Journal of Machine Learning Research 11 (2010) 1201-1242 bm8ted 5/08; Revised 4/09; Published 4/10

Graph Kernels

S.V.N. Vishwanathan VISHY @STAT.PURDUE.EDU
Departments of Statistics and Computer Science

Purdue University

250 N University Street, West Lafayette, IN 47907-2066, USA

Nicol N. Schraudolph IJMLR@SCHRAUDOLPHORG
adaptive tools AG

Canberra ACT 2602, Australia

Risi Kondor RISI@CALTECH.EDU

Center for the Mathematics of Information
Callifornia Institute of Technology
1200 E. California Blvd., MC 305-16, Pasadena, CA 91125, USA

Karsten M. Borgwardt KARSTEN.BORGWARDT@TUEBINGEN.MPG.DE
Interdepartmental Bioinformatics Group

Max Planck Institute for Developmental Biology

Spemannstr. 38, 7207@ibingen, Germany

Editor; John Lafferty

Abstract

We present a unified framework to study graph kernels, spegses of which include the random
walk (Gartner et al.2003 Borgwardt et al.2005 and marginalizedKashima et al.2003 2004
Mahé et al, 2004 graph kernels. Through reduction to a Sylvester equatiermmprove the time
complexity of kernel computation between unlabeled grapitis n vertices fromO(n®) to O(n3).
We find a spectral decomposition approach even more effisibah computing entire kernel ma-
trices. For labeled graphs we develop conjugate gradiehtized-point methods that taka(dn®)
time per iteration, wherd is the size of the label set. By extending the necessaryrlaigabra to
Reproducing Kernel Hilbert Spaces (RKHS) we obtain the saselt ford-dimensional edge ker-
nels, andd(n?) in the infinite-dimensional case; on sparse graphs theseithigs only takeD(n?)
time per iteration in all cases. Experiments on graphs framformatics and other application
domains show that these techniques can speed up computétiom kernel by an order of mag-
nitude or more. We also show that certain rational kernétetes et al.2002 2003 2004 when
specialized to graphs reduce to our random walk graph kefingdlly, we relate our framework to
R-convolution kernelsHaussler1999 and provide a kernel that is close to the optimal assignment
kernel of Frohlich et al.(2006 yet provably positive semi-definite.

Keywords: linear algebra in RKHS, Sylvester equations, spectral mgpasition, bioinformatics,
rational kernels, transducers, semirings, random walks

1. Introduction

Machine learning in domains such as bioinformati8hdran and Ideke2006§, chemoinformatics
(Bonchev and Rouvray 1991), drug discovery Kubinyi, 2003, web data mining

x. Also at the Max Planck Institute for Biological Cybernetics.

(©2010 S.V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kon@md Karsten M. Borgwardt.

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Figure 1: Left: Structure oE. coli protein fragment APO-BCCP8%4éo et al, 1997, ID 1abx
in the Protein Data BankBerman et al.2000. Right: Borgwardt et als (2005 graph
representation for this protein fragment. Nodes represent secositacyure elements,
and edges encode neighborhood along the amino acid chain (solidijr&sglidean 3D
space (dashed).

(Washio and Motoda2003, and social networkskumar et al, 2009 involves the study of rela-
tionships between structured objects. Graphs are natural data stsutctum®del such structures,
with nodes representing objects and edges the relations between them. daritest, one often
encounters two questions: “How similar are two nodes in a given graph@™tow similar are
two graphs to each other?”

In protein function prediction, for instance, one might want to predictthwdrea given protein is
an enzyme or not. Computational approaches infer protein function by dipdateins with similar
sequence, structure, or chemical properties. A very successéuitrmethod is to model the protein
as a graph (see Figufig, and assign similar functions to similar grapofgwardt et al.2005.

In Section5.2 we compute graph kernels to measure the similarity between proteins and snzyme
represented in this fashion.

Another application featured in Sectibr2involves predicting the toxicity of chemical molecules
by comparing their three-dimensional structure. Here the molecular sieustinodeled as a graph,
and the challenge is to compute the similarity between molecules of known andwmkoxicity.

Finally, consider the task of finding web pages with related content. SinmentEnts on the
web link to each other, one can model each web page as the node ofta grabeach link as
an edge. Now the problem becomes that of computing similarities between the aobd graph.
Taking this one step further, detecting mirrored sets of web pages regoingouting the similarity
between the graphs representing them.

Kernel methods $clblkopf and Smola2002 offer a natural framework to study these ques-
tions. Roughly speaking, a kernelx,x') is a measure of similarity between objegtandx’. It
must satisfy two mathematical requirements: it must be symmetric, theixix/) = k(X',x), and
positive semi-definite (p.s.d.). Comparing nodes in a graph involves cotisga kernel between
nodes, while comparing graphs involves constructing a kernel betwaphgy In both cases, the
challenge is to define a kernel that captures the semantics inherent inafhte giructure and is
reasonably efficient to evaluate.

The idea of constructing kernetm graphs (i.e., between the nodes of a single graph) was
first proposed byondor and Lafferty(2002, and extended b$mola and Kondo¢2003. In con-

1202

GRAPH KERNELS

trast, in this paper we focus on kerndlstweergraphs. The first such kernels were proposed by
Gartner et al.(2003 and later extended bBorgwardt et al(2005. Much at the same time, the
idea of marginalized kernel§ ¢uda et a].2002 was extended to graphs {ashima et al(2003
2009, then further refined biviahé et al.(2004). Another algebraic approach to graph kernels has
appeared recentlKpndor and Borgward008. A seemingly independent line of research inves-
tigates the so-called rational kernels, which are kernels between finiteastat@ata based on the
algebra of abstract semiringSdrtes et al.2002 2003 2004).

The aim of this paper is twofold: on the one hand we present theoretstdtgshowing that all
the above graph kernels are in fact closely related, on the other hapesent new algorithms for
efficiently computing such kernels. We begin by establishing some notatiomaied/ing pertinent
concepts from linear algebra and graph theory.

1.1 Paper Outline

The first part of this paper (Sectiors5) elaborates and updates a conference publication of
Vishwanathan et a[2007) to present a unifying framework for graph kernels encompassing many
known kernels as special cases, and to discuss connections to yst étfter defining some basic
concepts in Sectio@, we describe the framework in Secti@n prove that it leads to p.s.d. ker-
nels, and discuss the random walk and marginalized graph kernels@al g@ses. For ease of
exposition we will work with real matrices in the main body of the paper and agtethhe RKHS
extensions to AppendiA. In Sectiond we present four efficient ways to compute random walk
graph kernels, namely: 1. via reduction to a Sylvester equation, 2. withjagade gradient solver,

3. using fixed-point iterations, and 4. via spectral decompositions.riExeets on a variety of real
and synthetic data sets in Sectibillustrate the computational advantages of our methods, which
generally reduce the time complexity of kernel computation f@m®) to O(n®). The experiments

of Section5.3were previously presented at a bioinformatics symposiBargwardt et al.2007).

The second part of the paper (Secti@rg) draws further connections to existing kernels on
structured objects. In Sectid@we present a simple proof that rational kernésites et al.2002
2003 2009 are p.s.d., and show that specializing them to graphs yields random \aglk kernels.

In Section7 we discuss the relation between R-convolution kernidesugsler 1999 and various
graph kernels, all of which can in fact be shown to be instances offiRedation kernels. Extend-
ing the framework through the use of semirings does not always resulpis.é& kernel though;
a case in point is the optimal assignment kernefFithlich et al.(200§. We establish sufficient
conditions for R-convolution kernels in semirings to be p.s.d., and provideastly optimal as-
signment kernel” that is provably p.s.d. We conclude in Se@iwiith an outlook and discussion.

2. Preliminaries

Here we define the basic concepts and notation from linear algebra apid tpeory that will be
used in the remainder of the paper.

2.1 Linear Algebra Concepts

We useg to denote thé!" standard basis vector (that is, a vector of all zeros with'fhentry set
to one),e to denote a vector with all entries set to oAdo denote the vector of all zeros, ahtb

1203

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

denote the identity matrix. When it is clear from the context we will not mention itnemksions of
these vectors and matrices.

Definition 1 Given real matrices & R™™ and Be RP*9, the Kronecker product & B ¢ R"P*M4
and column-stacking operatoedA) € R"™ are defined as

A11B AB ... AnB A
: : , vedA):= : ,

A®B:= : : : :
AnB ApB ... AnnB Aim

where A; denotes the'] column of A.

The Kronecker product and vec operator are linked by the well-knoneperty (e.g.Bernstein
2005 Proposition 7.1.9):

vedq ABC) = (C'® A)vedB). (1)

Another well-known property of the Kronecker product which we masge of is Bernstein 2005
Proposition 7.1.6):

(A® B)(C®D) = AC®BD.)

Finally, the Hadamard product of two real matrice8 € R™™, denoted byA® B ¢ R™™, is
obtained by element-wise multiplication. It interacts with the Kronecker prodact

(A®B)® (C®D)=(A®C)® (BOD). 3)

All the above concepts can be extended to a Reproducing Kernel H8pade (RKHS) (See Ap-
pendixA for details).

2.2 Graph Concepts

A graphG consists of an ordered set ofverticesV = {vi,v»,...,Vn}, and a set of directed edges
E CVxV. Avertexy, is said to be a neighbor of another vertgxf they are connected by an edge,
that is, if (vi,vj) € E; this is also denoted, ~ v;. We do not allow self-loops, that i$y;,vi) ¢ E
for anyi. A walk of lengthk on G is a sequence of indiceg, i1,...ix such that; _, ~v;, for all
1<r <k. Agraphis said to be strongly connected if any two pairs of vertices cawiweected
by a walk. In this paper we will always work with strongly connected gsaghgraph is said to be
undirected if(vi,vj) € E <= (vj,vi) €E.

In much of the following we will be dealing with weighted graphs, which are ahsligner-
alization of the above. In a weighted graph, each edge;) has an associated weight; > 0
signifying its “strength”. Ifv; andv; are not neighbors, themjj = 0. In an undirected weighted
graphwjj = wij;.

When G is unweighted, we define its adjacency matrix asrihen matrix A with Z\ij =1if
vj ~ Vv, and O otherwise. For weighted grapﬁs; = Wji. While some authors would call these
matrices the transpose of the adjacency matrix, for our purposes tieapdesinitions will be more
convenient. For undirected grapAss symmetric, and the two definitions coincide. The diagonal
entries ofA are always zero.

1204

GRAPH KERNELS

The adjacency matrix has a normalized cousin, defiaed A D% which has the property that
each of its columns sums to one, and it can therefore serve as the transitronfaraa stochastic
process. Herd) is a diagonal matrix of node degrees, thatig,= di = 5 ; f&ij . Arandom walk on
Gis a process generating sequences of vertices, , Vi,, . .. according taP (ixy-1)i1, - - - ik) = A, 1w
that is, the probability a;, of pickingvi,,, next is proportional to the weight of the edog,, vi, ,,).
Thet™ power of A thus describes-length walks, that is(A");; is the probability of a transition
from vertexv; to vertexv; via a walk of lengtht. If po is an initial probability distribution over
vertices, then the probability distributign describing the location of our random walker at titne
is p = Al po. The j™ component ofy;, denotes the probability of finishingtdength walk at vertex
Vj.

A random walk need not continue indefinitely; to model this, we associaty eaglev;, in
the graph with a stopping probability,. Our generalized random walk graph kernels then use
the overall probability of stopping aftérsteps, given by p;. Like po, the vectorg of stopping
probabilities is a place to embed prior knowledge into the kernel design. Bireea probability
distribution sums to one, @niformvectorq (as might be chosen in the absence of prior knowledge)
would yield the same overall stopping probability for gl) thus leading to a kernel that is invariant
with respect to the graph structure it is meant to measure. In this case nbtenalized adjacency
matrix A (which simply counts random walks instead of measuring their probability)lstbe used
instead.

Let X be a set of labels which includes the special labelEvery edge-labeled grap@ is
associated with a label matrix € X™" in which Xij is the label of the edgévj,vi) andX;j = ¢
if (vj,vi) ¢ E. Let H be the RKHS induced by a p.s.d. kerrel X x X — R, and letg: X — H
denote the corresponding feature map, which we assume §afibke zero element off. We use
®(X) to denote the feature matrix & (see AppendiA for details). For ease of exposition we do
not consider labels on vertices here, though our results hold for teatasawell. Henceforth we
use the term labeled graph to denote an edge-labeled graph.

Two graphsG = (V,E) and G = (V’,E’) are isomorphic(denoted byG = G') if there ex-
ists a bijective mapping : V — V' (called the isomorphism function) such that,v;) € E iff
(9(vi).9(v;)) € E".

3. Random Walk Graph Kernels

Our generalized random walk graph kernels are based on a simple iea: agpair of graphs,
perform random walks on both, and count the number of matching wal&shéatv that this simple
concept underlies both random walk and marginalized graph kernetsdém to do this, we first
need to introduce direct product graphs.

3.1 Direct Product Graphs
Given two graph&(V,E) andG'(V/,E’), their direct produc6, is a graph with vertex set

Vi ={(vi,vr):vi €V, vy eV'}, (4)
and edge set

B = {((; %), (v, Vo)) + (Wi,V)) EE A (v, V) € E' ()

1205

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

2 1' 2'
4I 3I

Figure 2: Two graphs (top left & right) and their direct product (bottoEdch node of the direct
product graph is labeled with a pair of nodd$; (@an edge exists in the direct product if
and only if the corresponding nodes are adjacent in both original gi&pH-or instance,
nodes 11and 32 are adjacent because there is an edge between nodes 1 and 3 in the first,
and 1 and 2 in the second graph.

