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Abstract. This paper investigates whether meaningful shape categories
can be identified in an unsupervised way by clustering shock-trees.
We commence by computing weighted and unweighted edit distances
between shock-trees extracted from the Hamilton-Jacobi skeleton of 2D
binary shapes. Next we use an EM-like algorithm to locate pairwise
clusters in the pattern of edit-distances. We show that when the tree
edit distance is weighted using the geometry of the skeleton, then the
clustering method returns meaningful shape categories,
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1 Introduction

«There has recently been considerable interest in the use of the reaction-diffusion
equation as a means of representing and analysing both 2D and 3D shapes [1,
2,3]. In a nutshell, the idea is to extract a skeletal representation by evolving
the shape-boundary inwards until singularities appear. Through the analysis of
the differential properities of the singularities, a structural abstraction of the
skeleton known as the shock-graph may be extracted. Although this abstraction
has been widely used for shape-matching and recognition [2], its use as a means
of learning shape categories has attracted less attention. The aim in this paper
is to investigate whether graph-clustering can be used as a means of partitioning
shock-trees into shape classes via unsupervised learning.

Graph clustering is an important yet relatively under-researched topic in ma-
chine learning [4,5]. The importance of the topic stems from the fact that it is
an important tool for learning the class-structure of data abstracted in terms of
relational graphs. Problems of this sort are posed by a multitude of unsupervised
learning tasks in knowledge engineering, pattern recognition and computer vi-
sion. The process can be used to structure large data-bases of relational models
[6] or to learn equivalence classes. One of the reasons for limited progress in the
area has been the lack of algorithms suitable for clustering relational structures.
In particular, the problem has proved elusive to conventional central clustering
techniques. The reason for this is that it has proved difficult to define what is
meant by the mean or representative graph for each cluster. However, Munger,
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Bunke and Jiang [7] have recently taken some important steps in this direction by
developing a genetic algorithm for searching for median graphs. A more fruitful
avenue of investigation may be to pose the problem as pairwise clustering. This
requires only that a set of pairwise distances between graphs be supplied. The
clusters are located by identifying sets of graphs that have strong mutual pair-
wise affinities. There is therefore no need to explicitly identify an representative
(mean, mode or median) graph for each cluster. Unfortunately, the literature on
pairwise clustering is much less developed than that on central clustering.

When posed in a pairwise setting, the graph-clustering problem requires two
computational ingredients. The first of these is a distance measure between rela-
tional structures. The second is a means of performing pairwise clustering on the
distance measure. There are several distance measures available in the literature.
For instance, in the classical pattern recognition literature, Haralick and Shapiro
[8] have described a relational distance measure between structural descriptions,
while Eshera and Fu [9] have extended the concept of edit distance from strings
to graphs. More recently, Christmas, Kittler and Petrou [10], Wilson and Han-
cock [11] and Huet and Hancock [12] have developed probabilistic measures of
graph-similarity. Turning our attention to pairwise clustering, there are several
possible routes available. The simplest is to transform the problem into a central
clustering problem. For instance, it is possible to embed the set of pairwise dis-
tances in a Euclidean space using a technique such as multi-dimensional scaling
and to apply central clustering to the resulting embedding. The second approach
is to use a graph-based method [13] to induce a classification tree on the data.
Finally, there are mean-field methods which can be used to iteratively com-
pute cluster-membership weights [14]. These methods require that the number
of pairwise clusters be known a priori.

Our appraoch is as follows. Commencing from a data-base of silhouettes, we
extract the Hamilton-Jacobi skeleton and locate the shocks which correspond
to singularities in the evolution of the object boundary under the eikonal equa-
tion. We compute the similarity of the shapes using weighted and un-weighted
tree edit distance. With the set of pairwise edit-distances between the shock-
graphs to hand, we use a maximum-likelihood method for pairwise clustering.
Our experiments show that when used in conjunction with the weighted tree edit
distance, the pairwise clustering process locates meaningful shape categories.

2 Shock Tree Edit Distance

The practical problem tackled in this paper is the clustering of 2D binary shapes
based on the similarity of their shock-trees. The idea of characterizing boundary
shape using the differential singularities of the reaction equation was first intro-
duced into the computer vision literature by Kimia, Tannenbaum and Zucker
[3]. The idea is to evolve the boundary of an object to a canonical skeletal form
using the reaction-diffusion equation. The skeleton represents the singularities
in the curve evolution, where inward moving boundaries collide. The reaction
component of the boundary motion corresponds to morphological erosion of the
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Fig. 1. Pairwise edit distances computed using un-weighted trees.

boundary, while the diffusion component introduces curvature dependent bound-
ary smoothing. Once the skeleton is to hand, the next step is to devise ways
of using it to characterize the shape of the original boundary. Here we follow
Zucker, Siddiqi, and others, by labeling points on the skeleton using so-called
shock-classes [2]. We abstract the skeletons as trees in which the level in the tree
is determined by their time of formation [15,2]. The later the time of formation,
and hence their proximity to the center of the shape, the higher the shock in the
hierarchy. While this temporal notion of relevance can work well with isolated
shocks (maxima and minima of the radius function), it fails on monotonically
increasing or decreasing shock groups. To give an example, a protrusion that
ends on a vertex will always have the earliest time of creation, regardless of its
relative relevance to the shape.

