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APPLICATIONS



Image Segmentation

Image segmentation problem: 
Decompose a given image into 

segments, i.e. regions containing 
“similar” pixels.

Example: Segments might be regions of the image depicting the 
same object.

Semantics Problem: How should we infer objects from segments?

First step in many

computer vision problems



Segmentation via Image Labeling

(S. Yu and M. Berthod; CVIU 1995)



Markov Random Field Formulation

Model pixel label probability through Markov Random Fields

Probability of a particular labeling L is

where VcLc is the clique potential of L in clique c

Assuming a Gibbs distribution, the posteriory probability is

MAP solution is obtained by maximizing



Game-Theoretic Formulation

Use game theory to maximize f(L)

Relaxation scheme in which

• Pixels are players

• Labels are available strategies

Payoff of pixel i depends on the labels of its neighbours

Theorem: L is a local maximum for f(L) iff is it a Nash 
equilibrium for the defined game



Relaxation Scheme

1. Initialize 

2. At iteration k, for each object i, choose a label

If                                      accept the new label with 
probability α, otherwise reject it

3.  If L( k+1) is a Nash point, stop, else go to step 2

Proposition: for any 0<α<1, L(k) converges to a Nash equilibrium

Note: randomization is necessary to avoid oscillations



Relation to Relaxation Labeling

If the potentials of cliques of size greater than 2 sum to zero 
the game is a polymatrix game and is thus related to 
relaxation labelling

The proposed relaxation scheme thus generalizes (discrete) 
relaxation labeling to higher order clique potentials



Texture Segmentation



Example Segmentation



Integration of region and 
boundary modules

(A. Chakraborty and J. S. Duncan; TPAMI 1999)



Integration of Region and Boundary

Goal is to integrate region-based approaches with boundary-
based approaches

Objectives of region-based and boundary-based are 
incommensurable

Due to exponential explosion of pixel dependencies in the 
general case, attempts to integrate the approaches into a 
single objective function result in ad hoc solutions

Avoid the problem of single-objective by casting it into a game 
theoretic framework in which the output of one module affects 
the objective function of the other



Integration of Region and Boundary

Generalized two player game in which strategies are a 
continuum

• The players are the region module and the boundary 
module

• The strategies are the possible region and boundary 
configurations

The payoff for each player is the posterior of the module

The selection of one module enters as a prior in the 
computation of the posterior of the other module
(limited interaction)



Region and Boundary Modules

The region is modeled through a Markov Random Field 

• Pixels labels x are estimated maximizing the posterior 
conditioned to the intensity observations Y  and the 
boundary prior p

The boundary is modeled through a snake model

• Boundary curve p is estimated maximizing  the posterior 
conditioned to the gradient observations I  and the 
boundary prior x



Synthetic Example

Input image Region only Boundary only

Region after
GT integration 

Overlaid on 
the template

Boundary after
GT integration 



Example segmentation

Input image Single function
integration

Input image

Game theoretic
integration

Overlaid on 
template



Comparison vs. Single Objective



Example Segmentation

Input image Hand
segmented

No region
integration

GT
integration



Example Segmentation



Example Segmentation

Hand
segmented

GT
integration

No region
integration

Input image



Example Segmentation



Segmentation Using Dominant Sets



Graph-based segmentation

Partition_into_dominant_sets(G)

repeat
      find a dominant set
      remove it from graph

until all vertices have been clustered

Partition_into_dominant_sets(G)

repeat
      find a dominant set
      remove it from graph

until all vertices have been clustered



Experimental setup



Intensity Segmentation

Use Dominant set framework to cluster pixels into coherent segments

Affinity based on intensity/color/texture similarity

M. Pavan and M. Pelillo; TPAMI 2007



Intensity Segmentation



Intensity Segmentation



Intensity Segmentation

M. Pavan and M. Pelillo; TPAMI 2007



Color Segmentation

M. Pavan and M. Pelillo; TPAMI 2007



Texture Segmentation

M. Pavan and M. Pelillo; TPAMI 2007



Texture Segmentation

M. Pavan and M. Pelillo; TPAMI 2007



Out-of sample Segmentation

Can be computed in linear time w.r.t. the size of S

Pairwise clustering has problematic scaling behavior

Subsample the pixels and assigning out-of-sample pixels after 
the clustering process has taken place