In other words,G, is a graph over pairs of vertices fro® andG’, and two vertices irG, are
neighbors if and only if the corresponding verticesSandG’ are both neighbors; see Figutdor
an illustration. IfA andA’ are the respective adjacency matricessadindG’, then the adjacency
matrix of Gy isA, = A@A’. Similarly, A, = A@ A'.

Performing a random walk on the direct product graph is equivalen¢timpning a simulta-
neous random walk o8 andG’ (Imrich and Klazar, 2000. If p andp’ denote initial probability
distributions over the vertices & andG’, then the corresponding initial probability distribution on
the direct product graph is. := p® p'. Likewise, ifqandq’ are stopping probabilities (that is, the
probability that a random walk ends at a given vertex), then the stoppaizability on the direct
product graph ig), :=q®(.

Let V| =:nand|V'| =:n". If GandG are edge-labeled, we can associate a weight matrix
W, € R"™*" with G, using our extension of the Kronecker product (Definitninto RKHS
(Definition 11in AppendixA):

W, = D(X) @ D(X). (6)

1206

GRAPH KERNELS

As a consequence of the definition ®{X) and ®(X’), the entries of, are non-zero only if
the corresponding edge exists in the direct product graph. If we simiplyf le R, d(X) = A, and

d(X') = A then 6) reduces td\ ., the adjacency matrix of the direct product graph. Normalization
can be incorporated by lettingX;) = 1/d; if (vj,vi) € E, and zero otherwisk.Then®(X) = A
and®(X’) = A, and consequenthy, = A,.

If the edges of our graphs take on labels from a finite set, without lossnefrglity{1,2,...,d},
we can letH be RY endowed with the usual inner product. For each eflgevi) € E we set
@(Xj) = & /d; if the edge(vj,v) is labeledl; all other entries ofP(X) are0. Thus the weight
matrix (6) has a non-zero entry iff an edge exists in the direct product graglh&ncorresponding
edges inG andG’ have the same label. LiBtdenote the normalized adjacency matrix of the graph
filtered by the label, that is,'Aij = Aj if Xij =1, and zero otherwise. Some simple algebra (omitted
for the sake of brevity) shows that the weight matrix of the direct progragth can then be written
as

d
W =S AoA. (7)
=1

In Sectiord we will develop efficient methods to compute kernels defined using the weighitx of
the direct product graph. The applicability and time complexity of a particuléinodewill depend
on whether the graphs are unlabeled though possibly edge-weigtited A), have discrete edge
labels), or—in the most general case—employ an arbitrary edge keBpekée Tablel for a
summary.

3.2 Kernel Definition

As stated above, performing a random walk on the direct product geapis equivalent to per-
forming a simultaneous random walk on the graghandG’ (Imrich and Klazar, 2000. There-
fore, the((i—1)n' +r, (j—1)n' +s)™" entry of AX represents the probability of simultaneous length
k random walks orG (starting from vertex; and ending in vertex;) andG’ (starting from ver-
tex V; and ending in vertex;). The entries of\, (6) represent similarity between edges: The
((i—1)n +r1, (j—1)n' +5) entry of WK represents the similarity between simultaneous lefkgth
random walks orG andG’, measured via the kernel functien Given initial and stopping proba-
bility distributions p,. andq,. one can computg] WX p,., which is the expected similarity between
simultaneous lengtk random walks o1 andG'.

To define a kernel which computes the similarity betw8eandG', one natural idea is to simply
sum upa, WX p, for all values ofk. However, this sum might not converge, leaving the kernel value
undefined. To overcome this problem, we introduce appropriately chmsenegative coefficients
u(k), and define the kernel betwe@andG’ as

K(G.G) = 3 W)/ W-p.. ®)
k=0

This definition is very flexible and offers the kernel designer many paemsi¢o adjust in an
application-specific manner: Appropriately choosixg) allows one to (de-)emphasize walks of
different lengths; if initial and stopping probabilities are known for a paléicapplication, then

1. The technical problem that nap(X;;) depends ou; can be addressed by makidga feature of all edgeij, vi) € E.

1207

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

this knowledge can be incorporated into the kernel; and finally, apptegk&nels or similarity
measures between edges can be incorporated via the weight WatrRespite its flexibility, this
kernel is guaranteed to be p.s.d. and—as we will see in Segtiaran be computed efficiently by
exploiting the special structure @f... To show that8) is a valid p.s.d. kernel we need the following
technical lemma:

Lemma2 VkeN: WKp, =vedd(X) p (d(X)kp)T].
Proof By induction overk. Base casek = 0. Using () we find
WOpx = px = (p P)veo(1) = vedp'1p") = ved®(X')°p (®(X)°p) ']. 9

Induction fromk to k+ 1: Using the induction assumptiad p,. = ved®(X')kp' (®(X)kp) '] and
Lemmal2we obtain

W p, = W WE Py = (@(X) © D(X')) vedd(X)*p (@(X)“p) ']
]

= ved®(X)®(X)*p' ((X)*p) '®(X) " (10)
= ved®(X)p/ (@(X)<"p) .
Base cased) and induction 10) together imply Lemm& V k € Np. |

Theorem 3 If the coefficients (k) are such tha{8) converges, the(8) defines a valid p.s.d. kernel.

Proof Using Lemmad2 and2 we can write

9. WEp, = (q@q) " vedd(X) p' ((X)*p)]
= vedq T d(X)*p' (P(X)*p) 'q]
= (q'®(X)*p) " (d"O(X)*p). (11)
p(G)T p(G)

Each individual term of {1) equalspk(G) "pk(G') for some functionpi, and is therefore a valid
p.s.d. kernel. The theorem follows because the class of p.s.d. kernkdsas einder non-negative
linear combinations and pointwise limitBérg et al, 1984). |

3.3 Special Cases

Kashima et al(2004) define a kernel between labeled graphs via walks and their labelrsszpie
Recall that a walk of lengthon G is a sequence of indices i», .. .it,1 such that;, ~ v, for all

1 <k<t. Inour setting (where we do not consider node labels), the label seghe= h, ... h
associated with a walk is simply the sequence of edge labels encounteiregl tiherwalk. LetP
denote a transition probability matrix, wheffg denotes the probability of transition from node
to nodev;. For instanceP might be the normalized adjacency matrix®f Furthermore, lep

1208

GRAPH KERNELS

andq denote starting and stopping probabilities. Then one can compute the litgludla walk
i1,i2,...itr1 @and hence the label sequeritassociated with it as

p(h|G) = qit+1 JI_!lF)' jodje p|1 (12)

Now let @ denote a feature map on edge labels, and define a kernel betweenelgbehses of
lengtht by

t t
(1) = [(h.) = ,|jl<€p<hi>,6p<h{>> (13)

if handh have the same lengthand zero otherwise. Usind2) and (L3) we can define a kernel
between graphs via marginalization:

K(G,G) = ZZ k(h,l) p(h|G) p(h|G). (14)

Kashima et al(2004 Eq. 1.19) show thatld) can be written as
k(G.G)=aL(l-T.) "px, (15)

whereT, = [veqP)vedP')] [®(X) @ ®(X)]. (As usual X andX’ denote the edge label matrices
of G andG/, respectively, and the corresponding feature matrices.)

Although this kernel is differently motivated, it can be obtained as a speasa of our frame-
work. Towards this end, assumgk) = AX for someA > 0. We can then write

k(G,G) Z))\quWk P = q. (I =AW,) 1p... (16)

To recover the marginalized graph kernelsNet 1, and definab(X;;) = P ®(X;;), in which case
W, = Ty, thus recoveringl5).

Given a pair of graphsGartner et al(2003 also perform random walks on both, but treunt
the number of matching walks. Their kernel is definedGértner et al.2003 Definition 6):

K(G,G) = i ékixk [/Xi} ;- (17)

To obtain (L7) in our framework, sefi(k) := Ak, assume uniform distributions for the starting and
stopping probabilities over the vertices®fandG' (i.e., pi =g = 1/nandp; = ¢ = 1/n’), and let
®(X) = A and®(X’) = A". Consequentlyp, = g, = e/(nr), andW, = A, the unnormalized
adjacency matrix of the direct product graph. This allows us to rew8)teo(obtain

(o)

K(G,G) Zu kapx—nzn,zz“ > A (18)

which recovers 17) to within a constant factorGartner et al (2003 also extend their kernels to
graphs with labels from a finite set by replaciAg in (17) with a sumW, of label-filtered (but

1209

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

sparsity dense sparse
edge labelg| none/scalar finite set| finite-dim. \ co-dim. an
Method (Section) W, = | A@A @) kernel 6) y
Sylvester Equatior(1) men3 unknown | — —
Conjugate Gradien#(2) mérn3 mérdn® mérn® | mPrn?
Fixed-Point Iterations4.3) mekn® mekdr? ekt | mPkr?
Spectral Decompositio®(@) || (m+n)mr? men® —
| Nearest Kron. Product(5) | 1 | mPKdr? | mPk/'n® | mk'n? |

Table 1: Worst-case time complexity (@ (-) notation) of our methods for am x m graph kernel
matrix, wheren = size of the graphs (number of nodes);- size of label setesp.dimen-
sionality of feature mapr;, = effective rank ofW.., k = number of fixed-point iterations
(31), andk’ = number of power iteration$7).

unnormalized) adjacency matrices, analogous to @urThe reduction to our framework extends
to this setting in a straightforward manner.

Gartner et al(2003 discuss two cases of special interest: First, theometrickernel employs
afixed decay factok to down-weight the contribution of long walks to the kernel, sethpg= AX as
in our (16). The choice oA is critical here: It must be small enough for the sumlii) o converge,
depending on the spectrum Wi, (Vishwanathan2002 Chapter 6). Second, theéxponential
kernel is defined as

k(G,G) :_i i[eﬂx]ij —e'eMe, (19)
i=1j=

using the matrix exponential. This is obtained in our framework by seking- A¥/K!, so that the

right-most sum in18) becomes the series expansioretf-.

The kernels ofGartner et al(2003 differ from our definition 8) in that they do not explicitly
model starting or stopping probabilities, and employ unnormalized adjacericic@sanstead of
our more general weight matrig) which allows for normalization and arbitrary kernels on edges.

4. Efficient Computation

Computing a geometric random walk graph kernel witk) = AX amounts to invertingl —AW,),
ann?xn? matrix if G andG' haven vertices each. Since the complexity of inverting a matrix is
essentially cubic in its dimensions, direct computationi) (vould requireO(n®) time. Below

we develop methods based on Sylvester equations (Settiprconjugate gradients (Sectidr?),
fixed-point iterations (Sectiof.3), and spectral decompositions (Sectb4) that greatly accelerate
this computation. Sectiod.5 introduces an approximation that can further speed up the kernel
computation for labeled graphs.

Table 1 summarizes our results, listing the worst-case time complexity of our methods as a
function of graph density and labeling. Exact computation of the full Kemrarix betweemnm
dense, unlabeled (but possibly edge-weighted) graphsofles each (leftmost column) is generally
guadratic in the number of graphs and cubic in their size; for the iterativeoaettnis must be
multiplied by the number of iterations, which is given by the effective raplthe weight matrixvV,

1210

GRAPH KERNELS

for conjugate gradient, and bg1) for fixed-point iterations. The spectral decomposition approach
(Section4.4) is exceptional here in that it can be linearmmresp.quadratic inn (but not both) if
precomputation of thexspectral graph decompositions dominatesy.is dominated by) the actual
kernel computations.

The cost of the iterative algorithms increases by another factrfaf graphs with edge labels
from a finite set ofd symbols or an edge kernel withdimensional feature map; for an arbitrary
edge kernel (whose feature map may be infinite-dimensional) this factomasn. On labeled
graphs our spectral decomposition approach offers no savingshar®ylvester equation method
applies only if the labels come from a finite set of symbols, and then with unkitiove complexity.

A nearest Kronecker product approximation can be used, howeagproximate the direct product
of labeled graphs with a weight matrix that can be handled by any of our aefloo unlabeled
graphs. This approximation requirk/s(37) iterations, each costin@(dr?) time when the labels
come from a finite set ad symbols, and(n*) in general.

Finally, when the graphs are sparse (i.e., only Haye) edges each; rightmost column in Ta-
ble 1) our iterative methods (conjugate gradient, fixed-point, and nearesteléker product) take
only O(n?) time per iteration, regardless of how the graphs are labeled. We carthotitatively
state the time complexity for sparse graphs of solving Sylvester equatioresforming spectral
decompositionsSpielman and Tenf2008 have shown that graphs can be sparsified (i.e., approxi-
mated by sparse graphs) in nearly linear time, although the constants ineoévgdite large.

4.1 Sylvester Equation Methods
Consider the following equation, commonly known as the Sylvester or Lyapequation:
M = SMT+ M. (20)

Here,S T,Mp € R"™" are given and we need to solve fdre R™". These equations can be readily
solved inO(n®) time with freely available codeGardiner et al. 1992, such as Matlab'sllyap
method. Solving the generalized Sylvester equation

d
M= 3 ST+ Mo (22)
1=

involves computing generalized simultaneous Schur factorizationsl sfymmetric matrices
(Lathauwer et a).2004. Although technically involved,21) can also be solved efficiently, al-
beit at a higher computational cost. The computational complexity of this glerest factorization
is at present unknown.