To overcome this drawback, we augment the structural information given by
the skeleton topology and the relative time of shock formation, with a measure of
feature importance. We opt to use a shape-measure based on the rate of change
of boundary length with distance along the skeleton. To compute the measure
we construct the osculating circle to the two nearest boundary points at each
location on the skeleton.

This measurement has previously been used in the literature to express rel-
evance of a branch when extracting or pruning the skeleton, but is has recently
been shown that its geometric and differential properties make it a good measure
of shape similarity [16].
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Fig. 2. Pairwise edit distances computed using weighted trees.

Given this representation we can cast the problem of computing distances
between different shapes as that of finding the tree edit distance between the
weighted graphs for their skeletons.

With our measure assigned to each edge of the tree, we define the cost of
matching two edges as the difference of the total length ratio measure along the
branches. The cost of eliminating an edge is equivalent to the cost of matching
it to an edge with zero weight, i.e. one along which the total length ratio is zero.

Using the edit distance of the shock trees we generate two similarity measures
for a pair of shapes.

— The first measure is obtained weighting the nodes with the border length
ratio normalized by the total length of the border of the shape. That is the
length of the fraction of the border spanned by the shock group divided
by the total length of the border. In this way the sum of the weights in a
tree is 1 and the measure is scale invariant. The similarity of the shapes is
computed by adding the minimum weight for each matched node, that is
Gt = D min{w;, w}), where w; and w! are the weight of the nodes that
are matched together by our tree edit distance algorithm.

— The second measure of shape similarity is computed from the unweighted
structure: We assign a uniform edit cost of 1 to each node and we compute

the average ratio of matched nodes: dy, v = % (% + ﬁ) , where T7 and
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T5 are the two trees to be matched, T' is the median of the two trees obtained
through cut operations only, and # indicates the number of nodes in the tree.

3 Graph-Clustering

We pose the problem of learning the set of shape-classes as thast of finding pair-
wise clusters in the distribution of tree-edit distance. The process of pairwise
clustering is somewhat different to the more familiar one of central clustering.
Whereas central clustering aims to characterise cluster-membership using the
cluster mean and variance, in pairwise clustering it is the relational similarity of
pairs of objects which are used to establish cluster membership. Although less
well studied than central clustering, there has recently been renewed interest in
pairwise clustering aimed at placing the method on a more principled footing
using techniques such as mean-field annealing [14].

To commence, we require some formalism. We are interested in grouping a set,
of graphs G = {G1, ....., Ginr } whose index set is M. The set of graphs is charac-
terised using a matrix of pairwise similarity weights. The elements of this weight
matrix are computed using tree-edit distance d;,; between the graphs indexed i
and j. Here we use the exponential similarity function W’g) = {exp[—kd; ;] if
t # 7, 0 otherwise} to generate the elements of the weight-matrix, where & is a
constant which is heuristically set. The aim in graph-clustering is to locate the
updated set of similarity weights which partition the set of graphs into disjoint
subsets. To be more formal, suppose that (2 is the set of graph-clusters and let
S represent the set of the graphs belonging to the cluster indexed w. Further,
let sf-z) represent the probability that the graph indexed i belongs to the clus-
ter indexed w at iteration n of the algorithm. We are interested in posing the
clustering problem in a maximum likelihood setting. Under the assumption that
the cluster memberships of the graphs follow a Bernoulli distribution with the
link-weights as parameters, the likelihood-function for the weight matrix W is
given by

P(W) = H H W:}w&_fw (1- Wz’,j)l_swsjw (1)

well (i, 5)eMx M
The corresponding log-likelihood function is
L= Z Z {siws_,-w In W,‘j + (1 ey swsjw) lﬂ(l ] Wi,j)} (2}
WESR (i, 5)EMx M
We have recently, shown how this log-likeihood function can be iteratively opt-

mised using an EM-like process. In the E (expectation) step, the cluster mem-
bership probabilities are updated according to the formula
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Once the revised cluster membership variables are to hand then we apply the
M (maximisation) step of the algorithm to update the similarity-weight matrix.
The updated similarity-weights are given by W;(;H) =3 e ngstg}. These
two steps are interleaved and iterated to convergence.