Intensity Segmentation

M. Pavan and M. Pelillo; NIPS 2004



Color Segmentation

M. Pavan and M. Pelillo; NIPS 2004



Alternative Approach

Recall that the probability of a surviving strategy at 
equilibrium is related to the centrality of the element to the 
cluster

Use the element with higher probability as a class prototype

Assign new elements to the class with the most similar 
prototype

Constant time w.r.t. the size of the clusters

Ideal for very large datasets (video)



Video Segmentation

A. Torsello, M. Pavan, and M. Pelillo; EMMCVPR 2005



Video Segmentation

A. Torsello, M. Pavan, and M. Pelillo; EMMCVPR 2005



Hierarchical segmentation and 
integration of boundary information

• Integrate boundary information into pixel affinity

• Key idea:

– Define a regularizer based on edge response

– Use it to impose a scale space on dominant sets

• Assume random walk from pixel to pixel that is more likely to 
move along rather than across edges

• Let L be the Laplacian of the edge-response mesh 
with weight 

• A lazy random walk is a stochastic process that 
once in node i it moves to node j with probability 



Diffusion Kernel

A. Torsello and M. Pelillo; EMMCVPR 2009



Regularized Quadratic Program

• Define the regularized quadratic program

• Proposition: Let λ1 (A), λ2 (A), . . . , λn (A) represent the largest, 
second largest,..., smallest eigenvalue of matrix A

If                                  then ft is a strictly concave function in Δ. 

Further, if                                the only solution of the regularized 

quadratic program belongs to the interior of  Δ.



Selection of relevant scales

• How do we chose the  at which to separate the levels?
• A good choice should be stable: cohesiveness should not change 

much.

• Consider the entropy of the selected cluster

– It is a measure of the size and compactness of the cluster

• Cut on plateaus of the entropy



Hierarchical Segments

A. Torsello and M. Pelillo; EMMCVPR 2009



Hierarchical Segments

A. Torsello and M. Pelillo; EMMCVPR 2009
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Medical Image Analysis



Analysis of fMRI images

Problems

• detect coherent subregions in cortical areas on the basis of 
similarities between fMRI time series

• Localization of activation foci, i.e., functional networks 
related to a specific cognitive task



Experimental Setup

Patient assigned a word matching Stroop task

This task requires a subject to respond to a particular stimulus 
dimension while a competing  stimulus dimension has to be 
suppressed.

Top row answers: NO

Bottom row answers: YES

Brain response is tracked through time



Parcellation

Parcellation is the process of 
subdividing a ROI into functional 
subregions 

Apply replicator equation on the 
matrix of correlation of each voxel 
time-series

Extract clusters that form 
connected and compact 
components

Results are consistent with brain 
physiology 



Within-Subject Variability

       Inter- and intra-subject variability is low



Meta-Analysis: 
Recognition of Networks

The reconstruction of functional networks require the analysis 
of co-activation of foci

1. Extract foci from activation maxima

2. Computation of co-activation maxima



Activated Foci

Activation foci are calculated from the list of activation maxima



Dominant Networks

Use replicator equation on co-activation matrix to extract co-
activated foci which form 
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Content-Based Image Retrieval

M. Wang, Z.-L. Ye, Y. Wang, and S.-X. Wang. Dominant sets 
clustering for image retrieval. Signal Processing, 2008



Content-Based Image Retrieval

Content-based image retrieval focus on searching

images in database similar to the query image

There exists a semantic gap between the limited descriptive 
power of low-level visual features and high-level concepts. 

