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Abstract—Surface registration is a fundamental step in the
reconstruction of three-dimensional objects. This is typically
a two-step process where an initial coarse motion estimation
is followed by a refinement step that almost invariably is
some variant of Iterative Closest Point (ICP), which iteratively
minimizes a distance function measured between pairs of
selected neighboring points. The selection of relevant points
on one surface to match against points on the other surface
is an important issue in any efficient implementation of ICP,
with strong implications both on the convergence speed and on
the quality of the final alignment. This is due to the fact that
typically on a surface there are a lot of low-curvature points
that scarcely constrain the rigid transformation and an order
of magnitude less descriptive points that are more relevant
for finding the correct alignment. This results in a tendency
of surfaces to “overfit” noise on low-curvature areas sliding
away from the correct alignment. In this paper we propose
a novel relevant-point sampling approach for ICP based on
the idea that points in an area of great change constrain the
transformation more and thus should be sampled with higher
frequency. Experimental evaluations confront the alignment
accuracy obtained with the proposed approach with those
obtained with the commonly adopted uniform subsampling and
normal-space sampling strategies.
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I. INTRODUCTION

Surface registration is a fundamental step in the recon-
struction of three-dimensional objects using range scanners
since, due to occlusions and the limited field of view of the
scanners, more range images are necessary to fully cover the
object. Registration is typically a two-step process where an
initial coarse motion estimation is followed by a refinement
step on pairs of range images. Pairwise refinements are
almost invariably performed using a variant of the Iterative
Closest Point (ICP) algorithm [1], [2] that iteratively mini-
mizes a distance function measured between pairs of selected
neighboring points. The performance of ICP depends on
several parameters such as the choice of the distance metric,
the selection of points on one surface and the selection
of mating points in the other. These parameters affect the
amount of local minima in the error landscape, the speed
of convergence and in general the precision of the resulting
alignment in the presence of “complex” geometry. See [3]
for a review of some of the variants of ICP.

In this paper we will concentrate on the sampling process

Figure 1. The two regions compete for the samples, resulting in a larger
number of samples on the large low curvature area than on the smaller part.
This results in a bias in the distance measure.

used to select points on one surface, with a view of correctly
aligning ”hard” surfaces that offer very few points that
constrain the motion and large areas where the surface can
slide. For this reason in all the experiments we will use
the point-to-plane distance and the closest point will be
used as mate, since these approaches, while not offering the
fastest convergence, have been shown to be the most robust
combination for “difficult” geometries .

The selection of relevant points on one surface to match
against points on the other surface is an important issue in
any efficient implementation of ICP with strong implications
both on the convergence speed and on the quality of the
final alignment. This is due to the fact that typically on a
surface there are a lot of low-curvature points that scarcely
constrain the rigid transformation and an order of magnitude
less descriptive points that are more relevant for finding the
correct alignment. See Figure 1 for an illustration of the
problem. There we can see a section of a surface composed
of two parts with circular profile which in isolation allow
the surfaces to slide. The transformation is fully constrained
only if enough points are selected from both parts. How-
ever, since there is a large size difference between the
two parts, uniform sampling will take proportionally more
samples from the larger area than from the smaller one.
The difference in sampling biases the error term towards
fitting the larger region better than the smaller one, but since
the region does not constrain the transformation fully, any
sliding that would better fit local noise would be preferred
to the correct alignment, resulting in a tendency to“overfit”
noise on low-curvature areas. In order to better constrain the
set of transformations Rusinkiewicz and Levoy [3] propose
a normal space sampling approach that attempts to sample
uniformly on the sphere of normal directions rather than on
the surface. This, however, only partially solves the problem;



to show why we refer again to Figure 1. There the thicker
arcs on the surface section refer to points that fall in the
same normal bin. Since points in the same bin are sampled
uniformly, the points on the smaller arc must compete with
the points on the larger arc resulting in the same, albeit
a bit reduced, tendency of overfitting noise on the larger
region that plagues uniform sampling. In effect, we would
like to sample points from the two arcs with the same
probability. Further, normal space sampling fully constrains
only translational error, but in general cannot limit rotational
sliding, and the binning interacts poorly with noise in the
normal estimation.