We now show that for graphs with discrete edge labels, whose weight métroan be written

as (7), the problem of computing the graph kern&b)f can be reduced to solving the following
generalized Sylvester equation:

d :
M= ZA'A’M AT ++ Mo, (22)
i=
where ve¢Mp) = px. We begin byflattening(22):

veqM) = Aivec(iA'M AT+ pu. (23)

1211

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Using Lemmal2 (which extendsY) into an RKHS) we can rewrite2@) as
d . .
(1= Zl'A® A)vedM) = p,, (24)
i=

use {7), and solve 24) for veqM):
vedM) = (I -AW,) *p. (25)
Multiplying both sides of 25) by q/ yields
ayvedM) = g, (I -AW.) " p,. (26)

The right-hand side of2) is the graph kernell®). Given the solutiorM of the Sylvester
equation 22), the graph kernel can be obtainedggs/egM) in O(n?) time. The same argument
applies for unlabeled graphs by simply settitig= 1, which turns 22) into a simple Sylvester
equation. Since solving that only také$n®) time, computing the random walk graph kernel in this
fashion is much faster than ti&n®) time required by the direct approach.

One drawback of this strategy is that Sylvester equation solvers are gpitésscated and
typically available only as black-box library routines, which limits their applicabiliatlab’s
dlyap solver, for instance, does not exploit sparsity, and only handles fesadta- 1 andd = 2. A
solver for the simple Sylvester equatid@®) can still be used to efficiently compute kernels between
labeled graphs though by employing the nearest Kronecker prodpicbamation (Sectiort.5).

4.2 Conjugate Gradient Methods

Given a matrixM and a vectob, conjugate gradient (CG) methods solve the system of equations
Mx = b efficiently (Nocedal and Wright1999. While they are designed for symmetric p.s.d. ma-
trices, CG solvers can also be used to solve other linear systems efficiEindly.are particularly
efficient if the matrix is rank deficient, or has a smetfective rank that is, number of distinct
eigenvalues. Furthermore, if computing matrix-vector products is cheapadseM is sparse, for
instance—the CG solver can be sped up significaiNliycedal and Wright1999. Specifically, if
computingMyv for an arbitrary vectov requiresO(m) time, and the effective rank &fl isr, then a
CG solver take®(r) iterations, and hence on{y(rm) time, to solveMx = b.

The graph kernell(6) can be computed by a two-step procedure: First we solve the lineamsyste

(I =AW,) X = py, (27)

for x, then we compute/x. We now focus on efficient ways to solv@7j with a CG solver. Recall
that if G andG’ containn vertices each thew,, is ann?xn? matrix. Naively, multiplyingW by
some vectoy inside the CG algorithm requiré¥n*) operations. However, by our extension of the
vec-ABC formula () into RKHS (Lemmal?2), introducing the matrixy € R™" with y = vedY),
and recalling thatV, = ®(X) ® ®(X’), by Lemmal2 we can write

Wy = (D(X) @ DX')) vedY) = ved d(X')Y d(X)T). (28)

If (-) € RY then the above matrix-vector product can be computed(an®) time. If ®(X) and
®(X') are sparse, thet(X')Y ®(X) " can be computed yet more efficiently: If there &@) non<
entries ind®(X) and®(X’), then computingZ8) takes onlyO(n?) time.

1212

GRAPH KERNELS

4.3 Fixed-Point Iterations

Fixed-point methods begin by rewriting7) as
X = P + AW, X. (29)

Now, solving for x is equivalent to finding a fixed point of29) taken as an iteration
(Nocedal and Wright1999. Letting x; denote the value of at iterationt, we setxg := p«, then
compute

Xe+1 = Px + AW X (30)

repeatedly until|x.1 — || < &, where|| - || denotes the Euclidean norm aadome pre-defined
tolerance. This is guaranteed to converge if all eigenvalua$\bflie inside the unit disk; this can
be ensured by setting < |€1|71, whereg; is the largest-magnitude eigenvalueVidf. Assuming
that each iteration 0f30) contractsx to the fixpoint by a factor ok§z, we converge to withirg of
the fixpoint ink iterations, where

Ine
:O(In)\+ln|51])' (31)

The above is closely related to the power method used to compute the largastadig of
a matrix Golub and Van Loan1996); efficient preconditioners can also be used to speed up con-
vergence Golub and Van Loan1996. Since each iteration of3Q) involves computation of the
matrix-vector productW., x;, all speed-ups for computing the matrix-vector product discussed in
Section4.2 are applicable here. In particular, we exploit the fact ivatis a sum of Kronecker
products to reduce the worst-case time complexitPtdn®) per iteration in our experiments, in
contrast tdKashima et al(2004 who computed the matrix-vector product explicitly.

4.4 Spectral Decomposition Method

In the previous two sections we have introduced methods that are efficidmth unlabeled and
labeled graphs, but specifically computed the geometric ketBglthat is, assumed thatk) = AK.
We now turn to a method based on spectral decompositions that can compgenéral random
walk kernel 8) for any convergent choice @f(k), but is only efficient for unlabeled graphs. (In
fact, it will turn out to be oumostefficient method for computing an entire kernel matrix between
unlabeled graphs.)

LetW, =P,Dy P;l denote the spectral decomposition/@f, that is, the columns d?, are its
eigenvectors, anB, is a diagonal matrix of corresponding eigenvalues. The random waihgra
kernel @) can then be written as

K(G,G) : zu q. (P.D. P kp, = qIR(Z u(k)D5>Px1px- (32)
k=0

This simplifies matters in thaB®) only takes weighted powers of a diagonal matrix, which decouple
into scalar powers of its entries. An implementable graph kernel can thestdieed by employing

a power series that is known to converge to a given nonlinear functioa g€ometric kernell®),

for instance, uses the fact tHpf_ox< = 1. ; settingu(k) := Ak in (32) we thus obtain

K(G,G) := qLP«(1-ADy) P 1p,. (33)

1213

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

The crucial difference tol) is that the inverse in3@) is of a diagonal matrix, hence trivial to
compute: just take the reciprocal of each entry. To give another exaswgitengu(k) := A¥/k! in
(32) yields the exponential kernel9) by way of spectral decomposition:

k(G,G) := q.P. PP 1p,, (34)

because* = zfzoxk/k!. Again, unlike in (L9) the matrix exponential here is trivial to compute
becaus@D, is diagonal: simply exponentiate each entry.

Thus by diagonalizing the nonlinearity central to a random walk graphekespectral decom-
position can greatly expedite its computation. As described above, hquitegecomputationally
unattractive: Computing the spectral decomposition of a dense matrix takesuitere its size
(Golub and Van Loan1996); sinceW, is ann? x n? matrix this would result irO(nf) time com-
plexity per kernel computatioh.By leveraging the properties of the Kronecker product, however,
we can obtain a far better result for unlabeled (though possibly edgghted) graphs:

Theorem 4 The kernel matrix for any random walk kerr{8) between m unlabeled, possibly edge-
weighted graphs with n nodes can be computed(im@+-n)mr?) time via spectral decompositions,
where computing the corresponding scalar power series takes tine.

Proof Because the graphs are unlabeled, we Nilye= A, = A; ® Aj, whereA; andA (i,] €
{1,2,...,m}) are the adjacency matrices (normalized or not) of individual graphsinBsgpre-
computlng the spectral decomposition of each grdph: Ay = PD; P‘ Using Propositions 7.1.6,
7.1.7 ofBernstein(2005 we have

A®A = (DR @ (RDP) = (ReR)(DiED)RER)™ (3)

Proposition 7.1.10 oBernstein(2009 tells us that in facD; ® Dj = D, which implies that also
R ® P; = P, and that indeed the spectral decomposition of a Kronecker produstmpeses into
those of its constituents, as seen3b)(We can therefore use Propositions 7.1.6, 7.1 Bayhstein
(2005 again to rewrite 32) as

K(Gi,Gj) = (' R®q/P, (Z“ (Di®D;))(Pilpi®lepj). (36)

Computing the central power series here taR&s p) time just as in82), but the cost of calculating
the two flanking factors has been reduced froxm*) to O(n?) in (36). The entirem x m kernel
matrix can thus be obtained @(n?n?p) time, plus thedD(mr?) time it takes to precompute spectral
decompositions of thmindividual adjacency matrices. |

Note that in practice we will always pick a power series with known limit that véatrto evaluate
(i.e., p= 1), as exemplified by the geometrig3d) and exponential34) kernels. Theorerd then
gives us a very efficient method to compute entire kernel matrices, aldgibetween unlabeled
graphs. (It is tempting to try to extend the spectral approach for the exgiahkernel to labeled
graphs, but this runs into a key technical difficulty: a sum of (label-fittexdjacency) matrices in
the exponent cannot be separated unless those matrices commute, teaeis)lge’ 8 £ e*e?
unlessAB= BA))

2. ThusGartner et al(2003 give a time complexity cubic in th@(n?) size of the product graph.

1214

GRAPH KERNELS

4.5 Nearest Kronecker Product Approximation

As we have seen above, some of our fast methods for computing randtgraph kernels may
become computationally expensive, or not even be available, for labelptg in particular when
the numbed of distinct labels is large or a general edge kernel is employed. In sasgsave can
find thenearest Kronecker produtb W, , that is, compute matric&sandT such thatW, ~ S® T,
then use any of our methods @®» T as if it were the adjacency matrix of a direct product of
unlabeledgraphs.

Finding the nearest Kronecker product approximating a matrix sudh,ais a well-studied
problem in numerical linear algebra, and efficient algorithms which caloigxbe sparsity ofV,
are availableRitsianis 1992 Van Loan 2000. Formally, these methods minimize the Frobenius
norm||W, —S® T ||g by computing the largest singular valueVllf , a permuted version &ff,. We
employ the power methddor this purpose, each iteration of which entails computing the matrix-
vector prodchXvec(T’), whereT’ € R™" is the current approximation &f. The result of the
matrix-vector product is then reshaped intaam matrix to formT’ for the next iterationRitsianis
1992. It is easy to see that computikig, veqT’) requiresO(n*) time.

If W, can be written as a sum df Kronecker products7), then so cat, (Pitsianis 1992
Van Loan 2000, and the cost per iteration hence drop©@r?). Furthermore, if the two graphs
are sparse witld(n) edges each, thé, will have O(n?) non-zero entries, and each iteration only
takesO(n?) time. The numbek’ of iterations required is

Inn
=0 e i) o0

whereg; andg, are the eigenvalues .. with largestresp.second-largest magnitude.

As described above, the nearest Kronecker product approximataaicislated separately for
each entry of am x m kernel matrix. This causes two problems: First, the spectral decomposition
method will now takeD(n?n®) time, as it is no longer possible to precompute rimgraph spec-
tra. Second, like the optimal assignment kernel (Secti@hthe resulting kernel matrix may have
negative eigenvalues, and hence fail to be p.s.d. In future work, it m@pssible to address these
shortcomings by computingsamultaneousearest Kronecker product approximation for the entire
kernel matrix. For now, we verified empirically on the MUTAG and PTC data &#. Sectiorb.2)
that the most negative eigenvalue is relatively small: its magnitude wasrég®.1% of&,. We
also found the nearest Kronecker product to provide a better aippaign than simply ignoring the
graph labels: the angle between @&t) and its unlabeled variant was 2&sp.4.7 times greater
than that between véd/,) and ve¢S® T).

5. Experiments

Numerous studies have applied random walk graph kernels to problemmsasuarotein function
prediction Borgwardt et al. 2005 and chemoinformaticsK@ashima et al.2004). In our experi-
ments we therefore focus on the runtime of computing the kernels, rathethiiamtility in any
given application. We present three sets of experiments: First, we steidgaling behaviour of our
algorithms on unlabeled random graphs. Second, we assess the prangazt of our algorithmic
improvement on four real-world data sets whose size mandates fast &enmgutation. Third, we

3. Lanczos iterations are typically faster but more difficult to handle migaéy.

1215

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Runtime vs. graph size Impact of vec-trick on runtime

104 10t
dense
10°F | — Zp?rse 10%f — original
C}(IEV.] vec-trick
2 102 § 102k
e -« FP 3
(8]
Q 10'E E 10 F
> S
o o
(@] 100k g 100F
g 5
1o~ it 107 L
10775 3 ; 5 5 7 5 0 10 10725 3 " 5 " 7 0 0 10
2 2 2 2° 2 2 2 2 2 2 2 2 2° 2 21 2 2 2
number of nodes number of nodes

Figure 3: Time to compute a ¥10 kernel matrix on random graphs wittnodes and Bedges as
a function of the graph size. Left: The Sylvester equation (Sylv.), conjugate gradient
(CG), fixed-point iteration (FP), and spectral decomposition (spe@joaphes, com-
pared to the dense and sparse direct method. Thin straight lines in@igatg (black
dots)resp. Qn®) (red dashes) scaling. Righkashima et als (2004 fixed-point itera-
tion (original) compared to our version, which exploits Lemb2gvec-trick).

devise novel methods for protein-protein interaction (PPI) network casgrausing graph kernels.
The algorithmic challenge here is to efficiently compute kernels on largeesgeaphs.

The baseline for comparison in all our experiments is the direct approaGamner et al.
(2003, implemented via a sparse LU factorization; this already runs orders ofiitndg faster
on our data sets than a dense (i.e., non-sparse) implementation. Our codeitien in Matlab
Release 2008a, and all experiments were run under Mac OS X 10.5.5App&nMac Pro with a
3.0 GHz Intel 8-Core processor and 16 GB of main memory. We employed LeiBtoaspeed up
matrix-vector multiplication for both CG and fixed-point methods (cf. Seclid@), and used the
functiondlyap from Matlab’s control toolbox to solve the Sylvester equation. By defadtused a
value ofA = 104, and set the convergence tolerance for both CG solver and fixetiif@oation to
108, For the real-world data sets, the value\ofias chosen to ensure that the random walk graph
kernel converges. Since our methods are exact and produce the&ksamkvalues (to numerical
precision), we only report the CPU time of each algorithm.