To set the number of clusters we perform a modal analysis on the initial
similarity matrix W(®). Here we use a result due to Sarkar and Boyer [17] who
have shown that the positive eigenvectors of the matrix of similarity-weights
can be used to assign nodes to clusters. Using the Rayleigh-Ritz theorem, they
observe that the scalar quantity @!W©z is maximised when x is the leading
eigenvector of W(®, Moreover, each of the subdominant eigenvectors corresponds
to a disjoint perceptual cluster. They confine their attention to the same-sign
positive eigenvectors (i.e. those whose corresponding eigenvalues are real and
positive, and whose components are either all positive or are all negative in
sign). If a component of a positive eigenvector is non-zero, then the corresponding
node belongs to the perceptual cluster associated with the associated eigenmodes
of the weighted adjacency matrix. The eigenvalues Ay, Ag.... of W are the
solutions of the equation [W(® — AI| = 0 where I is the |V| x |V] identity
matrix. The corresponding eigenvectors @y ,@),, ... are found by solving the
equation W@z A = Miy,. Let the set of positive same-sign eigenvectors be
represented by 2 = {w|A, > 0 A [(2},(i) > 0Vi) Vv x(3) < 0Vi])}. Since the
positive eigenvectors are orthogonal, this means that there is only one value of
w for which x,(¢) # 0. In other words, each node i is associated with a unique

(a) (b)

Fig. 8. (a} Initial similarity matrix for the unweighted tree edit distances; (b)Final
similarity matrix for the unweighted tree edit distances.
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cluster. We denote the set of nodes assigned to the cluster with modal index w
as V,, = {i|e} () # 0}. Hence each positive same-sign eigenvector is associated
with a distinet mixing component. We use the eigenvectors of the initial affinity
matrix to initialise the cluster membership variables. This is done using the

magnitudes of the modal co-efficients and we set sgi} = ﬁ,_%%
PEVy, 1T0

4 Experiments

The 16 shapes used in our study are shown in Figures 1 and 2. In Figure 1 we
show the pattern of unweighted edit distances between the shock-trees for the
shapes, while Figure 2 shows the corresponding weighted tree edit distances.

Fig. 4. (b) Initial similarity matrix for the weighted tree edit distances; (b) Final
similarity matrix for the weighted tree edit distances.

In Figures 3a we show the matrix of pairwise similarity weights for the un-
weighted trees for the different shapes. Here the redder the entries, the stronger
the similarity; the bluer the entries, the weaker the similarity. The order of the
entries in the matrix is the same as the order of the shapes in Figures 1a and
1b. After six iterations of the clustering algorithm the similarity weight matrix
shown in Figure 3b is obtained. There are six clusters (brush (1) + brush (2)
+ wrench (4); spanner (3) + horse (13) ; pliers (5) + pliers (6) + hammer (9)
;pliers (7) +hammer (8) + horse (12); fish (10) + fish (12); hand (14) + hand
(15) + hand (16). Clearly there is merging and leakage between the different
shape categories. In Figures 4a and 4b we show the initial and final similarity
matrices when weighted trees are used. The entries in the initial similarity matrix
are better grouped than those obtained when the unweighted tree edit distance
is used. There are now seven clusters. brush (1) + brush (2) ; spanner (3) +
spanner (4); pliers (5) + pliars (6} + pliers (7); hammer (8) + hammer (9); fish

B
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(10) + fish (11); horse (12) + horse (13); hand (14) + hand (15) + hand (16)).
These correspond exactly to the shape categories in the data-base.

5 Conclusions

This paper has presented a study of the problem of clustering shock-trees. We
gauge the similarity of the trees using weighted and unweighted edit distance.
To idetify distinct groups of trees, we develop a maximum likelihood algorithm
for pairwise clustering. This takes as its input a matrix of pairwise similari-
ties between shock-trees computed from the edit distances. The algorithm is
reminiscent of the EM algorithm and has interleaved iterative steps for comput-
ing cluster-memberships and for updating the pairwise similarity matrix. The
number of clusters is controlled by the number of same-sign eigenvectors of the
current similarity matrix. Experimental evaluation of the method shows that it
is capable of extracting clusters of trees which correspond closely to the shape-
categorics present.
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Abstract. Genetic algorithms with a novel encoding scheme for feature
selection are introduced. The proposed genetic algorithm is restricted to
a particular predetermined feature subset size where the local optimal
set of features is searched for. The encoding scheme limits the length of
the individual to the specified subset size, whereby each gene has a value
in the range from 1 to the total number of available features.

This article also gives a comparative study of suboptimal feature se-
lection methods using real-world data. The validation of the optimized
results shows that the true feature subset size is significantly smaller
than the global optimum found by the optimization algorithms.

Keywords: pattern recognition, feature selection, genetic algorithm

1 Introduction

In real-world classification problems the relevant features are often unknown a
priori. Thus, many features are derived and the features which do not contribute
or even worsen the classification performance have to be discarded. Therefore,
many algorithms exist which typically consist of four basic steps [3]:

1. a generation procedure to generate the next subset of features X.

2. an evaluation eriterion J to evaluate the quality of X.

3. a stopping criterion for concluding the search. It can either be based on the
generation procedure or on the evaluation function.

4. a validation procedure for verifying the validity of the selected subset.

The task of feature selection is to reduce the number of extracted features to a
set of a few significant features which optimize the classification performance.
The best subset

X ={zili=1,...,d;z; €Y} (1)
is selected from the set
Y ={yli=1,...,D}, (2)

where D is the number of extracted features and d < D denotes the size of the
feature subset [4]. A feature selection criterion function J (X) evaluates a chosen

W, Skarbek (Ed.): CAIP 2001, LNCS 2124, pp. 161-168, 2001.
(@ Springer-Verlag Berlin Heidelberg 2001



