is
My = (n1 + n2)I(6vv") +c.
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At the end of the node merging operation we are left with a set of nodes that respects
the original partial order defined by the various hierarchies in the sample-trees. The
links of our model will be obtained from the partial order by constructing the minimal
representation. When this representation is a tree, every sample tree can be obtained
from this structure with a sequence of node removal operations.

6 Experimental Results

We evaluate the approach on the problem of shock tree matching. The idea behind the
shock formulation of shape is to evolve the boundary of an object to a canonical skeletal
form using the eikonal equation. The skeleton represents the singularities (shocks) in
the curve evolution, where inward moving boundaries collide. Once the skeleton is to
hand, the next step is to devise ways of using it to characterize the shape of the original
boundary. Here we follow Zucker, Siddigi, and others, by labeling points on the skeleton
using so-called shock-classes [11]. According to this taxonomy of local differential
structure, there are different classes associated with behavior of the radius of the maximal
circle bitangent to the boundary. The so-called shocks distinguish between the cases
where the local osculating circle has maximum radius, minimum radius, constant radius
or a radius which is strictly increasing or decreasing. We abstract the skeletons as trees
in which the level in the tree is determined by their time of formation [11]. The later the
time of formation, and hence their proximity to the center of the shape, the higher the

shock in the hierarchy.
In order to asses the quality of _ P e
the method we compare clusters de- _ e
fined by the components of the mix- ¥y —_ ¥
ture with those obtained with those _ _ -
obtained using the graph clustering _wewn @ -
method described in [13, 7]. In our ex- _\» NS £
periments we use only structural in- N _NASTYN
formation to characterize the shapes, _NA VYN
while [7] enhance the representa- o

tion with geometrical information and
[13] presents results both with purely
structural and enhanced representa-
tions.

Figure 2 shows the clusters extracted on a database of 25 shapes and on a reduced
database of 16 shapes. While there is some merger and leakage, the results outperform
those obtained through pairwise clustering of the purely structural skeletal representa-
tions. Furthermore, it compares favorably with the pairwise clustering algorithm even
where the latter is enhanced with geometrical information linked to the nodes of the
trees.

Fig. 2. Clusters extracted by the mixture of trees.

6.1 Synthetic Data

To augment these real world experiments, we have fitted the model on synthetic data. The
aim of the experiments is to characterize the sensitivity of the classification approach to
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class merger. To meet this goal we have randomly generated some prototype trees and,
from each tree, we generated structurally perturbed copies. The trees are perturbed by
randomly adding the required amount of nodes.

In our experiments we fit samples
generated from an increasing number of
prototypes and subject to an increasing
amount of structural perturbation. We sk
tested the classification performance on
samples dawn from 2, 3, and 4 prototypes L i
of 10 nodes each. The amount of noise
is increased from an initial 10% of the

40% L

total number of nodes to a maximum of .| | ~
50%. Figure 3 plots the fraction of pairs
of trees that are correctly classified as be- e o P r=s =

longing to the same or different clusters

as the noise is inc reased. From these ex-  Fig. 3. Percentage of correct classifications un-
periment we can see that the approach  der increasing structural noise.

works well with compact and well sepa-

rated classes. The algorithm presents a sudden drop in performance when the structural
variability of the class reaches 40% of the total number of nodes of the prototypes. Fur-
thermore, when more prototypes are used, the distance between the clusters is smaller
and, consequently the classes are harder to separate.

7 Conclusions

This paper presented a novel algorithm to learn a generative model of tree structures.
The approach uses the the Tree-Union as the structural archetype for every tree in the
distribution and fits a mixture of these structural models using a minimal descriptor
length formulation. In a set of experiments we apply the algorithm to the problem
of unsupervised classification of shape using the shock-graphs. The results of these
experiments are very encouraging, showing that the algorithm,although purely structural,
compares favorably with pairwise classification approaches on attributed shock-graph.
We are convinced that the results can be further improved by extending the model to
take into account node-attributes.
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