5.1 Unlabeled Random Graphs

The aim here is to study the scaling behaviour of our algorithms as a fundtigraph size and
sparsity. We generated several sets of unlabeled random graphsheRust set we began with
an empty graph ofi = 2X nodes, wheré = 2,3,...,10, randomly addedrBedges, then checked
the graph’s connectivity. For ea¢hwe repeated this process until we had collected 10 strongly
connected random graphs.

The time required to compute the 200 kernel matrix between these graphs for each value of
n is shown in Figure3 (left). We see that the direct approach scales asymptotical@(a%) in
both the dense and the sparse implementation. For a graph of 64 nodegthapiroach already
takes over half an hour (sparse}p.3 hours (dense) of CPU time. Our Sylvester equation (Sylv.),

1216

GRAPH KERNELS

Runtime vs. fill factor Runtime vs. fill factor
. o0k | Sylv. '_—"'"
10 R A T
m) ’
FP
2 2 200} PR
8 3 spec. L
g 10 g .
S > 150 .
o o
S o /!
ol P A
-Gé 10 E 100} "‘."1.\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
£ £ 100F i e
2 2 | 25
10 50F Lt
o
IRC
0 20 10 60 80 100 0 20 10 60) 100
fill factor (%) fill factor (%)

Figure 4: Time to compute a X0 kernel matrix on random graphs as a function of their fill factor.
Left: The dense and sparse direct method on 32-node graphs, @mhipaur Sylvester
equation (Sylv.), conjugate gradient (CG), fixed point iteration (FR),sectral decom-
position (spec.) approaches. Right: Our approaches on largersgvétih256 nodes,
where the direct method is infeasible.

conjugate gradient (CG) and fixed-point iteration (FP) methods, byastnall scale a®(n?), and
can thus be applied to far larger graphs. Our spectral decompositioneabp(spec.) is the fastest
method here; it too scales @n°) asn asymptotically dominates over the fixed kernel matrix size
m=10.

We also examined the impact of Lemrh20on enhancing the runtime performance of the fixed-
point iteration approach as originally proposedKksshima et al(2004). For this experiment, we
again computed the X010 kernel matrix on the above random graphs, once using the original
fixed-point iteration, and once using fixed-point iteration enhanceddiyrhal2. As Figure3
(right) shows, our approach consistently outperforms the originalorersometimes by over an
order of magnitude.

For the next set of experiments we fixed the graph size at 32 nodes I(gestlaize that the

direct method could handle comfortably), and randomly added edges wnfilltfactor (i.e., the
number of non-zero entries in the adjacency matrix) reacBedwherex = 5,10, 20,30, ...,100.
For eachx, we generated 10 such graphs and computed thel@Qkernel matrix between them.
Figure4 (left) shows that as expected, the sparse direct method is faster thansts cminterpart
for small fill factors but slower for larger ones. Both however aresisiently outperformed by our
four methods, which are up to three orders of magnitude faster, with figed-terations (FP) and
spectral decompositions (spec.) the most efficient.

To better understand how our algorithms take advantage of sparsityneeaged a set of larger
random graphs (with 256 nodes) by the same procedure as befovgttiba geometric progression
of fill factors: x =0.1,0.2,0.5,1,2,5,10,20,50,100. The direct methods are infeasible here. The
CPU times taken by our algorithms to compute & 10 kernel matrix is shown in Figueg(right).
Both conjugate gradient and fixed point iteration methods have runtimeglyopigpportional to
the fill factor. The runtime of the Sylvester equation solver, by contrastrgellindependent of
the fill factor because our black-bdlyap solver does not aggressively exploit sparsity in the adja-

1217

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

cency matrices. The same holds for our spectral decomposition appvaaich however exhibits
impressive performance here: although it does not exploit sparsity, étia the fastest method
by far on all but the sparsest (2% filled) graphs. Clearly, well-designagparseimplementations
of Sylvester equation solvers, and in particular spectral decompositiatg tacilitate substantial
further gains in efficiency here.

5.2 Real-World Data Sets

Our next set of experiments used four real-world data sets: Two set®leicular compounds
(MUTAG and PTC), and two data sets describing protein tertiary strucRnadin and Enzyme).
Graph kernels provide useful measures of similarity for all of these.

5.2.1 THE DATA SETS

We now briefly describe each data set, and discuss how graph kemmelgmicable.

Chemical MoleculesToxicity of chemical molecules can be predicted to some degree by compar-
ing their three-dimensional structure. We employed graph kernels to neesisuitarity between
molecules from the MUTAG and PTC data set®iyonen et al.2003. The average number of
nodes per graph in these data sets is 17%e8p.26.70; the average number of edges is 38e&p.
52.06.

Protein Graphs.A standard approach to protein function prediction involves classifyioteprs
into enzymes and non-enzymes, then further assigning enzymes to oreesf tbp-level classes
of the Enzyme Commission (EC) hierarchy. Towards this &aigwardt et al(2005 modeled a
data set of 1128 proteins as graphs in which vertices representdsgga@iructure elements, and
edges represent neighborhood within the 3-D structure or along the acithohain, as illustrated
in Figurel.

Comparing these graphs via a modified random walk graph kernel arsifgilag them with a
Support Vector Machine (SVM) led to function prediction accuracies aditive with state-of-the-
art approachedBprgwardt et al.2005. We usedorgwardt et als (2005 data to test the efficacy
of our methods on a large data set. The average number of nodes awdpedgraph in this data
is 38.57resp.143.75. We used a single label on the edges, and the delta kernel tosiefilagity
between edges.

Enzyme Graphs.We repeated the above experiment on an enzyme graph data set, also due to
Borgwardt et al(2005. This data set contains 600 graphs, with 32.63 nodes and 124.27 muges
average. Graphs in this data set represent enzymes from the BRENBAne database
(Schomburg et al2004). The biological challenge on this data is to correctly assign the enzymes
to one of the EC top-level classes.

5.2.2 WINLABELED GRAPHS

For this experiment, we computed kernels taking into account only the topofagg graph, that
is, we did not consider node or edge labels. Tétists the CPU time required to compute the full
kernel matrix for each data set, as well as—for comparison purpos&88-a 00 submatrix. The
latter is also shown graphically in Figubgleft).

1218

GRAPH KERNELS

dataset| MUTAG PTC Enzyme Protein
nodes/graph 17.7 26.7 32.6 38.6
edges/node 2.2 1.9 3.8 3.7
#graphs|| 100 | 230 [100 | 417 | 100 | 600 | 100 | 1128
Sparse|| 31" | 145" | 45" | 723" | 1'52” | 1h21’ | 23'23" | 2.1d*
Sylvester|| 10" 54" | 28" | 733" 31" | 23'28” | 525" | 11h29’
Conj. Grad.|| 23" | 129" | 26" | 429" 14” | 10'00” 45" | 39'39”
Fixed-Point 8” 43" | 15" | 2'38” 5" | 544 43" | 22'09”
Spectral 5” 27" 7" | 1'54” 7| 432" 27" | 23'52"

*extrapolated number of days; run did not finish in time awdéa

Table 2: Time to compute kernel matrix for unlabeled graphs from variotzssdds.

On these unlabeled graphs, conjugate gradient, fixed-point iterationd, saectral
decompositions—sped up via Lemrh@g—are consistently faster than the sparse direct method.
The Sylvester equation approach is very competitive on smaller graptpe(tarming CG on MU-
TAG) but slows down with increasing number of nodes per graph. Eweit still outperforms the
sparse direct method. Overall, spectral decomposition is the most effigiprdach, followed by
fixed-point iterations.

5.2.3 LABELED GRAPHS

For this experiment, we compared graphs with edge labels. Note that nae &an be dealt
with by concatenating them to the edge labels of adjacent edges. On thedismputata sets we
employed a linear kernel to measure similarity between edge weights rejimgseistances (in
Angstidms) between secondary structure elements; sineel we can use all our methods for
unlabeled graphs here. On the two chemical data sets we used a delthterompare edge
labels reflecting types of bonds in molecules; for the Sylvester equatiospaetial decomposition
approaches we then employed the nearest Kronecker produckapation. We report CPU times
for the full kernel matrix as well as a 1800 submatrix in Table3; the latter is also shown
graphically in Figureb (right).

On labeled graphs, the conjugate gradient and the fixed-point iterati@ysbutperform the
sparse direct approach, more so on the larger graphs and with thekiemeal. As expected, spectral
decompositions are inefficient in combination with the nearest Kroneckelupt approximation,

kernel | delta,d=7 | delta,d=22 linear, d=1

dataset| MUTAG PTC Enzyme Protein
#graphs| 100 | 230 | 100 | 417 | 100 | 600 | 100 | 1128

Sparse]| 42" [244" [107" [14'22" [125" [57'43" [12'38" | 1.1d*
Sylvester|| 1'08” | 6'05” | 1'06” | 18'20” | 2'13” | 76'43" | 19'20" | 11h19’
Conj. Grad.| 39" [316" [53" [14'19"| 20" [1320"| 41" | 5735
Fixed-Point| 25" [217" [37" [755" | 10" [646" | 25" | 31'09"
Spectral[| 1'20” | 708" | 1'40” [26'54" | 8" | 422" | 26" | 2123

*extrapolated number of days; run did not finish in time awdéa

Table 3: Time to compute kernel matrix for labeled graphs from various d&ta s

1219

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

HEEl sparse Hl sparse

100 | syv __10°F |mEE Sylv.

g == cG g =3 CG

g 1 FP S 3 FP

o [spec. a [spec.

S 10°f o 10°f — =

o o

S S

£ £

E ' E 10

C c

> >

o o

10° 10° -
MUTAG Enzyme Protein MUTAG PTC Enzyme Protein
Dataset Dataset

Figure 5: Time (in seconds on a log-scale) to computexXti@® kernel matrix for unlabeled (left)
resp. labeled (right) graphs from several data sets, comparing the convansiparse
method to our fast Sylvester equation, conjugate gradient (CG), figgd-iperation (FP),
and spectral approaches.

but with the linear kernel they perform as well as fixed-point iterationsrfe- 100, and better yet

on the large kernel matrices. The Sylvester equation approach (ahiiaghe Sylvester solver we

used) cannot take advantage of sparsity, but still manages to perfimostaas well as the sparse
direct method.

5.3 Protein-Protein Interaction Networks

In our third experiment, we used random walk graph kernels to tackle a-tm@e problem in
bioinformatics involving the comparison of fairly large protein-protein intéoac(PPI) networks.
Using a combination of human PPI and clinical microarray gene expresaiar tthe task is to
predict the disease outcome (dead or alive, relapse or no relapsa)aafrgatients. As before, we
setA = 0.001 and the convergence tolerance to®fr all our experiments reported below.

5.3.1 O-INTEGRATION OF GENE EXPRESSION ANDPPI DATA

We co-integrated clinical microarray gene expression data for caatiengs with known human
PPI fromRual et al.(2005. Specifically, a patient’s gene expression profile was transformed into a
graph as follows: A node was created for every protein which—aawgtd Rual et al.(2005—
participates in an interaction, and whose corresponding gene expréssbwas measured on this
patient’'s microarray. We connect two proteins in this graph by an edBeaf et al.(2009 list
these proteins as interacting, and both genes argegp-downregulated with respect to a reference
measurement. Each node bears the name of the corresponding protelalzal.its

This approach of co-integrating PPl and gene expression data is butlcgssumption that
genes with similar gene expression levels are translated into proteins thab@ékely to interact.
Recent studies confirm that this assumption holds significantly more oftesofekpressed than
for random pairs of proteind=(aser et a).2004 Bhardwaj and Lu2005. To measure similarity
between these networks in a biologically meaningful manner, we comparh gituaps of proteins
interact and are co-regulated in each patient. For this purpose, amamdik graph kernel is the

1220

GRAPH KERNELS

data set Leukemia Breast Cancer

kernel || vanilla | composite| vanilla | composite

Sparse 24" 52" 39" 1'19”
Conj. Grad. 6" 13” 127 26"
Fixed-Point 4’ 7 7 137

Table 4: Average time to compute kernel matrix on protein-protein interactiwvons.

natural choice, as a random walk in this graph represents a grouptefr® in which consecutive
proteins along the walk are co-expressed and interact. As each nadetbe name of its corre-
sponding protein as its node label, the size of the product graph is at rabsf the smaller of the
two input graphs.

5.3.2 GOMPOSITEGRAPH KERNEL

The presence of an edge in a graph signifies an interaction betweenrtbspomding nodes. In
chemoinformatics, for instance, edges indicate chemical bonds betweestdms; in PPI net-
works, edges indicate interactions between proteins. When studyingnpraegactions in disease,
however, theabsenceof a given interaction can be as significant as its presence. Since existing
graph kernels cannot take this into account, we propose to modify theropjgtely. Key to our
approach is the notion of a complement graph:

Definition 5 Let G= (V, E) be a graph with vertex setV and edge setE. Its comple@entV, E)
is a graph over the same vertices but with complementary dégegV x V) \ E.