An interesting approach to better constrain the trans-
formation is to select points that best equalize the error
covariance matrix. To this effect Guehring [4] proposes to
weigh the samples based on their contribution to the covari-
ance matrix, but since the analysis is performed after the
sampling, the approach cannot constrain the transformation
if too few samples were chosen in a relevant region. On
the other extreme, Gelfand et al. [5] propose an approach
that selects the points that constrain the transformation the
most. However, the approach is deterministic and has a
tendency of sampling very regularly on isolated regions.
Since in general the range surfaces overlap only partially,
the optimal constraining property only holds if the sampling
is performed only on the overlapping part, which means that
the analysis and the sampling cannot be performed only
once for each surface, but has to be redone for each pair
of surfaces. Further, high levels of noise can make some
areas artificially strongly constraining, and for that reason
the approach needs the surfaces to be smoothed before the
points can be selected.

We propose a different approach to ensure that the rigid
transformation is fully constrained, based on the relevance,
or local distinctiveness, of points. The idea of point dis-
tinctiveness has been extensively used in image process-
ing to develop interest point detectors such as the Harris
Operator [6] and Difference of Gaussians [7]. While these
approaches work well with 2D intensity images, they cannot
be easily extended to handle 3D surfaces since no intensity
information is directly available. Several efforts have been
made to use other local measures, such as curvature or nor-
mals to find relevant points on a surface, but mostly with the
end of finding repeatable associations for coarse registration
or 3D object recognition. One of the first descriptors to
capture the structural neighborhood of a surface point was
described by Chua and Jarvis, who with their Point Signa-
tures [8] suggest both a rotation and translation invariant
descriptor and a matching technique. Later, Johnson and
Hebert introduced Spin Images [9], a rich characterization
obtained by a binning of the radial and planar distances
of the surface samples respectively from the feature point
and from the plane fitting its neighborhood. Given their
ability to perform well with both surface registration and

Figure 2. The region Ap grows in all directions in a “flat” part of the
surface, in only one direction along edges and boundaries and does not
grow much at all on vertices.

object recognition, Spin Images have become one of the
most used 3D descriptors. More recently, Pottmann et al.
proposed the use of Integral Invariants [10], stable multi-
scale geometric measures related to the curvature of the
surface and the properties of its intersection with spheres
centered on the feature point. Finally, Zaharescu et al. [11]
presented a comprehensive approach for interest point de-
tection (MeshDOG) and description (MeshHOG), based on
the value of any scalar function defined over the surface
(i.e., curvature or texture, if available). MeshDOG localizes
feature points by searching for scale-space extrema over
progressive Gaussian convolutions of the scalar function and
thus by applying proper thresholding and corner detection.
MeshHOG calculates a histogram descriptor by binning
gradient vectors with respect to a rotational invariant local
coordinate system.

In this paper we propose a local distinctiveness measure
that is associated with the average local radius of curva-
ture, and a sampling strategy that samples points according
with their distinctiveness. The distinctiveness is computed
through an integral measure, and thus is robust with respect
to noise.

II. RELEVANCE-BASED SAMPLING

The relevance of a point p is related to how similar points
around p are to it. The larger the number of similar points,
the less distinctive, and thus the less relevant, p is. For this
reason we formalize the idea of distinctiveness of point p in
terms of the area of a surface patch around p where points
are similar. More specifically, let p be a point of the surface
S, we associate to it a connected region Ap such that

Ap = {q ∈ S|NT
p Nq > T and p ∼ q} (1)

where Np and Nq are the normals of the surface S at points
p and q, while p ∼ q means that there is a path in Ap

connecting p to q, and the dot threshold T is a parameter
of the approach. For small values of T the area of Ap is
related to the average absolute radius of curvature

||Ap|| ≈ r̄ =
|r1|+ |r2|

2
=
|1/k1|+ |1/k2|

2
, (2)

where ||Ap|| denotes the area of region Ap, k1 and k2 are
the principal curvatures of S in p and r1 = 1/k1 and