Relevance feedback: Use user feedback to improve relevance 
of images retrieved from a query image



Approach

1. Use feature vector distance 
for initial query image

2. User labels into relevant (I+) 
and irrelevant (I-) sets 

3. Construct training set (gi,yi)

4. Train SVM to obtain distance 
d(g) between features of 
relevant images and classifier 
surface

5. Rearrange distances d(g) by 
descenting order

6. Cluster images into similarity 
clusters with dominant sets 
and report in order of 
importance within each cluster

7. If further refinement 
necessary, repeat steps 2 to 7

Dominant sets are used to 
reassess relevance order in the 
positive set (step 6)



Approach



Examples

No ds reassessment of  order of positive examples



Examples

Order of positive examples reassessed through ds



Examples

No ds reassessment of  order of positive examples



Examples

Order of positive examples reassessed through ds



Precision and Recall



Matching and Inlier Selection



Matching Problem

The matching problem is one of finding correspondences within a set 
of elements, or features

Central to any recognition task where the object to be recognized is 
naturally divided into several parts

Correspondences are allowed to compete with one another in a 
matching game, a non-cooperative game where 

• potential associations between the items to be matched 
correspond to strategies

• payoffs reflect the degree of compatibility between competing 
hypotheses 

The solutions of the matching problem correspond to ESS’s 
(dominant sets in the association space)

The framework can deal with general many-to-many matching 
problems even in the presence of asymmetric compatibilities.



Matching game

Let O1 and O2 be the two sets of features that we want to match and  A  ⊆
O1 × O2 the set of feasible associations that satisfy the unary constraints. 
Each feasible association represents a possible matching hypothesis.

Let C : A × A → R+ be a set of pairwise compatibilities that measure the 
support that one association gives to the other. 

A submatch (or simply a match) is a set of associations, which satisfies the 
pairwise feasibility constraints, and two additional criteria: 

– High internal compatibility, i.e. the associations belonging to the match are 
mutually highly compatible

– low external compatibility, i.e. associations outside the match are scarcely 
compatible with those inside. 

.

The proposed approach generalizes the association graph technique 
described by Barrow and Burstall  to continuous structural constraints



Properties of Matching Games

Domain-specific information is confined to the definition of the 
compatibility function. 

We are able to deal with many-to-many, one-to-many, many-
to-one and one-to-one relations incorporating any hard binary 
constraints with the compatibilities (setting them to 0)

Theorem: Consider a matching-game with compatibilities C = 
(cij) with cij ≥ 0 and cii = 0. If x  Δ is an ESS then c∈ ij > 0 for all i, 
j  σ(x)∈



Matching Examples

A. Albarelli, S. Rota-Bulò, A. Torsello, and M. Pelillo; ICCV 2009



Matching Examples

A. Albarelli, S. Rota-Bulò, A. Torsello, and M. Pelillo; ICCV 2009



GT Matcher and Sparsity

The game-theoretic matcher deviates from the quadratic 
assignment tradition in that it is very selective: it limits to 
a cohesive set of association even if feasible 
associations might still be available

The matcher is tuned towards low false positives rather 
than low false negatives such as quadratic assignment

Quadratic assignment is greedy while the game 
theoretic matcher favours sparsity in the solutions



Matching and Inlier selection

There is a domain in which this property is particularly useful: 
Inlier selection

When estimating a transformation acting on some data, we 
often need to find correspondences between  observations 
before and after the transformation

Inlier selection is the process of selecting correspondences 
that are consistent with a single global transformation to be 
estimated even in the presence of several outlier observations

Examples of problems include surface registration or point-
feature matching 



Matching and Inlier selection

Typical matching strategies are based on random 
selection (RANSAC) or the use of local information such 
as feature descriptors.
Global coherence checks are only introduced after a first 
estimation (filtering)
Filtering approaches are not very robust w.r.t. outliers 
(or structured noise)

The game theoretic approach  drives the selection of 
correspondences that satisfy a global compatibility 
criterion



Estimation of Similarity 
Transformation

Input images SIFT features
Lowe

(RANSAC)
GT

matcher

A. Albarelli, S. Rota-Bulò, A. Torsello, and M. Pelillo; ICCV 2009



Estimation of Similarity 
Transformation

A. Albarelli, S. Rota-Bulò, A. Torsello, and M. Pelillo; ICCV 2009



Surface Registration

Descriptors are used just to 
reduce the set of feasible 
associations A

Compatibilities are related to 
rigidity constraints 
(difference in distances 
between corresponding 
points)

No initial motion estimation 
required (coarse)