In other words, the complement graph consists of exactly those edg@sesent in the original
graph. Using this notion we define tatempositegraph kernel

keomeG,G') :=k(G,G) +k(G,G). (38)

This deceptively simple kernel leads to substantial gains in performanag iexperiments com-
paring co-integrated gene expression/protein-protein interaction retwor

5.3.3 DaTA SETS

LeukemiaBullinger et al.(2004 provide a data set of microarrays of 119 leukemia patients. Since
50 patients survived after a median follow-up time of 334 days, alwaydqtireg a lethal outcome
here would result in a baseline prediction accuracy of 1 - 50/119 = 58J#%4ntegrating this data
with human PPI, we found,267 proteins fronRual et al.(2005 for which Bullinger et al.(2004)
report expression levels among theZ&) genes they examined.

Breast Cancer. This data set consists of microarrays of 78 breast cancer patientdhict w4

had shown no relapse of metastases within 5 years after initial treatwzarit eer et al. 2002).
Always predicting survival thus gives a baseline prediction accuvédy/78 = 56.4% on this data.
When generating co-integrated graphs, we foud@@ proteins fronRual et al.(2005 for which
van't Veer et al(2002 measure gene expression out of thedZ9 genes they studied.

5.3.4 RESULTS

In Table4 we contrast the CPU runtimes of our conjugate gradient and fixed-pgimbaches to
graph kernel computation on the cancer patients modeled as labeled giéiphisat of the direct

1221

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

sparse method. On both data sets, our fast graph kernel computatiordsgibld an impressive
gain in speed.

Using either the “vanilla” graph kernel§) or our composite graph kerned&), we predict the
survivors by means of a support vector machine (SVM) in 10-foldskadidation. The vanilla
random walk graph kernel offers slightly higher prediction accuraan the baseline classifier on
one task (Leukemia: 59.2 % vs 58.0 %), and gives identical results on thie(Biteast Cancer: both
56.4 %). Our composite graph kernel attains 5 percentage points als®lanban both experiments
(Leukemia: 63.3 %; Breast cancer: 61.5 %).

The vanilla kernel suffers from its inability to measure network discreleanthe paucity of the
graph model employed, and the fact that only a small minority of genes ceulddlpped to inter-
acting proteins; due to these problems, its accuracy remains close to thiadoa$be composite
kernel, by contrast, also models missing interactions. With it, even our simpida gradel, which
only considers 10% of the genes examined in both studies, is able to captueealevant biolog-
ical information, which in turn leads to better classification accuracy on tteséenging data sets
(Warnat et al.2005.

6. Rational Kernels

Rational kernelsQortes et al.2004 were conceived to compute similarity between variable-length
sequences and, more generally, weighted automata. For instance, thedfatparge-vocabulary
speech recognizer for a particular input speech utterance is typicalgighted automaton com-
pactly representing a large set of alternative sequences. The wesglgaed by the system to each
sequence are used to rank different alternatives according to thdatbeesystem is based on. It
is therefore natural to compare two weighted automata by defining a kernel.

As discussed in Sectid) random walk graph kernels have a very different basis: They ctanpu
the similarity between two random graphs by matching random walks. Hereahph gself is the
object to be compared, and we want to find a semantically meaningful k&aetrast this with a
weighted automaton, whose graph is merely a compact representation ef tifeariable-length
sequences which we wish to compare. Despite these differences watforat kernels and random
walk graph kernels to be closely related.

To understand the connection recall that every random walk on a lagedpt produces a se-
guence of edge labels encountered during the walk. Viewing the setlalballsequences generated
by random walks on a graph as a language, one can design a weighsztlitar which accepts this
language, with the weight assigned to each label sequence being tlabifitplof a random walk
generating this sequence. (This transducer can be representeddphardiose adjacency matrix
is the normalized weight matrix of the original graph.)

In this section we formalize this observation and thus establish connectibmsdrerational
kernels on transducer€6rtes et al.2004 and random walk graph kernels. In particular, we show
that composition of transducers is analogous to computing product graptighat rational ker-
nels on weighted transducers may be viewed as generalizations of ramal&@ngraph kernels to
weighted automata. In order to make these connections explicit we adoponaammonly used
for describingalgebraic path problemswherein disparate problems related to graphs, automata,
and transducers are described in a common framework using matricemaost€ilenberg 1974
Lehmann 1977 Berste] 1979 Kuich and Salomad 986.

1222

GRAPH KERNELS

6.1 Semirings

At the most general level, weighted transducers are defined over sgsnirin a semiring addi-
tion and multiplication are generalized to abstract operatiprand © with the same distributive
properties:

Definition 6 (Mohri, 2002 A semiring is a systeifK, @, ®,0, 1) such that

1. (K,&,0) is a commutative monoid in whi¢he K is the identity element fap (i.e., for any
x,y,2€ K, we have 0y € K, (Xy)©z=x3(yd2), x&0=00x=xand xpy = ydXx);

2. (K,®,1) is a monoid in whictL is the identity operator for (i.e., for any xy,z € K, we
have xoy e K, (xOy)©z=x6(y®2z),and xo1=160x=X);

3. @ distributes overp, that is, for any xy,z€ K,

(xdy)©z= (®Z)
and zo(xdy) = (zOX)

4. 0is an annihilator for®: ¥x € K, x©0= 00X = 0.

Thus, a semiring is a ring that may lack negatidiR, +,-,0,1) is the familiar semiring of real
numbers. Other examples include

Boolean: ({FALSE, TRUE},V, A, FALSE, TRUE);
Logarithmic: (RU{—w}, @, +,—,0), wherevx,y € K: x@iny = In(e+¢);
Tropical: (RU{—o}, max +,—,0).

Linear algebra operations such as matrix addition and multiplication as welleaeker products
can be carried over to a semiring in a straightforward manner. For instiomdd, M’ € K™" we
have

n
MOMij = P Mik © M. (39)
k=1

The (®,®) operations in some semirings can be mapped into ordifary) operations by
applying an appropriateorphism

Definition 7 Let (K,®,®,0,1) be a semiring. A functiop : K — R is a morphism if

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

In the following, by 'morphism’ we will always mean a morphism from a semiringhie real
numbers. Not all semirings have such morphisms: For instance, the logarilemicing has a
morphism—namely, the exponential function—but the tropical semiring doelsave one. If the
semiring has a morphism, applying it to the matrix producBg), for instance, yields

W(MOMij) = <@Mik6wj>
k=1

n J—

= > W(MkOMyj) = 5 W(Mi) - Y(My;). (40)
K=1 k=1

As in AppendixA, we can extend the morphisgn to matrices (and analogously to vectors) by

defining[W(M)];; := Y(M;j). We can then write40) concisely as

WMOM) = Y(M)WY(M). (41)

6.2 Weighted Transducers

Loosely speaking, a transducer is a weighted automaton with an input andgut alphabet. We
will work with the following slightly specialized definitiofh:

Definition 8 A weighted finite-state transducer T over a semirifig®, 6,6, I) is a 5-tuple T=
(%,Q,H, p,q), whereZ is a finite input-output alphabet, Q is a finite set of n states, I§" is a
vector of initial weights, ¢¢ K" is a vector of final weights, and H is a four-dimensional tensor in
KM IZ>Z>1 \which encodes transitions and their corresponding weights.

Fora,b € ~ we will use the shorthand,y, to denote tha x n sliceH.ap. Of the transition tensor,
which represents all valid transitions on input symaamitting the output symbd. The output
weight assigned by to a pair of stringst = ayay...a andf =biby...by is

[[Tﬂ (C(, B) = qT G_)Halbl G_) Hazbz G_) o 6 Haq b G_) p. (42)

A transducer is said to accept a pair of stririgsP) if it assigns non-zero output weight to them,
that is,[[T](a,B) # 0. A transducer is said to be regulated if the output weight it assigns toany p
of strings is well-defined ifK. Since we disalloveg transitions, our transducers are always regulated.
The inverse oflf = (2,Q,H, p,q), denoted byT —%, is obtained by transposing the input and
output labels of each transition. Formally;* = (Z,Q,H, p,q) whereHaTb := Hpa. The composi-
tion of two transducer$ = (X,Q,H, p,q) andT' = (Z,Q,H’,p’,d) is a transducef, =T o T’ =
(£,Qu,H, Py, 0x), whereQ, =Qx Q, px = p& P',% 0 :=q®@(, and(H.)ab = BesHac @ Hy,.
It can be shown that

[Tl B) = [To TN (o, B) = PITI(a,y) O[T'D(v. B). (43)

Y

4. We disallowe transitions, and use the same alphabet for both input and output. Fuditegrin a departure from
tradition, we represent the transition function as a four-dimensionaditens

5. We use to denote the Kronecker product using the semiring operatidn order to distinguish it from the regular
Kronecker product.

1224

GRAPH KERNELS

Composing T with its inverse vyields T o T-! = (3,Q x Q,H% p@p,q®q), where
H, = @CezHacéHbc. There exists a general and efficient algorithm for composing traessluc
as in @3) which takes advantage of the sparseness of the input transdivbelnsi €t al, 1996
Pereira and Rileyl1997).

6.3 Weighted Automata

A weighted automaton is a transducer with identical input and output symbagrdarisition matrix
of a weighted automaton is therefore a three-dimensional tenggFif!*". As before, we will use
the shorthandH, to denote theax n slice H, 4. of the transition tensor, which represents all valid
transitions on the input symbal emitting output symboba. If ¥ containsd symbols, then by
specializing 42) it is easy to see that a weighted automaton accepts a stria@ua,...a with
weight

[T](0) =q" ©Ha OHa @...OHa O p. (44)

The composition of two weighted automala= (Z,Q,H,p,q) and T’ = (£,Q',H’,p',q) is an
automatoril, =T o T’ = (Z,Qx,Hx, Px,dx), whereQ, = Qx Q/, px = pep/, g« '=qed, and
(Hyx)a = Ha®H}. The composition operation is also defined for a weighted autom&tamd a

transducer :

WoT](a,B) = [W](a) ©[T](a,B). (45)

Every random walk on a labeled graph results in a sequence of edde émceuntered during
the walk. The set of all label sequences generated by random wakkgigan graph is a language.
One can construct a weighted automaton which accepts this language asfdlige the standard
semiring(R, +,-,0,1), let the alphabeX consist of the label§1,...,d} of the graph, and identify
the nodes of the graph with the states of the weighted automaton. Let the startirgjopping
probabilitiesp andq on the graph equal those of the weighted automaton, and complete the con-
struction by identifying for each e = the label-filtered adjacency matri of the graph withH;,
the transition tensor of the weighted automaton for that symbol.

Under the above mappingl4) has a natural interpretation: The weight assigned by the au-
tomaton to a string of symbols is the probability of encountering the corresmptabels while
performing a random walk on the corresponding labeled graph. Theasitigm of weighted au-
tomata, when specialized to labeled graphs, is equivalent to computing gyvdact graph.

An unlabeled graph corresponds to a weighted automaton whose input-aljtpabet contains
exactly one symbol, and which therefore only accepts strings of thedbeaaa. . . a. The transition
matrix of such a graph (equivalently, its adjacency matrix) is a 2-dimensiensbr inK™*". If A
denotes the adjacency matrix of a grapfthen the output weight assigned Gyto a* is [G]| (a¥) =
q'AA...Ap=q'Ap.

6.4 The Rational Kernel for Strings

Given a weighted transduc&rand a functionp : K — R, the rational kernel between two strings
o =aay...a andB = bib,...b is defined asQortes et a].2004):

1225

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Cortes et al(2004) show that a generic way to obtain p.s.d. rational kernels is to replaté46) by
ToT~1, and lety be a semiring morphism. We now present an alternate proof which usesesp
of the Kronecker product. Sinagis a semiring morphism, by specializingj to T o T 1, we can
write k(a,B) = @ ([To T~ (a,B)) as

Waoa) 'V (@ Haye, © Hbm) W (EB Hag © Htm) W(p&p). (47)
C1 G
Rules analogous tet) give us
W (@ HacéHbc> = ZLP(Hac) ® W(Hpc). (48)
cex ce

Using @8) we can rewrite47) as

W(q) @W(a)" (P(Hae,) @ W(Hoe,)) . (W(Hag) @ W(Hog) W(P) @ W(p). (49)

C1C2...C

Finally, successively applyin@) to (49) yields

K@.B) = 5 (W(0) W(Hae,) - W(Hag)W(p)) (W(Q) WHose,) .. W(Hng)¥(p)), (50)

C1C2...G

p(a) p(B)

Each term of $0) equalsp(a) p(B) for some scalar functiop, and is therefore a valid p.s.d. kernel.
Since p.s.d. kernels are closed under addition and pointwise |iBetg et al, 1984, k(a,p) is a
valid p.s.d. kernel.

6.5 The Rational Kernel for Weighted Automata

Rational kernels on strings can be naturally extended to weighted autBenadbl via (Cortes et al.
20049:

k(SU) =y (EBH(O‘) O[T](@,B) ®[[U]](B))
ap

w(@uswoun(a,m) , (51)

a,p

where we obtainedb(l) by using @5) twice. If Y is a semiring morphism, then we can use Defini-
tion 7 to rewrite 61) as

k(SU) = W([SeToU](a,p)). (52)
ap

Since p.s.d. kernels are closed under addition and pointwise limjig[8o T oU]|(a,B)) isap.s.d.
kernel for any giverot andf3, then so is%2).

