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Abstract. Graph-based representations have been used with consider-
able success in computer vision in the abstraction and recognition of
object shape and scene structure. Despite this, the methodology avail-
able for learning structural representations from sets of training exam-
ples is relatively limited. This paper addresses the problem of learning
archetypal structural models from examples. To this end we define a gen-
erative model for graphs where the distribution of observed nodes and
edges is governed by a set of independent Bernoulli trials with parame-
ters to be estimated from data in a situation where the correspondences
between the nodes in the data graphs and the nodes in the model are
not known ab initio and must be estimated from local structure. This
results in an EM-like approach where we alternate the estimation of
the node correspondences with the estimation of the model parameters.
The former estimation is cast as an instance of graph matching, while
the latter estimation, together with model order selection, is addressed
within a Minimum Message Length (MML) framework. Experiments on
a shape recognition task show the effectiveness of the proposed learning
approach.

1 Introduction

Graph-based representations have been used with considerable success in com-
puter vision in the abstraction and recognition of object shape and scene struc-
ture. Specific examples include the use of shock graphs to represent shape-
skeletons [13], the use of trees to represent articulated objects [12, 22] and the use
of aspect graphs for 3D object representation [7]. The attractive feature of struc-
tural representations is that they concisely capture the relational arrangement of
object primitives, in a manner which can be invariant to changes in object view-
point. Despite the many advantages of graph representations, the methodology
available for learning structural representations from sets of training examples
is relatively limited, and the process of capturing the modes of structural vari-
ation for sets of graphs has proved to be elusive. For this reason feature-based
geometric representations have been preferred when analyzing variable sets of
shapes. There are two reasons why pattern spaces are more easily constructed



for feature-based representations than for graphs. First, there is no canonical
ordering for the nodes or edges of a graph. Hence, before a vector-space can be
constructed, the correspondences between nodes must be established. Second,
structural variations in graphs manifest themselves as differences in the num-
bers of nodes and edges. As a result, even if a vector mapping can be established
then the vectors will be of variable length.

There has been considerable interest in learning structural representations
from samples of training data in the context of Bayesian networks [8], gener-
alized Bayesian networks [3, 4], or general relational models [9, 19, 5]. However,
these models rely on the availability of correspondence information. In many
situations, however, the identity of the nodes and their correspondences across
samples of training data are not known but must be recovered from the struc-
ture typically using graph matching techniques during the learning process. This
leads to a chicken and egg problem in structural learning: the correspondences
must be available to learn the model and yet the model itself must be known to
locate correspondences.

Recently, there has been some effort aimed at learning structural archetypes
and clustering data abstracted in terms of graphs even when the correspondences
are not known ab initio. Hagenbuchner et al. [11] use Recursive Neural Networks
to perform unsupervised learning of graph structures. While this approach pre-
serves the structural information present, it does not provide a means of char-
acterizing the modes of structural variation encountered. Bonev et al. [1] and
Bunke et al. [2] summarize the data by creating super-graph representation from
the available samples, while White and Wilson [21] use a probabilistic model over
the spectral decomposition of the graphs to produce a generative model of their
structure. These techniques provide a structural model of the samples - however,
the way in which the supergraph is learned or estimated is largely heuristic in
nature and is not rooted in a statistical learning framework. Torsello and Han-
cock [16] proposed an approach to learn trees by defining a superstructure called
tree-union that captures the relations and observation probabilities of all nodes
of all the trees in the training set. The structure is obtained by merging the
corresponding nodes of the structures and is critically dependent on both the
extracted correspondence and the order in which trees are merged. Todorovic
and Ahuja [14] applied the approach to object recognition based on a hierarchi-
cal segmentation of image patches and lifted the order dependence by repeating
the merger procedure several times and picking the best model according to an
entropic measure. While these approaches do capture the structural variation
present in the data in a way solidly rooted in statistical learning, there are two
major problems in the way the model is constructed. First, the model structure
and model parameters are tightly coupled, which forces the learning process to
be approximated as a series of model merges. Second, all the observed nodes
must have a counterpart in the model, which must then account for both the
underlying structure as well as the random structural noise observed.

The aim in this paper is to develop an information-theoretic framework for
learning of generative models of graph-structures from sets of examples. The
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Fig. 1. A core structural model and the generated graphs. When the correspondence
information is lost, the second and third graph become indistinguishable.

major characteristics of the model are the fact that the model structure and
parameters are decoupled, and that we have two components to the model: one
which describes the core part, or the proper set of structural variations, and one
which defines an isotropic random structural noise.