DARCES Spin Images GT matcher

A. Albarelli, E.Rodolà, and A. Torsello; CVPR 2010



Surface Registration

A. Albarelli, E.Rodolà, and A. Torsello; CVPR 2010



Surface Registration

A. Albarelli, E.Rodolà, and A. Torsello; CVPR 2010



Point-Matching for Multi-View
Bundle Adjustment

Define (local) compatibility between candidate 
correspondences through a weak (affine) camera model 

We use the orientation and scale information in the feature 
descriptors to infer an affine transformation between the 
corresponding features Correspondence imply  transformation

Two correspondences are compatible if they define similar 
transformations



Experiments

A. Albarelli, E.Rodolà, and A. Torsello; 3DPVT 2010



Experiments

A. Albarelli, E.Rodolà, and A. Torsello; 3DPVT 2010



Experiments

A. Albarelli, E.Rodolà, and A. Torsello; 3DPVT 2010
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Detection of Anomalous Behaviour
and 

Selection of Discriminative Features



Representing Activities

R. Hamid et al. Artificial Intelligence 2009

Represents human activities as 
sequence of atomic actions

Divide sequences into fixed length 
pieces (n-grams)

Represent full actions as a bag of 
n-grams



Representing Activities

Common activities are found by extracting dominant sets from 
the set of bags of n-grams representing the actions

Similarities between actions A and B is  

Anomalous events are those that do not fit any cluster

Count of n-gram i in B

Normalizing constant



Deciding the (Ab)Normality

Decide the (ab)normality of a new instance based on its 
closeness to the members of the closest activity-class

This is done with respect to the average closeness between 
all the members of the class

A new action i is  regular wrt the closest class S if                    , 
where T is learned from the training set



Example Activity Classification

R. Hamid et al. Artificial Intelligence 2009



Example Anomalous Activity

R. Hamid et al. Artificial Intelligence 2009



Selection of Discriminative Features

Adopt a similar approach to the selection of discriminative 
features among a large number of highly similar features

Extract clusters of similar features and iteratively throw them 
away, leaving only uncommon and discriminative features

Uses the fact that dominant set is not a partitioning scheme, 
but an unsupervised one-class classifier



Application to Surface Registration

A. Albarelli, E.Rodolà, and A. Torsello; ECCV 2010



Application to Surface Registration

A. Albarelli, E.Rodolà, and A. Torsello; ECCV 2010



Recognition with Textured 
Background

A. Albarelli, E.Rodolà, and A. Torsello; ICPR 2010



Recognition with Textured 
Background

A. Albarelli, E.Rodolà, and A. Torsello; ICPR 2010
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Repeated Games and 
Online Learning



Repeated Games

Previous assumptions:
– players had complete knowledge of the game 
– the game was played only once

What happens if the payoffs are not known, but the game 
can be repeated?

Can a player learn a good strategy from the past plays?



Repeated Games

Previous approach: 
– just compute an optimal/equilibrium strategy

Another approach: 
– learn how to play a game by playing it many times, 

and  updating your strategy based on experience

Why?
– Some of the game’s utilities (especially the other 

players’) may be unknown to you
– The other players may not be playing an 

equilibrium strategy
– Computing an optimal strategy can be hard
– Learning is what humans typically do



Iterated Prisoner's Dilemma

Prisoner's dilemma

What strategies should one apply?

Can I adapt to a player willing to cooperate and cooperate myself?

Although the Prisoner's dilemma has only one Nash equilibrium 
(everyone defect), cooperation can be sustained in the repeated 
Prisoner's dilemma if the players are interested enough in future 
outcomes of the game to take some loss in early plays.

Player 1

defect cooperate

Player 2
defect -10,-10 -1,-25

cooperate -25,-1 -3,-3



Tit for Tat

It was first introduced by Anatol Rapoport in Robert Axelrod's two 
tournaments, held around 1980.

Although extremely simple it won both

An agent using this strategy will initially cooperate, then respond in 
kind to an opponent's previous action: If the opponent previously was 
cooperative, the agent is cooperative. If not, the agent is not.