1226

GRAPH KERNELS

6.6 Recovering Random Walk Graph Kernels

In order to recover random walk graph kernels we use the stariard, -,0,1) ring as our semi-
ring, and hence seji to be the identity function. Next we set the transduteéo simply transform
any input string of lengtlk into an identical output string with weigltk) > 0. With these restric-
tions (62) can be written as

= 3 u(la))[SoU] (@), (53)

where|a| denotes the length af. Let us rearranges@) to

Zu < [SeU](as,a,. .. ,ak)> : (54)
ai, az,...,ak

Specializing the definition of to weighted automata, and lettihty (resp.H}) denote the transition
tensor ofS (resp.U), we can rewrite§4) as

Zu (<Q®q’)T(Ha1®H$1)---(Hak®Hék)(p®p’))
ap,a2,.. 7akezk

—Zu(kxq@q’f(> (Ha1®Hél>.--(Hak®H;k>>(p®p’)

... aesk

—Zu (aod) (%Ha@?H) (%HmH)p@p’)
- Yuio(aed) (zHa®H><p®p>. (55)

Next, we identifyH, (resp.H}) with the label-filtered adjacency matfdk (resp.#) of a graphG
(resp.G') with discrete edge labels. It easy to see that= Y ,Ha @ H} is the weight matrixT) of
the direct product o6s andG'. Lettingp. = p® p’ andqx = g® (', (55) reduces to

k(G,G) = Zu(k) q HE p., (56)

which recovers the random walk graph kerr@lwith W,, = H...

The generality of the rational kernel comes at a computational cost: Elen restricted as in
(53), it requires the compositioBo U of two transducers, which takes up@3(|Qs| + |Es|) (|Qu| +
|Eu|)) time, wherg Q| is the number of states afil| the number of transitiongCprtes et al.2004
Section 4.1). In our settin| = n, the number of nodes in the graph, g is the number of
its edges, which can be @(n?); the worst-case time complexity of the composition operation is
thereforeO(n*). Cortes et al(2004 showed that the sum ir68) can be computed via a single-
source shortest distance algorithm over a semiringSofJ is acyclic, then this is linear in the
size of SoU, which in the worst case i©(n?). In general, however, an all-pairs shortest-distance
algorithm must be employed, such as the generalization of the Floyd-Waakiaithm due to
Lehmann(1977. This algorithm is cubic in the size @o U, thus leading to ai©(n®) worst-
case time complexity. Since computii®p U is the same as computing.., and theLehmann

1227

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

(1977 algorithm is a way to computg —W,)~ (thetransitive closureof W..), our linear algebra
techniques to speed up computation of random walk graph kernels cabeadguplied to rational
kernels® The key insight here is that we never explicitly construct the composition @iect
product graph) in order to compute the kernel.

For ease of exposition we derives] by settingT to be an identity transducer. Instead, one can
use a weighted transducer which allows for more flexible matching betweegssim the alphabet.
Basically, the transducer now plays the role of the kernel funetj@nd this in turn leads to a more
flexible similarity matrixW..

There is one important difference between graph kernels and ratiena¢lk. Graph kernels
can handle arbitrary edge kernels, including continuous edge labelsevigeiight matriX\.,. In
contrast, rational kernels, which were designed to work with strings atwireata, assume that the
alphabet (set of labels) is finite. As we saw above, they can incorpiteaiiele similarity matrices
W, in this setting, but cannot handle continuous edge labels. Furthermoratetoational kernels
have not been extended to deal with labels mapped to an RKHS.

7. R-convolution Kernels

Haussles (1999 R-convolution kernels provide a generic way to construct kernelsligarete
compound objects. Lete X be such an object, antt= (x1,X2,...,Xp) denote a decomposition of
X, with eachx, € X;. We can define a boolean predicate

R: X x X — {TRUE, FALSE}, (57)

whereX := X1 x... x Xp andR(x,X) is TRUE wheneverX is a valid decomposition aof. Now
consider the inverse 057), the set of all valid decompositions of an object:

R 1(x) := {X|R(x,X) = TRUE}. (58)

Like Haussle(1999 we assume thab@) is countable. We define the R-convolutienf the kernels
K1,Ko,...,Kp With Kj : Xj x X; — R to be
D

K(x,X) = Ky %Kax...xKp(X,X) = U(X %) rlKi(xi,x,-’), (59)
xeR1(x) i=
ReR1L(X)
wherep denotes a set of non-negative coefficientstonx, which ensures that the sum ®9j con-
verges. Haussler(1999 showed thatk(x,x) is p.s.d. and hence admissible as a kernel
(Schblkopf and Smola2002), provided that all the individuat; are. The deliberate vagueness of
this setup in regard to the nature of the underlying decomposition leads tofeamedwork: Many

different kernels can be obtained by simply changing the decomposition.

7.1 Graph Kernels as R-Convolutions

To apply R-convolution kernels to graphs, one decomposes the grapbniaiter substructures,
and builds the kernel based on similarities between those components. fdpbktlgrnels are—
knowingly or not—based on R-convolutions; they mainly differ in the way ttegompose the
graph for comparison and the similarity measure they use to compare the camgon

6. We thank an anonymous reviewer for pointing this out.
7. Haussle(1999 implicitly assumed this sum to be well-defined, hence did nof.Lisehis definition.

1228

GRAPH KERNELS

Gartner et al(2003 observed that any graph kernel whose feature map is injective ceuisdal
to determine whether two grapfsandG’ are isomorphic: Simply computfG,G') :=k(G,G) —
2k(G,G) +k(G',G'); since by definitioranystructural difference between the graphs would yield a
non-zerad(G, G'), they are isomorphic iffl(G,G") = 0. The graph isomorphism problem, however,
is widely believed to be not solvable in polynomial tin@arey and Johnsed979. Gartner et al.
(2003 also showed that computing inner products in a feature space condtoveteall subgraphs
of a graph is NP-hard. One must therefore choose which substrsi¢tudistinguish in defining a
practical graph kernel, and this choice is generally motivated by runtimsdemations.

Random walks provide a straightforward graph decomposition that—asvwedeen in Sec-
tion 4—leads to kernels that can be computed efficiently. To see that our randtgraph kernel
(8) is indeed an R-convolution kernel, note that the definition of our weightix(@yand the RKHS
Kronecker product (Definitiod1) imply

Wl i—pr4r, (j—p+s = [PX) @ OX)] iy, (jym+s
= (@i, V), Ve, Vo))y =2 K((V,V)), (W, V),

wherek is our edge kernel. We can thus expa@l fy explicitly taking all paths through the
repeated matrix products, giving

o0 k
(G.6) = 3 Wl whp. = 5 ol ([W.).
— i) > q\/kq\/ (ﬁ ((Vie1,Vi), (V.'_l,\/,))) Py, p(,o. (60)

Vo, V1,...VKEV
Vo, V). VGV/

This is easily identified as an instance of the R-convolution keB®] where the decomposition is
into all equal-length sequencés’ of nodes fromV andV’, respectively, and
WV.Y) = W) dy, dy Py, Py, (61)

I\

where|-| in (61) denotes the length of a sequence. Finally, note that by definition of gerlezinel
K, only pairs of sequences that are both actual walks on their respgipils will make a non-zero
contribution to 60).
Random walk graph kernels as proposed3artner et al(2003 likewise decompose a graph
into random walks, but then employ a delta kernel between noBesgwardt et al.(2005, on
the other hand, use a kernel defined on both nodes and edges. Tgieatieed graph kernels
of Kashima et al(2004) are closely related but subtly different in that they decompose the graph
into all possiblelabel sequences generated by a walltahé et al.(2004) extend this approach in
two ways: They enrich the labels via the so-called Morgan index, and modifigeinel definition
to preventtottering that is, the generation of high similarity scores by multiple, similar, small
substructures. Both these extensions are particularly relevant forosh®rmatics applications.
Further afield,Horvath et al.(2004 decompose a graph into cyclic patterns, then count the
number of common cyclic patterns which occur in both graphs. Their késm@agued by com-
putational issues; in fact they show that computing the cyclic pattern kefraegeneral graph is
NP-hard. They consequently restrict their attention to practical problasses where the number
of simple cycles is bounded.

1229

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Ramon and @rtner(2003 consider subtree patterns to define graph kernels. Starting from a
given nodev, a tree is created by adding all the nodes that can be reached/frofy. .., h steps,
whereh is the height of the tree. If more than one walk connects two nodes, theroee®f these
is used to define a distinct subtree. This means that the same node is cavatied Smes, thus
leading to tottering. Furthermore, the number of candidate trees growsaxjally with the height
of the subtree under consideration, thus severely limiting the depth of grajgture one can probe
at reasonable computational cost.

Borgwardt and Kriege{2009 define a kernel§2) based on shortest paths. They represent a
graphG = (V,E) by a complete grap® = (V,E) over the same vertices, wherein the weight of
each edge it equals the length of the shortest path between the corresponding ndeleslieir
shortest path kernel is then defined as

ksp(G> G,) = Z Z K(e>e()7 (62)
ecE€ecE’

wherek is any kernel defined on the edgesSH#ndS.

Shervashidze et a(2009 use subgraphs of fixed size to define kernels. Their key idea is to
represent the graph by a normalized frequency vector which counfietheency of occurrence of
various fixed-size subgraphs. The kernel is then simply computed asttpeodiuct between these
vectors.

Other decompositions of graphs which are well suited for particular apiplicdomains include
molecular fingerprints based on various types of depth-first sea(Basivola et al. 2005 and
structural elements such as rings or functional gro&pdhlich et al, 2006.

7.2 R-Convolutions in Abstract Semirings

There have been a few attempts to extend the R-convolution ké&@elo abstract semirings, by
defining:

D
kxx)i= @ HEX)E O Kix.X). (63)
XeR1(x) i=1
ReRL(X)

The optimal assignment graph kernelradhlich et al.(2006 is motivated along these lines, using
the tropical semiring. It can be defined as

k(x,X) = max <u(2,2’) +_§Ki(xi,x,-’)>. (64)

RXeER1(x)
RERL(X)

Unfortunately 64) is not always p.s.dMert, 2008. The problem is that the class of p.s.d. kernels
is not closed under the max operati@e(g et al, 1984).
For semirings that have a morphigprto the reals, however, we can rewrit&) as

D

W(k(x,x)) = M(%,X) ,|‘lw<+<i(>q,><)>. (65)

XeR1(x) I=
ReRL(X)

1230

GRAPH KERNELS

Comparing 65) with (59) makes it clear thap ok is p.s.d. and hence admissible if gib k; are.
This can be used to construct p.s.d. R-convolution kernels in such sesniring

For instance, take the logarithmic semirif|§U{—oo}, @iy, +, —,0) augmented with an in-
verse temperature paramefer- 0, so thatx@yy = In(e® + é¥)/B. This has the morphism
W(x) = €. We can thus specializ€%) to define

D

k(x,X) := XX) - where k(X,X) 1= U(X,X) + ZKi(xi,x,-’), (66)
XeR™1(x) =
R ERL(x)

which is a valid p.s.d. kernel if a#®i are. Note that ik; is a p.s.d. kernel, then sin@e> 0 so is
Bki, and since p.s.d. kernels are closed under exponentia@ient¢n 2001, Equation 5) so ig®*.

What makes §6) interesting is that when the temperature approaches Bero ©), the aug-
mented logarithmic semiring approaches the tropical semiring,dasy — max(x,y). We thus
obtain a kernel that approximates (an exponentiated version of) the opitssighment kernebd)
yet is provably p.s.d. Since at low temperatures the valueé®f i§ dominated by the optimal
assignment, one might call it the “mostly optimal assignment kernel.”

The finite range of floating-point computer arithmetic unfortunately limits how Iadenaper-
ature 66) can be used with in practice, though this can be greatly extended via sigtdblare,
such as thextnum C++ class®

8. Discussion and Outlook

As evidenced by the large number of recent papers, random walk amghadezed graph kernels
have received considerable research attention. Although the conrselbgtween these two kernels
were hinted at byKashima et al(2004), no effort was made to pursue this further. Our aim in
presenting a unified framework for random walk and marginalized gra&pheks that combines
the best features of previous formulations is to highlight the similarities as wéfieadifferences
between these approaches. Furthermore, it allows us to use extendealgebra in an RKHS to
efficiently compute all these kernels by exploiting common structure inherémége problems.

As more and more graph-structured data (e.g., molecular structuresaathpnteraction net-
works) becomes available in fields such as biology, web data miatnggraph classification will
gain importance over the coming years. Hence there is a pressing neegtbugpthe computation
of similarity metrics on graphs. We have shown that sparsity, low effecéing, rand Kronecker
product structure can be exploited to greatly reduce the computatioriafapsph kernels; taking
advantage of other forms of structurelify remains a computational challenge. Now that the com-
putation of random walk graph kernels is viable for practical problenssiz&vill open the doors
for their application in hitherto unexplored domains.

A major deficiency of geometric random walk graph kernels is that the adrieissibge of
values of the decay parametfein (16) depends on the spectrum of the weight matix. Since
this is typically unknown, in practice one often resorts to very low valugs-ebut this makes the
contributions of higher-order terms (corresponding to long walks) to ¢neét negligible. In fact
in many applications a naive kernel which simply computes the averagd ketmeen all pairs of
edges in the two graphs has performance comparable to the random aaliikkgrnel.

8. extnum can be found alittp://darwin.nmsu.edu/molb_resources/bioinformatic slextnum/extnum.html

1231

http://darwin.nmsu.edu/molb_resources/bioinformatics/extnum/extnum.html

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Trying to remedy this situation by normalizing the matrices involved leads to anptieer
nomenon calledottering (Mahé et al, 2004. Roughly speaking tottering occurs when short self-
repeating walks make a disproportionately large contribution to the kerhet.vaConsider two
adjacent vertices andV in a graph. Because of tottering, contributions due to walks of the form
v—V — Vv — ... dominate the kernel value. Unfortunately a kernel using self-avoidirlgswa
(walks which do not visit the same vertex twice) cannot be computed in palghdme.