Armadillo Bunny Glasses

Uniform sam-
pling

Normal space
sampling

Relevance-
based sampling

Figure 3. Examples of the different sampling approaches.

r2 = 1/k2 are the radii linked with the principal curvatures.
Points within Ap have all the orientations similar to that
of p and if the surface orientation varies quickly in one
direction the growth of the region in that direction will be
limited, thus the size of Ap is linked with the distinctiveness
of p. The area will be inversely proportional to the curvature,
along edges will extend only in one dimension attaining a
size one order of magnitude smaller, and will be almost
point-like on vertices, where the transformation is locally
completely constrained with the exception of rotations along
the point normal (see Figure 2). Hence, the area is inversely
proportional to how much the surface is constraining the
transformation locally.

With the patches Ap to hand, we can assign to each point
p the measure of distinctiveness

f(p) = ||Ap||−k (3)

where k is an equalization parameter, changing the relative

weight of “common” and “distinctive” point. In particular,
the larger the value of k, the more the distinctiveness of
points forming a small patch Ap is emphasized.

Moreover, since the region Ap is defined in terms of
an angular threshold, ||Ap|| is invariant with respect to
resampling, up to the precision imposed by the new sam-
pling resolution. Further, any scale change varies the areas
proportionally, so the ratio between patch areas is scale-
invariant.

Finally, the area of Ap is an integral measure, thus being
less sensitive to noise, and varies continuously along the
surface, with T being a smoothing factor.

When the surface is discretized into points and edges,
Ap can be easily computed with a region growing approach
starting from each point p. If the regions are big, one could
use the continuity and locality of Ap to update the region
from neighboring points, but in practice, we add a size
threshold D limiting the growth of Ap to points whose
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Figure 4. Closeup of the samples. Relevance-based sampling concentrates
samples along the surfaces’ fine structures.

distance from p is less than D. This way we limit the
complexity of the region growing process to O(D2) for each
point and we avoid the uncontrolled expansion of Ap on flat
surfaces.

Once the areas Ap have been computed, we can assign to
each point p the measure of distinctiveness

f̂(p) = |Ap|−k (4)

where |Ap| is the number of points in Ap. This approxi-
mation works under the assumption that the edge length is
uniform through the discretization of surface S.

Once we have computed the distinctiveness of all points in
the surface S, we can proceed to sample points from it with
a density proportional to f̂ . To do this we select any order
p1, . . . , pn of the points in S and compute the cumulative
distribution

F̂ (pi) =
i∑

j=1

f̂(j) , (5)

then we sample a number x uniformly in [0, F̂ (pn)] and find
the smallest index i such that F̂ (pi) > x. To perform the
search efficiently, we use interpolation search [12], a variant
of binary search that instead of splitting the interval [i, j] in
half at each iteration, it splits it at point i + x−F̂ (pi)

F̂ (pj)−F̂ (pi)
.

It is a well known result that interpolation search finds an
element in a sorted array in O(log log n) on average for
near-uniformly distributed data, compared to the O(log n)
complexity of binary search. Further, the search is faster
the higher the entropy of f is. This results in an expected
O(m log log n) complexity when sampling m points from a
surface containing n points.

III. EXPERIMENTAL EVALUATION

To evaluate the performance of the sampling approach
we created several range images with known ground-truth
transformations. To this end we took the 3D models of
the Bunny, the Armadillo, the Dragon, and the Buddha
from the Stanford 3D scanning repository and range scans

extracted from six sets of glasses scanned using a home-
brew scanner built in our lab. The glasses were selected
because they are a particularly hard real-world object since
it is dominated by large perfectly spherical lenses, while the
sliding is constrained only by a very thin rim around them.
In the experiments we used 18 scans for each model. For
the glasses we used directly the range images provided by
the scanner, while for the models taken from the Stanford
repository the range images were created by projecting the
models onto virtual orthographic cameras placed on a ring
around them. Once the range images were to hand, additive
Gaussian noise was added along the z dimension to simulate
measurement error. In order to avoid having perfect point
correspondences, the virtual shots, and thus the points in the
various range images, were obtained by projecting equally
spaced points on the view-plane of the virtual cameras, and
the depths were computed by finding the first intersection
of the rays with the model.