2 Generative Graph Model

Consider the set of undirected graphs S = (g1, . . . , gl). Our goal is to learn
a generative graph model G that can be used to describe the distribution of
structural data and characterize the structural variations present in the set. To
develop this probabilistic model, we make an important simplifying assumption:
We assume that the observation of each node and each edge is independent of the
others. Hence, the proposed structural model is a complete graph G = (V,E,Θ),
where V = {1, . . . , n} is the set of nodes, E ⊆ V × V is the set of edges and
Θ is a set of observation probabilities. In an observation, or sample, from this
model, node i ∈ V is present with probability θi, i.e., the existence of each node
in a sample graph is modelled as a Bernoulli trial of parameter θi. Further, edge
(i, j) is present with probability τij , conditioned on the fact that both nodes i
and j are present.

After the graph has been generated from the model, we lose track of the
correspondences between the observation’s nodes and the model’s nodes that
generated them. We can model this by saying that an unknown random per-
mutation is applied to the nodes of the sample. For this reason, the observation
probability of a sample graph depends on the unknown correspondences between
sample and model nodes. Figure 1 shows a graph model and the graphs that can
be generated from it with the corresponding probabilities. Here the numbers
next to the nodes and edges of the model represent the values of θi and τij . Note
that, when the correspondence information (letters in Figure 1) is dropped, we
cannot distinguish between the second and third graphs anymore, yielding the
final distribution.

This definition applies to unweighted graphs, but it can be generalized to
graphs with node or edge attributes by adding a generative model for node- and
edge-attributes. Let us assume we have a set of node attributes A and a set of
edge attributes B, an attributed graph is a tuple (g, α, β) where g is a graph,
α is a function from the nodes of g to the set of node-attributes A, and β is a



function from the set of edges of g to B. A generative model for attributed graphs
will then be characterized by the node and edge observation probabilities θi and
τij as well as the node attribute densities fAi and the edge attribute density fBij ,
so that the probability of observing node i with attribute αi is θifAi (αi) and
the probability of observing edge (i, j) with attribute βij , conditioned on the
observation of i and j, is τijfBi (βij).

With this generative model, since every node in the generated graphs must
originate from a node in the model, the only structural operation we can perform
to generate a new graph is the removal of nodes and edges. This implies that the
model must describe every possible structural variation encountered in the data,
be it central to the distribution, or simply structural noise that is encountered
with very low probability. To avoid this we allow for nodes to be added to the
model by saying that, with a certain probability, the model generates nodes that
do not correspond to any one represented by the structural part of the model,
and that have identical probability τ̄ of being connected to any other node, where
we force this probability to be equal to the average density of the core part of
the structural model, i.e.,

τ̄ =

∑n
i=1

∑n
j=i+1 θiθjτij∑n

i=1

∑n
j=i+1 θiθj

.

Hence, external nodes model isotropic (or spherical) noise. In general, a gener-
ative model will generate a graph with k external nodes according to a geometric
distribution Pk = (1 − θ̄)θ̄k

∏k
i=1 f

A(αi), where θ̄ ∈ [0, 1] is a model parameter
that quantifies the tendency of the model to generate external nodes and fA(αi)
is the density of the observed attributes of the external nodes.

Let us assume that we have a model G with n nodes and that we want to
compute the probability that graph g with m nodes was sampled from it.

Let g be a graph and σ : (1, . . . , n) → (1, . . . ,m + 1) be a set of correspon-
dences from the model nodes to the nodes in g where σ(i) = m + 1 if model
node i has no corresponding node in g, that is, if model node i is not observed in
graph g. Further, let π : (1, . . . ,m) → (1, . . . , n + 1) be the inverse set of corre-
spondences, where π(h) = n+ 1 if h is an external node, otherwise σ(π(h)) = h,
and π(σ(i)) = i if σ(i) 6= m+1. With this notation, the probability that a graph
g was sampled from a model G given the correspondences σ and π is

P (g|G, σ) = (1− θ̄)
n∏
i=1

n∏
j=i

Θ
σ(i)σ(j)
ij

m∏
h=1

m∏
k=h

Θ
hk

π(h)π(k) , (1)

where Θhkij is the probability that model edge (i, j) generated graph edge (h, k),