A natural question to ask is the following: Since diffusion can be viewedamtnuous time
limit of random walks, can the ideas behind the random walk kernel be dedeto diffusion?
Unfortunately, the Laplacian of the product graph does not decomptusthe Kronecker product
of the Laplacian matrices of the constituent graphs; this rules out a stkaightd extension.

Although rational kernels have always been viewed as distinct fromhgkarnels, we have
shown that in fact these two research areas are closely related. tthepel that this will facilitate
cross-pollination of ideas such as the use of semirings and transduaiBrimg graph kernels.
A return to the tensor and matrix notation which was commonly used to describlerailg path
problems would help make these connections explicit.

It is fair to say that R-convolution kernels are the mother of all kernelstarctsired data.
It is enlightening to view various graph kernels as instances of R-cotmoliernels since this
brings into focus the relevant decomposition used to define a givenlkanukethe similarities and
differences between various kernels. Extending R-convolutions tceabsemirings, however, does
not always result in a valid p.s.d. kernel. We have shown that a morphidra teals is sufficient to
successfully transport an R-convolution kernel into a semiring; whétienecessary remains an
open problem.

We do not believe that the last word on graph comparison has been saithyes far, simple
decompositions like random walks have been used to compare graphsis fiaénly driven by
computational considerations and not by the application domain at han@lddreéhmic challenge
of the future is to integrate higher-order structures such as spannasggrrgraph comparisons, and
to compute such kernels efficiently.

Acknowledgments

We thank Markus Hegland and Tim Sears for enlightening discussions Sitela for pointing out
to us that the optimal assignment kernel may fail to be p.s.d., and the anonyenygers for their
detailed comments and suggestions which greatly helped improve this paper.

This publication only reflects the authors’ views. It was supported byTHIGunded by the
Australian Government through the Backing Australia’s Ability and Centr&xdellence pro-
grams, by the IST Programme of the European Community under the PASCéthik of Excel-
lence, IST-2007-216886, by the German Ministry for Education, SeigResearch and Technology
(BMBF) under grant No. 031U112F within the BFAM (Bioinformatics for thenctional Analysis
of Mammalian Genomes) project, part of the German Genome Analysis NetiWw&ikN), by NIH
grant GM063208-05 “Tools and Data Resources in Support of StaléBenomics”, and NSF grant
[1S-0916686.

1232

GRAPH KERNELS

Appendix A. Extending Linear Algebra to RKHS

It is well known that any continuous, symmetric, positive definite kektelX x X — R has a
corresponding Hilbert spac#/, called the Reproducing Kernel Hilbert Space or RKHS, which
induces a feature map: X — # satisfyingk(x,x') = (@(X),®(X')) ;. The natural extension of this
so-called feature map to matricestis X™™M— #™™ defined/®(A)];j := @(Ajj). In what follows,

we used to lift tensor algebra fronk to #/, extending various matrix products to the RKHS, and
proving some of their their useful properties. Straightforward extensianshe commutativity
properties of the operators have been omitted for the sake of brevity.

A.1 Matrix Product

Definition 9 Let Ae X™™ B e Xx™P and Ce R™P. The matrix product®(A)d(B) € R™P and
P(A)C € H"*P are given by

[P(A)P(B)Jic =y (@A), ®Bik)),, and [®(A)Clic = @A) Cic.

J J

Itis straightforward to show that the usual properties of matrix multiplicatioamely associa-
tivity, transpose-commutativity, and distributivity with addition—hold for Defimt@®above, with
one exception: associativity doast hold if the elements of all three matrices involved belong to
the RKHS. In other words, givehe X"*™, B € X™P andC € XP*9 generally|®(A)®(B)|D(C) #
®(A)[P(B)P(C)]. The technical difficulty is that in general

(O(A), ®(Bik)) 5, ®(Cur) # ®(A) (@Bik), ®(Cur)) - (67)

Further examples of statements lil&), involving properties which do not hold when extended to
an RKHS, can be found for the other matrix productss& énd (76) below.
Definition 9 allows us to state a first RKHS extension of the vec(ABC) formiija (

Lemma 10 If A e R™™M B e Xx™P, and Ce RP*Y, then
veq A®(B)C)) = (C" @ A)veqd(B)) e X",

Proof Analogous to Lemma2 below. |

A.2 Kronecker Product

Definition 11 Let Ae X™™ and Be XP*9. The Kronecker produc®(A) @ ®(B) € R"P*M js
defined as

[®(A) @ P(B)](i—1)prk (j-1)qt = (@A), @(Bii)) -
Similarly to (67) above, for matrices in an RKHS

* (A 2®(B))(P(C)2d(D)) = (P(A)P(C)) @ (P(B)®(D)) (68)

1233

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

doesnot necessarily hold. The technical problem wi@8)is that generally

<(9(Air)>(P(Bks>>}[<(p(er),(P(Dsl)>}[i <(P(Air)a v (ey)>g{ (@(Bks), ®(Ds1)) 4 - (69)

In SectionA.3 we show that analogous properties (Lemrtidsand 15) do hold for theheteroge-
neousKronecker product between RKHS and real matrices.
Definition 11 gives us a second extension of the vec(ABC) formjaqd RKHS:

Lemma 12 If A€ X™™ Be R™P, and Ce xP*9, then
ved ®(A)BP(C)) = (P(C) '@ P(A))veqB) € R,
Proof We begin by rewriting th&" column of®(A)Bd(C) as

(®(A)BP(C)]k = P(A) T B, @(Ci) = T 9C) P(A)B,
J J

B*l
B.
= [0(C1)P(A), 6(Ca) (A, ... QCa)O(A)] |
B*n
—_———
vedB)
= ([®(Ca). @(Cax). ... %Cri)] © P(A)) veq(B). (70)

To obtain Lemmadl2 we stack up the columns of Q):

®C11) @Ca1) ... @Cm)

Ve ®(A)BP(C)) = L |ooA) | vedB)
®Cimn) @Con) ... @Cnn)

= (®(C)' @ P(A)) vedB). |

Direct computation of the right-hand side of Lema®requiresnmpgkernel evaluations; when
m, p, andq are allO(n) this is O(n*). If # is finite-dimensional, however—in other words, if
the feature map can be taken togre X — RY with d < co—then the left-hand side of Lemni2
can be obtained i@(n®d) operations. Our efficient computation schemes in Seetierploit this
observation.

A.3 Heterogeneous Kronecker Product

Definition 13 Let Ae X™™ and Be RP*9. The heterogeneous Kronecker proddgtA) @ B €
X"P*MAis given by

[®(A) @BJ(i—1)pk,(j-1)q+1 = P(A]) B

Recall that the standard Kronecker product ob@yshere we prove two extensions:

1234

GRAPH KERNELS

Lemma 14 If A€ x™™M Be xP*9,Ce R™°, and De R, then
(P(A)@®P(B))(C®D) = (P(A)C)® (P(B)D).
Proof Using the linearity of the inner product we directly verify

[(P(A) @ P(B))(C@D)(i—1)prk (j-1)g+ = z<<P(A4r) ®(Bks)) 5/ CrjDsl

_ <Z<p(pqr)qj, Z(P(BKS)DSI>%

< (A) |’[¢(B)D]k|>g{
[(P(A)C) @ (P(B)D)](i-1)p+k.(j-1)g+

|
Lemma 15 If A€ X™™ Be RP*9, Ce X™°, and De RY', then
(P(A)@B)(P(C)®D) = (PA)P(C))® (BD).
Proof Using the linearity of the inner product we directly verify
[(®(A) @ B)(P(C) @D)](i-1)pk,(j-1g+ = Z(@(Air)Bis, 9(Crj)Dsi)
Z (A), PCrj)) 4 z BksDsi
= [®(A)@(C)};j [BD
= [(®(A)®(C)) @ (BD)](i-1)p+k,(j-1)q+
|

Using the heterogeneous Kronecker product, we can state four madr&RKtensions of the
vec-ABC formula ():

Lemma 16 If A € X™™ Be R™P, and Ce RP*Y, then
veq ®(A)BC) = (C' @ ®(A))veqB) € X",

Proof Analogous to Lemma2. |

Lemma 17 If A€ R™™ Be R™P and Ce XP*9 then
ved AB®(C)) = (d(C) '@ A)vedB) € X"

Proof Analogous to Lemmaz2. |

1235

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Lemma 18 If A€ X™™ Be X™P, and Ce RP*Y, then
veq ®(A)®(B)C) = (C' @ d(A)) veq d(B)) € R"™L,

Proof Analogous to Lemmaz2. |

Lemma 19 If A e R™M Be xX™P and Ce XP*4, then
veq A®(B)D(C)) = (d(C) '@ A)veqd(B)) € R"™L,

Proof Analogous to Lemmaz2. |

Note that there is no analogous lemma for (@) ®(B) ®(C)) since this term is not well-
defined due to non-associativit§q).

A.4 Kronecker Sum

A concept closely related to the Kronecker product is that of the Kikarezum, which is defined
for real matriceA € R™™ andB € RP*9 as

AGB:=A® | pg+lmm®B, (71)

with 1nm (resp.l pg) denoting then x m (resp.p x q) identity matrix. Many of its properties can
be derived from those of the Kronecker product. Unlike the Kronepkaduct, however, the Kro-
necker sum of two matrices in an RKHS is a matrix in the RKHS. From Definitiand (/1) we
find that

[AD B (i—1)prk,(j-1)g+ = AijOk + 8ij By (72)
We can extend?q2) to RKHS, defining analogously:

Definition 20 Let Ac X™™and Be XP*9. The Kronecker surd(A) ® ®(B) € X"P*Mdis defined
as

[P(A) @ P(B)](i—1)prk (j-1)grt = DA} + 8ij @(Bua).-
In other words, in an RKHS the Kronecker sum is defined just agin (
DA BPPB) = PA)RIg + a2 P(B), (73)

wherel y, denotes the real-valued identity matrix of the same dimensions (not necesqasdtg) as
matrix M. In accordance with Definitiof3, the result of {3) is an RKHS matrix.
The equivalent of the vec-ABC formuld)(for Kronecker sums is:
(A®B)veqC) = (AxIg+1a®B)vedC)
= (A®Ilg)vedC) + (Ia®B)vedC)
—=veqIgCA") +veqBCl,) (74)
=vedqIgCA" +BCI,}).

This also works for matrices in an RKHS:

1236

GRAPH KERNELS

Lemma 2l If A e X™M Be xXP*4 and Ce XM then
(D(A) & D(B)) veqD(C)) = vedlg®(C) D(A) T+ D(B)P(C) I,) € R™PL,

Proof Analogous to 74), using Lemmad8and19. |

Furthermore, we have two valid heterogeneous forms that map into the RKHS:
Lemma 22 If A € X™™M Be XP*9 and Ce R™™, then
(D(A) & D(B))veqC) = veqIgCP(A) +D(B)CIL) e X"PxL,

Proof Analogous to74), using Lemmad6andl17. |

Lemma 23 If Ae R™™M Be RP*4 and Ce X%™M then
(A®B)veqd(C)) = vedlg®(C)AT +BD(C) 1) e x"P<L,

Proof Analogous to 74), using LemmaélO. |

A.5 Hadamard Product

While the extension of the Hadamard (element-wise) product to an RKHS isaquated to imple-
ment our fast graph kernels, the reader may find it interesting in its owh righ

Definition 24 Let AB € X"™*™and Ce R™™. The Hadamard produc®(A) © ®(B) € R™™ and
D(A)©C e H™ ™ are given by

[®(A) © D(B)ij = (@A), 0(Bij)),, and [®(A)©Clij = @A) GCij
We prove two extensions 08
Lemma 25 If A e Xx™™M Be xP*9,Ce R™™, and De RP*9, then
(P(A)®@P(B))® (CeD)=(d(A)©C)® (P(B)©D).
Proof Using the linearity of the inner product we directly verify

[(P(A) @ P(B)) @ (C@D)](i-1)psk (j-1arl = (PA;), @(Bi)) 5, CijDud
= (@(Aj)Cij, (P(Bk|)Dk|>

= ([®(A) ©CJij,[®(B) © D),
=[(®(A)eC)® ((B) ©D)](i-1)p+k,(j-1)q+

1237

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Lemma 26 If A€ X™™M Be RP*9, Ce X™™ and De RP*Y, then
(P(A)@B)® (P(C)®D) = (PA)©P(C))®(BOD).
Proof Using the linearity of the inner product we directly verify

[(@(A)@B) ® (P(C) @D)]i—1)prk (j-1)q+1 = (@A})Bki, ®(Cij)Dui)

= (O(Aj),0(Cij)), BuDx
= [®(A) ©®(C)};;[B® Dl
= [(®(A) 0 ®(C)) @ (BOD)]i-1ptk(j-1a+

As before,
* (P(A)@P(B)) o (P(C)©®(D)) = (P(A)©®(C))® (®(B) © P(D)) (75)
doesnot necessarily hold, the difficulty with7§) being that in general,

(O(A), 0(Bxi)) 5, (@(Cij), @(Dw1)) 5 # (@A), @Cij)) 5 (D(Bit), ®(Dia)) 5 - (76)

References

Christian Berg, Jens P. R. Christensen, and Paul Resk@kmonic Analysis on Semigroups
Springer, New York, 1984.

Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. NatBHelge Weissig,
llya N. Shindyalov, and Philip E. Bourne. The protein data bamkucleic Acids Research
28:235-242, 2000.

Dennis S. Bernsteinviatrix Mathematics Princeton University Press, 2005.
Jean BerstelTransductions and Context-Free Languagésubner, 1979.