All the measures of quality of the alignments are based
on the ground-truth alignment, and not the usual Root Mean
Square Error (RMSE) because the value of the RMSE de-
pends heavily on the sampling strategy and it is completely
blind with respect to the noise overfitting problem.

The proposed Relevance-based sampling (RBS) approach
was compared against uniform sampling and normal space
sampling (NSS).

Figure 3 shows an example of sampling range scans
from the three models using the three sampling strategies.
Uniform sampling does exactly what we expect, with the
problems we have discussed. Normal space sampling is
more selective of the points, but it still wastes quite a
few samples on large low curvature areas like the back
of the armadillo, the back and the chest of the bunny and
the lenses of the spectacles. Relevance-based sampling, on
the other hand, concentrates the samples along edges and
feature discontinuities, which do a better job at locking the
alignment. This difference in behavior can be seen clearly
on the closeups in Figure 4. Here normal space sampling
samples equally the three main faces of the spectacles, while
Relevance-based sampling concentrates the samples along
the fine structure details that limit the sliding along the
surfaces.

Figure 5 Shows examples of the alignments obtained
using the three sampling approaches. To better see the
difference in alignment we only show a slice of the aligned
surfaces cut approximately orthogonally to the surfaces.
From the examples we can clearly see that the use of uniform
sampling results on the surfaces sliding along large low-
curvature areas. This is particularly evident on the surfaces
taken from the spectacles, but it is also evident on the
armadillo model. The bunny model is relatively simple and
results in good alignments with all the methods, even though
uniform sampling has a slightly worse performance here as
well. Normal space sampling fares much better, but there is
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Figure 5. Slices of the surfaces aligned with the three sampling strategies.

still some residual misalignment, especially on the spectacles
model. Relevance-based sampling, on the other hand, results
in an optimal alignment in all cases.

The first set of quantitative experiments was a sensitivity
analysis trying to assess the role of the dot threshold T and
of the equalization parameter k. Figure 6 shows the angular
error (in degrees) and the translation error (in centimeters)
as a function of the two parameters. In all the cases the pairs
of range images were selected randomly at a distance along
the view-circle of at most 3 positions (90 degrees distance in
view direction) and were perturbed with additive Gaussian
noise along the z dimension with standard deviation equal
to 0.4 times the average edge length. We can clearly see
that there is an optimal value for the dot threshold at around
10 degrees, and it appears that the optimal value for the
equalization parameter k is just slightly below 1. This is
due to the fact that noise affects the size of small regions
more than larger ones, keeping them smaller, resulting in
over-inflated relevance values. A value of k smaller than 1
balances this effect by reducing the relative weight of the
smaller regions with respect to larger ones.

Finally, Figure 7 plots the resulting rotation and transla-
tion error of the alignments obtained with the three sampling
strategies as a function of the level of noise added to
the range images. Here the range images were selected
using the same strategy adopted for the previous set of
experiments, allowing variations in the viewing directions
of up to 90 degrees. We can see that the relevance-based
sampling consistently outperforms uniform sampling by

a large margin in both rotational and translational error.
Normal space sampling, on the other hand, has the same
performance as uniform sampling for rotational errors, while
it exhibits the same low translational error obtained by the
relevance-based sampling for noise levels smaller than 0.4
times the average edge length. This is consistent with the fact
that normal space sampling constrains only the translational
sliding. Note however, that with larger noise levels the
translational error of normal space sampling breaks down
to uniform sampling levels. This is probably due to the
interaction between bin-size and noise, with high noise
spreading neighboring points onto several bins.

IV. CONCLUSIONS

In this paper we have presented a novel sampling strategy
for ICP, based on the local distinctiveness of each point. The
distinctiveness is gauged through an integral measure that is
robust with respect to noise, and the points are then sampled
with a density proportional to their distinctiveness. The
sampling approach concentrates samples along the surfaces’
fine structures, allowing to limit any sliding away from the
ideal alignment. Experiments on range images with known
ground-truth alignment show that the approach clearly out-
performs the most commonly used sampling strategies.
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Figure 6. Effects of parameters on rotational and translational error.
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