Θ
hk

ij with i = n+ 1 or j = n+ 1 is the probability that edge (h, k) is external to
the model. Here pairs with the same index represent a node instead of an edge.
Letting G = (ghk) be the adjacency matrix of graph g, we define Θhkij and Θ

hk

ij

as follows:



Θhkij =



0 if i = j ∧ h 6= k or i 6= j ∧ h = k

θif
A
i (αh) if i = j ∧ h = k ∧Ghh = 1

1− θi if i = j ∧ h = k ∧Ghh = 0

τijf
B
ij(βhk) if i 6= j ∧ h 6= k ∧Ghk = 1

1− τij if i 6= j ∧ h 6= k ∧Ghh = 1∧
Gkk = 1 ∧Ghk = 0 ,

1 otherwise.

Θ
hk

ij =


0 if i = j ∧ h 6= k or i 6= j ∧ h = k

θ̄fA(αh) if h = k ∧ i = j = n+ 1

τ̄fB(βhk) if (i = n+ 1 ∨ j = n+ 1) ∧Ghk = 1

1− τ̄ if (i = n+ 1 ∨ j = n+ 1) ∧Ghk = 0

1 otherwise.

3 Model Estimation

Key to the estimation of the structural model is the realization that, conditioned
on a given set of correspondences between every node of every graph in S and the
nodes of the model G, the node observation processes are independent from one
another. Hence, since the structural component of the model is always a complete
graph and node/edge observation is dictated by the model parameters, knowing
the set of correspondences would effectively decouple parameters and structure.

Here we make the simplifying assumption that the likelihood of the set of
correspondences σg between graph g and model G is strongly peaked, i.e., we
have P (g|G) ≈ maxσg

P (g|G, σg). With this assumption the estimation of the
structural model can be achieved with an EM-like process by alternating the
estimation of the correspondences σg of every graph g ∈ S with a fixed set of
model parameters Θ, and the estimation of Θ given the correspondences.

While this EM-like approach solves the problem of estimating the structural
model of a given size, the problem of model order selection remains open. We
have chosen to use Minimum Message Length (MML) criterion [18, 17], which
allows us to address parameter estimation and model order selection within a
single framework, solidly basing it on information-theoretic principles.

3.1 Correspondence Estimation

The estimation of the set of correspondences σ is an instance of a graph matching
problem, where, for each graph g, we are looking for the set of correspondences
that maximizes P (g|G, σ). To do this we relax the space of partial correspon-
dences, where a relaxed state is represented by a matrix P = (pih ∈ [0, 1]) where
i = 1 . . . n + 1 iterates over the model nodes, with i = n + 1 representing ex-
ternal nodes, and h = 1 . . .m + 1 iterates over the nodes of g, with j = m + 1
representing non-observed nodes. The matrix P satisfies the constraints

xih ≥ 0 for all i = 1 . . . n and h = 1 . . .m∑m+1
h=1 pih = 1 for all i = 1 . . . n∑n+1
i=1 pih = 1 for all h = 1 . . .m .



Note that, with the exception than the last row and column that are not nor-
malized, the matrix P is almost doubly stochastic, i.e., the sum of the elements
in each row and in each column is equal to one. The probability P (g,G, σ) can
be extended to the relaxed assignment space as the function

E(g,G, P ) = (1− θ̄)
( n∏
i=1

n∏
j=i

m+1∑
h=1

m+1∑
k=h

pihΘ
hk
ij pjk

)( m∏
h=1

m∏
k=i

n+1∑
i=1

n+1∑
j=i

pihΘ̄
hk
ij pjk

)
.

In an approach similar to Graduated Assignment [10], we maximize the en-
ergy function E by iterating the recurrence P t+1 = µ

(
DEt

)
, whereDEt = (deih)

is the differential of E with respect to P t and satisfies

deih
E(g,G, P t)

=

 n∑
j=1

∑m+1
k=1 Θhkij pjk∑m+1

l=1

∑m+1
k=1 pilΘlkij pjk

 m∑
k=1

∑n+1
j=1 Θ

hk

ij pjk∑n+1
l=1

∑n+1
j=1 plhΘ

hk

lj pjk

 ,

and µ is a function projecting DEt to the relaxed assignment space. The projec-
tion of a matrix P is obtained by searching for the relaxed partial assignments
that minimizes the Frobenius distance ||P − P ∗||F . The minimization can be
performed by iteratively projecting P to the set Ω satisfying the equality con-
straints ∑m+1

h=1 pih = 1 for all i = 1 . . . n∑n+1
i=1 pih = 1 for all h = 1 . . .m

and then projecting it on to the conic subspace pih ≥ 0.
The projection to the conic subspace is done by setting to 0 all negative

entries of P , while the projection to Ω will be of the form P ∗ = P −αe
T

m−enβ
T

,
where ek is the (k+ 1)-dimensional vector with the first k entries equal to 1 and
the last equal to 0, and α and β are defined as follows:

αi = (Pem)i + (pim+1 − 1)−
e

T

nPem + (m+ 1)
(
Pn+1em −m

)
−m

(
e

T

nP
m+1 − n

)
m+ 1

,

βh = (e
T

nP )i + (pn+1,h − 1)−
e

T

nPem + (n+ 1)
(
e

T

nP
m+1 − n

)
−m

(
Pn+1em −m

)
)

n+ 1
,

where Pi and P j refer to the ith row and jth column respectively.
Finally, once we have found the maximizer P∞ = argmaxP E(g,G, P ), we

map it to the closest 0-1 matrix by solving a bipartite matching problem.

3.2 Parameter Estimation

The parameter estimation and model selection problem are tightly coupled. For
this reason we have chosen to use Minimum Message Length (MML) [17], which



has the ability to deal comfortably with hybrid discrete and continuous models,
including model order selection. MML is a Bayesian method of point estimation
based on an information-theoretic formalization of Occam’s razor. Here, simplic-
ity of an explanation is formalized as the joint cost of describing a probabilistic
model for the data and describing the data given the model. Hence, to estimate
a model class and the model parameters, MML constructs a two-part message.
The first encodes the model class/order and the parameters, while the second
assumes a Shannon-optimal encoding of the data given the model. According to
the MML criterion, we choose the model class/order and the parameter estimate
that correspond to the shortest two-part message. MML is closely related to the
Kolmogorov complexity [19, 17], is invariant under 1-to-1 parameter transforma-
tions [20, 17], and has general statistical consistency properties [6, 5].

The cost of describing a fully specified model (in the first part of the message)
with a parameter vector θG is approximately

− log

 h(θG)√
kDDF (θG)

 = − log

[
h(θG)√
F (θG)

]
+
D

2
log kD,

where D is the number of parameters of the model, kD are the lattice constants
specifying how tightly unit spheres can be packed in a D-dimensional space, h(θ)
is the prior of the parameters θ, F (θ) is the Fisher information matrix and the

term 1/(
√
kDDF (θG)) is the optimal round-off in the parameter estimates. It is

this round-off which gives rise to the additional term of D/2 in the second part
of the message below.

According to Shannon’s theorem, the cost of encoding the data (in the sec-
ond part of the message) has a tight lower bound in the negative log-likelihood
function, to which - as immediately above - we add D/2.−∑

g∈S
log
(
P (g|G, σg)

)+
D

2
.

If D is sufficiently large the logarithm of the lattice constants can be approx-
imated as log(kD) = log(πD)−2

D − log(2π)− 1 [17].
In this work we have opted for a standard non-informative Jeffreys’s prior

for the model parameters which will push the parameters towards the edges
of their range forcing each node/edge to be observed either very frequently or
very rarely. A consequence of this choice is that the MML point estimates of the
parameters are the same as the maximum likelihood estimates, leaving the MML
criterion only for model-order selection. (A more general but more CPU-intensive
alternative would be to generalise the Jeffreys prior by having a hyper-parametric
prior of the form in [5, sec. 0.2.6].) In fact, the use of Jeffreys’s prior implies
h(θ) =

√
F1(θ), where F1(θ) is the single datum Fisher information matrix and

F (θ) = |S|DF1(θ). Hence, the final message (or code) length, considering the



approximation for log(kD), is

I1 =
D

2
log
(
|S|
2π

)
+

1
2

log(πD)− 1−
∑
g∈S

log
(
P (g|G, σg)

)
, (2)

where |S| is the number of samples and the number of parameters for a n-node
structural model is D =

(
n
2

)
+ n+ 1

Further, we have θi = ai

|S| , and τij = |{g∈S|(σg(i),σg(j))∈Eg}|
aij

, where ai is the
number of graphs that observe model node i, aij is the number of graphs that
observe both nodes i and j, and θ̄ = u

u+|S| , where u is the set of external nodes
that do not map to any node in the model. Similarly, all other per-node and per-
edge parameters specifying the attribute models are estimated using maximum
likelihood estimations.