Properties

1. Unless provoked, the agent will always cooperate

2. If provoked, the agent will retaliate

3. The agent is quick to forgive

4. The agent must have a good chance of competing against the 
opponent more than once.

Note: used by BitTorrent to optimize download speed. 
(optimistic chocking)



Fictitious Play

One widely used model of learning is the process of fictitious play and its 
variants.(G.W. Brown 1951).

In it, each player presumes that her/his opponents are playing stationary 
(possibly mixed) strategies. 

In this process, agents behave as if they think they are facing an unknown 
but stationary (possibly mixed) distribution of opponents strategies

The players choose their actions in each period to maximize that period’s 
expected payoff given their assessment of the distribution of opponent’s 
actions.

The assessment is based on the observed frequencies of the other 
players past strategies. 

At each round, each player thus best responds to the empirical frequency 
of play of his opponent. 



Convergence of Fictitious Play

Such a method is of course adequate if the opponent indeed 
uses a stationary strategy, while it is flawed if the opponent's 
strategy is non stationary. The opponent's strategy may for 
example be conditioned on the fictitious player's last move.

One key question about fictitious play is whether or not 
this  play converges

– if it does,then the stationarity assumption employed by 
players makes sense, at least asymptotically

– if it does not, then it seems implausible that players will 
maintain that assumption



Convergence of Fictitious Play

Convergence properties of Fictitious Play

• If s is a strict Nash equilibrium, and s is played at time t in the 
process of fictitious play, s is played at all subsequent times. 
(strict Nash equilibria are absorbing)

• Any pure strategy steady state of fictitious play must be a Nash 
equilibrium 

• If the empirical distributions over each player's choices 
converge, the strategy profile corresponding to the product of 
these distributions is a Nash equilibrium 

• The empirical distributions converge if the game is  zero-sum 
(Miyasawa 1961) or solvable by iterated strict dominance 
(Nachbar, 1990)



Convergence of Fictitious Play

Fictitious play might not converge (Shapley 1964)

Modified Rock-Scissors-Paper

if the players start by choosing (Rock, Scissors), the play will 
cycle indefinitely.

Player 1

Rock Scissors Paper

Player 2

Rock 0,0 1,0 0,1

Scissors 0,1 0,0 1,0

Paper 1,0 0,1 0,0



Sequential Prediction

In a sequential prediction problem a predictor (or 
forecaster) observes a sequence of symbols

each time t = 1, 2, . . . , before the tth symbol of the 
sequence is revealed, the forecaster guesses its value s

t
 on 

the basis of the previous t−1 observations.

GOAL: limit the number of prediction mistakes without 
making any statistical assumptions on the way the data 
sequence is generated



Stationary Stochastic Process

In the classical statistical learning theory, the sequence of  
outcomes, is assumed to be a realization of a 

stationary stochastic process

Statistical properties of the process, and effective prediction 
rules  are estimated on the basis of past observations

In such a setup, the risk of a prediction rule may be defined 
as the expected value of some loss function 

Different rules are compared based on their risk.



Game against the Environment

We want to abandon the idea of a stationary 
stochastic process in favor of an unknown (even 
adversarial) mechanism

The forecaster plays a game against the 
environment, which can, in principle, respond to the 
forecaster's previous predictions

The goal of the forecaster is to maximize the payoff 
associated with his predictions

The goal of the environment is to minimize the 
forecaster's payoff



Learning with Experts

Without a probabilistic model, 
the notion of risk cannot be 
defined

There is no obvious baseline 
against which to measure the 
forecaster’s performance

We provide such baseline 
by introducing  
reference forecasters, 
also called experts. 



Experts

At time t experts provide an advice in the form of a vector 
                                     of predicted symbols

Think of experts as classifiers, observing the environment 
and giving a prediction

Experts are not perfect  (each expert can be wrong on any 
observation)

We want to get good prediction (high payoff) based on 
expert advice

A good prediction is consistent with the performance of the 
best experts



Game against the Environment

The forecaster does not have

• knowledge of the game (payoff function) 

• knowledge of the environment's strategy profile

The forecaster knows the payoffs received by each 
strategy against each previous play of the environment

However the knowledge is based on the actual pure 
strategies selected by the environment, not its strategy 
profile



Prediction Game

The game is played repeatedly in a sequence of rounds. 