Nitin Bhardwaj and Hui Lu. Correlation between gene expression psdditel protein-protein in-
teractions within and across genomB#informatics 21(11):2730-2738, June 2005.

Danail Bonchev and Dennis H. Rouvray, edito@hemical Graph Theory: Introduction and Fun-
damentalsvolume 1. Gordon and Breach Science Publishers, London, UK,. 1991

Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path keonegsaphs. IProceedings of
the International Conference on Data Miningages 74-81, 2005.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan @cuer, S. V. N. Vishwanathan, Alexan-
der J. Smola, and Hans-Peter Kriegel. Protein function prediction viahgkapnels.
In Proceedings of Intelligent Systems in Molecular Biology (ISMBgtroit, USA, 2005.
http://www.stat.purdue.edu/ ~ vishy/papers/BorOngSchVisetal05.pdf

1238

http://www.stat.purdue.edu/~vishy/papers/BorOngSchVisetal05.pdf

GRAPH KERNELS

Karsten M. Borgwardt, Hans-Peter Kriegel, S. V. N. Vishwanathau, Mitol N. Schraudolph.
Graph kernels for disease outcome prediction from protein-protein atii@nanetworks. In
Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany Murraydareri E. Klein, edi-
tors, Proceedings of the Pacific Symposium of Biocomputing 20@i Hawaii, January 2007.
World Scientific.

Lars Bullinger, Konstanze @hner, Eric Bair, Stefan Bhling, Richard F. Schlenk, Robert Tibshi-
rani, Hartmut Mhner, and Jonathan R. Pollack. Use of gene-expression profilingembifid
prognostic subclasses in adult acute myeloid leukemiew England Journal of Medicin@50
(16):1605-1616, Apr 2004.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational ketne Suzanna Becker, Sebas-
tian Thrun, and Klaus Obermayer, editofglvances in Neural Information Processing Systems
15, volume 14, Cambridge, MA, 2002. MIT Press.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Positive defiaitional kernels. In Bernhard
Schblkopf and Manfred K. Warmuth, editorBrocedings of the Annual Conference on Compu-
tational Learning Theorypages 41-56, 2003.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational kistn€heory and algorithms.
Journal of Machine Learning Researchi1035-1062, 2004.

Samuel EilenbergAutomata, Languages and Machingslume A. Academic Press, 1974.

Hunter B. Fraser, Aaron E. Hirsh, Dennis P. Wall, and Michael B. Eis€onevolution of gene
expression among interacting proteirBroceedings of the National Academy of Science USA
101(24):9033-9038, Jun 2004.

Holger Fibhlich, brg K Wegner, Florian Siker, and andreas Zell. Kernel functions fivibated
molecular graphs —a new similarity based approach to ADME prediction inifitas®n and
regressionQSAR and Combinatorial Scien@b(4):317-326, 2006.

Judith D. Gardiner, Alan J. Laub, James J. Amato, and Cleve B. Moler.ti@olof the Sylvester
matrix equatioPAXB" +CXD'" = E. ACM Transactions on Mathematical Softwat®(2):223—
231, 1992.

Michael R. Garey and David S. Johnsddomputers and Intractability: A Guide to the Theory of
NP-CompletenessSeries of Books in Mathematical Sciences. W. H. Freeman, 1979.

Thomas Grtner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hssdreults and effi-
cient alternatives. In Bernhard Sitkopf and Manfred K. Warmuth, editorBroceedings of the
Annual Conference on Computational Learning Thepgges 129-143. Springer, 2003.

Marc G. Genton. Classes of kernels for machine learning: A statisticpgutige. Journal of
Machine Learning ResearcR:299-312, 2001.

Gene H. Golub and Charles F. Van LoaMatrix Computations John Hopkins University Press,
Baltimore, MD, 3rd edition, 1996.

1239

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

David Haussler. Convolutional kernels on discrete structures. TeatRéport UCSC-CRL-99-10,
Computer Science Department, UC Santa Cruz, 1999.

Tamas Honath, Thomas @rtner, and Stefan Wrobel. Cyclic pattern kernels for predictive graph
mining. In Proceedings of the International Conference on Knowledge DiscomedyData
Mining (KDD), pages 158-167, 2004.

Wilfried Imrich and Sandi Klakar. Product Graphs, Structure and Recognitidfviley, 2000.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized késitieetween labeled graphs.
In Proceedings of the International Conference on Machine Learmages 321-328, San Fran-
cisco, CA, 2003. Morgan Kaufmann.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Kernels for gmpin Koji Tsuda, Bernhard
Scholkopf, and Jean-Philippe Vert, editoiisernels and Bioinformatiggpages 155-170, Cam-
bridge, MA, 2004. MIT Press.

Risi Kondor and Karsten Borgwardt. The skew spectrum of graphBrdceedings of the Interna-
tional Conference on Machine Learningages 496-503. ACM, 2008.

Risi Kondor and John D. Lafferty. Diffusion kernels on graphs athéiodiscrete structures. Rro-
ceedings of the International Conference on Machine Learrpages 315-322, San Francisco,
CA, 2002. Morgan Kaufmann.

Hugo Kubinyi. Drug research: Myths, hype and realityature Reviews: Drug Discoverg(8):
665-668, August 2003.

Werner Kuich and Arto Saloma&emirings, Automata, Languagesumber 5 in EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, 1986.

Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolafionline social net-
works. In Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and DimitriomGuulos, editors,
Proceedings of the Twelfth ACM SIGKDD International Conference onnkedge Discovery
and Data Mining, Philadelphia, PA, USA, August 20-23, 20péges 611-617. ACM, 2006.
ISBN 1-59593-339-5.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. Computatittrea@anonical decom-
position by means of a simultaneous generalized Schur decompo$tiskl Journal on Matrix
Analysis and Application®6(2):295-327, 2004.

Daniel J. Lehmann. Algebraic structures for transitive clostireoretical Computer Scienc$(1):
59-76, February 1977.

Pierre Malé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and JeanpBhitipt. Extensions
of marginalized graph kernels. FProceedings of the Twenty-First International Conference on
Machine Learningpages 552-559, 2004.

Mehryar Mohri. Semiring frameworks and algorithms for shortest-distpnaklems. Journal of
Automata, Languages and Combinatori¢€3):321-350, 2002.

1240

GRAPH KERNELS

Mehryar Mohri, Fernando C. N. Pereira, and Michael D. Riley. Weiglgetomata in text and
speech processing. In Arar Kornai, editorExtended Finite State Models of Language: Pro-
ceedings of the ECAI'96 Workshgpages 46-50, 1996.

Jorge Nocedal and Stephen J. Wrighttumerical Optimization Springer Series in Operations
Research. Springer, 1999.

Fernando C. N. Pereira and Michael D. Riley. Speech recognitioniiopasition of weighted finite
automata. IrFinite-State Language Processimpges 431-453. MIT Press, 1997.

Nikos P. PitsianisThe Kronecker Product in Approximation and Fast Transform GermraPhD
thesis, Department of Computer Science, Cornell University, 1992.

Liva Ralaivola, Sanjay J. Swamidass, Hiroto Saigo, and Pierre BaldiphGkarnels for chemical
informatics.Neural Networks18(8):1093—-1110, October 2005.

Jan Ramon and Thomasa@ner. Expressivity versus efficiency of graph kernels. Techni-
cal report, First International Workshop on Mining Graphs, Trees @aquences (held with
ECML/PKDD’03), 2003.

Jean-Francois Rual, Kavitha Venkatesan, Tong Hao, Tomoko HieeKéshikawa, Anglie Dricot,
Ning Li, Gabriel F. Berriz, Francis D. Gibbons, Matija Dreze, Nono A@uedehoussou, Niels
Klitgord, Christophe Simon, Mike Boxem, Stuart Milstein, Jennifer Rosemt@ebra S. Gold-
berg, Lan V. Zhang, Sharyl L. Wong, Giovanni Franklin, Siming Li,dlea S. Albala, Janghoo
Lim, Carlene Fraughton, Estelle Llamosas, Sebiha Cevik, Camille Bex, Philippeesch,
Robert S. Sikorski, Jean Vandenhaute, Huda Y. Zoghbi, Alex SmdBtaphanie Bosak, Rey-
naldo Sequerra, Lynn Doucette-Stamm, Michael E. Cusick, David E. Hdljétick P. Roth, and
Marc Vidal. Towards a proteome-scale map of the human protein-proteimétitam network.
Nature 437(7062):1173-1178, Oct 2005.

Bernhard Scblkopf and Alexander J. Smol&earning with KernelsMIT Press, Cambridge, MA,
2002.

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, ChristeédtHsregor Huhn,
and Dietmar Schomburg. BRENDA, the enzyme database: Updates and swajoevelopments.
Nucleic Acids Researc32D:431-433, Jan 2004.

Roded Sharan and Trey ldeker. Modeling cellular machinery throudbdital network compari-
son. Nature Biotechnology?24(4):427—-433, Apr 2006.

Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhand Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Max Welling Bavid van Dyk, edi-
tors, Proceedings of the International Workshop on Atrtificial Intelligence Statistics Society
for Artificial Intelligence and Statistics, 2009.

Alexander J. Smola and Risi Kondor. Kernels and regularization orhgrdp Bernhard Sdaikopf
and Manfred K. Warmuth, editor$roceedings of the Annual Conference on Computational
Learning Theory Lecture Notes in Computer Science, pages 144-158, Heidelberg, Berma
2003. Springer-Verlag.

1241

VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification phgraTechnical Report
0808.4134arXiv, 2008. http://arxiv.org/abs/0808.4134

Hannu Toivonen, Ashwin Srinivasan, Ross D. King, Stefan Kranmm, @hristoph Helma. Sta-
tistical evaluation of the predictive toxicology challenge 2000-20®ioinformatics 19(10):
1183-1193, July 2003.

Koji Tsuda, Taishin Kin, and Kiyoshi Asai. Marginalized kernels for bgtal sequencesBioin-
formatics 18 (Suppl. 2):S268-S275, 2002.

Charles F. Van Loan. The ubiquitous Kronecker producturnal of Computational and Applied
Mathematics123(1-2):85-100, 2000.

Laura J. van't Veer, Hongyue Dai, Marc J. van de Vijver, YudongHB, Augustinus A. M. Hart,
Mao Mao, Hans L. Peterse, Karin van der Kooy, Matthew J. MartongAnkVitteveen, George J.
Schreiber, Ron M. Kerkhoven, Chris Roberts, Peter S. LinsleyeBainards, and Stephen H.
Friend. Gene expression profiling predicts clinical outcome of breastecaNature 415:530—
536, 2002.

Jean-Philippe Vert. The optimal assignment kernel is not positive definfechnical Report
0801.4061arXiv, May 2008.http://aps.arxiv.org/abs/0801.4061

S. V. N. Vishwanathan. Kernel Methods: Fast Algorithms and Real Life Applica-
tions PhD thesis, Indian Institute of Science, Bangalore, India, Novemb&?2.20
http:/fwww.stat.purdue.edu/ ~ vishy/papers/Vishwanathan02.pdf

S. V. N. Vishwanathan, Karsten Borgwardt, and Nicol N. Schraudofast computation of graph
kernels. In B. Scbikopf, J. Platt, and T. Hofmann, editor8dvances in Neural Information
Processing Systems,1@ambridge MA, 2007. MIT Press.

Patrick Warnat, Roland Eils, and Benedikt Brors. Cross-platform aisaty cancer microarray data
improves gene expression based classification of phenotgM§& Bioinformatics 6:265, Nov
2005.

Takashi Washio and Hiroshi Motoda. State of the art of graph-bastedwining.SIGKDD Explo-
rations, 5(1):59-68, 2003.

Xiang Yao, Dong Wei, Cylburn Soden Jr., Michael F. Summers, and Dpé#tkett. Structure
of the carboxy-terminal fragment of the apo-biotin carboxyl carridausit of Escherichia coli
acetyl-CoA carboxylaseBiochemistry 36:15089—-15100, 1997.

1242

http://arxiv.org/abs/0808.4134
http://arxiv.org/
http://arxiv.org/abs/0808.4134
http://aps.arxiv.org/abs/0801.4061
http://aps.arxiv.org/
http://aps.arxiv.org/abs/0801.4061
http://www.stat.purdue.edu/~vishy/papers/Vishwanathan02.pdf

	Introduction
	Paper Outline

	Preliminaries
	Linear Algebra Concepts
	Graph Concepts

	Random Walk Graph Kernels
	Direct Product Graphs
	Kernel Definition
	Special Cases

	Efficient Computation
	Sylvester Equation Methods
	Conjugate Gradient Methods
	Fixed-Point Iterations
	Spectral Decomposition Method
	Nearest Kronecker Product Approximation

	Experiments
	Unlabeled Random Graphs
	Real-World Data Sets
	The Data Sets
	Unlabeled Graphs
	Labeled Graphs

	Protein-Protein Interaction Networks
	Co-Integration of Gene Expression and PPI Data
	Composite Graph Kernel
	Data Sets
	Results

	Rational Kernels
	Semirings
	Weighted Transducers
	Weighted Automata
	The Rational Kernel for Strings
	The Rational Kernel for Weighted Automata
	Recovering Random Walk Graph Kernels

	R-convolution Kernels
	Graph Kernels as R-Convolutions
	R-Convolutions in Abstract Semirings

	Discussion and Outlook
	Extending Linear Algebra to RKHS
	Matrix Product
	Kronecker Product
	Heterogeneous Kronecker Product
	Kronecker Sum
	Hadamard Product