Concluding, given a set of observation graphs S and a model dimension n, we
jointly estimate node correspondences and model parameters by alternating the
two estimation processes in an EM-like approach, and then we chose the model
order that minimizes the message length, I1.

4 Experimental Evaluation
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Fig. 2. The shape classes in the database.

We tested our structural learning approach on shock-graphs [13], a skeletal-
based representation of the differential structure of the boundary of a 2D shape.
We have used a database consisting of 72 shapes from the MPEG7 database,
divided into 6 classes of 12 shapes each. The shape classes where composed of
bottles, children, elephants, glasses, and tools. Figure 2 shows the shapes in the
database (left) and their distance matrix computed using Graduated Assign-
ment. The size of the resulting shock-graphs varies from 4 to 20 nodes. We have



learned a model for each shape class, first using structural information only,
and then adding attributes to the edges measuring the proportion of boundary
linked to the skeletal branch [15]. In the latter case we assumed a Gaussian
distribution for the edge attributes, and learned the attributes’ means µij and
variances σ2

ij together with the observation probabilities τij . For comparison, we
also computed the structural similarities using Graduated Assignment [10].

In order to assess the ability of the approach to characterize the samples it
was trained on, we computed the probability P (g|G) for every shock-graph and
every estimated model and assigned each graph to the model with maximum
probability of generating it. Figure 3 shows the model-assignment probability for
each graph, i.e., a stacked histogram of the model probabilities normalized over
the sum of all model probabilities associated with each graph. Here the colour
of the bars represent the classes, while their length is proportional to P (g|Gi)P

j P (g|Gj) ,
the assignment probability of graph g to model Gi. Figure 3a shows the assign-
ment of graphs to classes according to the proposed approach, while Figure 3b
plots the assignments obtained using the nearest neighbour (NN) rule based on
the distances obtained with Graduated Assignment. Here we can see that in
most cases shock-graphs are predominantly assigned to the correct class,while
NN has a slightly higher rate of misclassifications of 17% versus the 10% mis-
classification we obtained with our approach. Furthermore, it should be noted
that NN classification is computationally more demanding than the classification
using our structural models, as the computation of the similarity between two
graphs using Graduated Assignment and the computation of maxσ

(
P (g,G, σ)

)
have the same computational complexity, but NN requires computing the sim-
ilarity against each training graph, while our approach requires computing the
probabilities only against the learned models. Clearly our approach requires the
models to be learned ahead of time, but that can be performed offline.

Further, to assess the generalization capabilities of the approach we have
repeated the experiment using only 6 shapes to learn the models. Figures 3c and
3d plot the model assignments obtained using our approach and the NN rule
respectively. We can clearly see that the approach generalizes fairly well in both
cases, with the probabilities approximately distributed in the same way as those
obtained from the full training set, resulting in a 15% misclassification for our
approach and 18% for NN classification.

Figures 3e, 3f, 3g, and 3h plot the assignments obtained using edge-weighted
models learned on the full and reduced training set respectively. Here we see that
the additional information allows for a much improved recognition performance,
with both approaches improving the recognition rate and with the proposed
approach maintaining the marginal advantage over the NN classification. The
misclassification rates were 7% for our approach on the full database versus 14%
obtained using the NN rule. With the reduced training set we obtained 13%
misclassification rate versus 14% for the NN rule.
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Fig. 3. Assignment probability of the graphs to the learned models. The colors of the
classes are as follows: Bottle (red), Child (orange), Hand (light green), Glass (dark
green), Horse (light bue), and Tool (dark blue).

5 Conclusions

In this paper we have proposed an approach to the problem of learning a gen-
erative model of structural representations from examples in a situation where
the correspondences must be estimated from local structure. To this end, we
defined a structural model where the distribution of observed nodes and edges is
governed by a set of independent Bernoulli trials. The model is learned using an
EM-like approach where we alternate the estimation of the node correspondences
using a graph matching approach, with the estimation of the model parameters
which, together with model order selection, is addressed within a Minimum Mes-
sage Length (MML) framework. Experiments on a shape recognition task show
that the approach is effective in characterizing the modes of structural variation
present in a set of graphs.

Given the merits of log-loss probabilistic scoring over right/wrong accuracy
[5, footnote 175], it is our hope to later re-visit our experimental results from
sec. 4 using log-loss probabilistic scoring.
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