1. The environment chooses mixed strategy y
t
',and plays 

(pure) strategy y
t
 according to the distribution y

t
'

2. The experts provide their predictions

3. The forecaster chooses an expert according to mixed 
strategy xt

The forecaster is permitted to observe the payoff 
                 that is, the payoff it would have obtained had it 
played following pure strategy (expert) i



Prediction Game

The goal of the forecaster is to do almost as well as the best 
expert against the actual sequence of plays

That is, the cumulative payoff

Should not be “much worse” that the best (mixed) expert in 
hindsight



Learnability

There are two main questions regarding this prediction 
game

1. Is there a solution? I.e., is there a strategy that will 
work even in this adversarial environment?

2. Can we learn such solution based on the previous 
plays?



Minimax and Learnability

We are within the hypotheses of the Minimax theorem

There exists a strategy x such that 

The value v is the best the forecaster can be guaranteed 
since there exists a strategy y such that

Moreover, (x,y) is a Nash equilibrium 

The environment's goal  
is to minimize the
forecaster's payoff

Zero-sum two player game



Regret

We define the external regret of having played strategy 
sequence x=(x1,...,xT) w.r.t. expert e as the loss in payoff we 
incurred in by not having followed e's advice

The learner's goal is to minimize the maximum regret w.r.t. 
any expert 



Minimax and Learnability

If the forecaster predicts according to a Nash equilibrium x, he 
is guaranteed a payoff v even against and adversarial 
environment

Theorem: Let G be a zero-sum game with value v. If the 
forecaster plays for T steps a procedure with external regret 
R, then its average payoff is at least v-R/T

Algorithm can thus seek to minimize the external regret



Regret-Based Learning

Assume {0,1} utilities, and let consider loss L(x,y)=1-u(x,y) 
rather than utility u(x,y)

Greedy algorithm

The greedy algorithm at each time t selects the (mixed) 
strategy x that, if played for the first t-1 plays, would have 
given the minimum regret

The greedy algorithm's loss is 

where Lmin is the loss incurred by the best expert

No deterministic algorithm can obtain a better ratio than N!



Weighted Majority Forecaster

The idea is to assign weights wi to expert i that reflect its past 
performance, and pick an expert with probability proportional to 
its weight

Randomized Weighted Majority (RWM) Algorithm

Initially: wi =1 and pi =1/N, for i=1,...,n.

At time t: If Lt= 1 let wt = wt−1(1 − η); else  wt = wt-1

Use mixed profile 

Randomized Weighted Majority achieves loss



Experts and Boosting

In general experts can be any (weak) predictor/classifier

Finding an optimal strategy over expert advices is equivalent 
to finding an optimal combination of classifiers

Boosting is the problem of converting a weak learning 
algorithm that performs just slightly better than random 
guessing into one that performs with arbitrarily good 
accuracy

Boosting works by running the weak learning algorithm 
many times on many distributions, and to combine the 
selected hypotheses into a final hypothesis



Boosting

(Y. Freund and R. E. Schapire, 1996)

Boosting proceeds in rounds alternating

1. The booster constructs a distribution p(k) on the 
sample space X and passes it to the weak learner

2. The weak learner produces an hypothesis h(k) ∈ H with 
error at most ½ - ;

After T rounds the hypotheses h(1),...,h(T) are combined into a 
final hypothesis h

Main questions
– How do we chose p(k)?
– How do we combine the hypotheses?



Boosting and Games

Define a two player game where 

– the booster's strategies are related to the possible samples

– the weak learner's strategies are the available hypotheses

– The booster's payoff is defined as follows:

The boosters's goal is to feed a bad distributions to the weak learner

Due to the minimax theorem we have

Less than half of the hypotheses are wrong! 
Combine them by weighted majority (weighted according to h*)

target concept



Boosting and Games

Alternate the game

1. The weak learner returns a guaranteed optimal 
hypothesis ht satisfying

2. The booster responds by using randomized weighted 
majority approach to compute distribution pt* over 
samples

After T repetitions, the boosted hypothesis h* on a new 
sample x is obtained by majority voting among h1(x),...,hT(x)
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