
Journal of Machine Learning Research 11 (2010) 1201-1242 Submitted 5/08; Revised 4/09; Published 4/10

Graph Kernels

S.V. N. Vishwanathan VISHY@STAT.PURDUE.EDU

Departments of Statistics and Computer Science
Purdue University
250 N University Street, West Lafayette, IN 47907-2066, USA

Nicol N. Schraudolph JMLR@SCHRAUDOLPH.ORG

adaptive tools AG
Canberra ACT 2602, Australia

Risi Kondor RISI@CALTECH.EDU

Center for the Mathematics of Information
California Institute of Technology
1200 E. California Blvd., MC 305-16, Pasadena, CA 91125, USA

Karsten M. Borgwardt KARSTEN.BORGWARDT@TUEBINGEN.MPG.DE

Interdepartmental Bioinformatics Group
Max Planck Institute for Developmental Biology∗

Spemannstr. 38, 72076 Tübingen, Germany

Editor: John Lafferty

Abstract
We present a unified framework to study graph kernels, special cases of which include the random
walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004;
Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time
complexity of kernel computation between unlabeled graphswith n vertices fromO(n6) to O(n3).
We find a spectral decomposition approach even more efficientwhen computing entire kernel ma-
trices. For labeled graphs we develop conjugate gradient and fixed-point methods that takeO(dn3)
time per iteration, whered is the size of the label set. By extending the necessary linear algebra to
Reproducing Kernel Hilbert Spaces (RKHS) we obtain the sameresult ford-dimensional edge ker-
nels, andO(n4) in the infinite-dimensional case; on sparse graphs these algorithms only takeO(n2)
time per iteration in all cases. Experiments on graphs from bioinformatics and other application
domains show that these techniques can speed up computationof the kernel by an order of mag-
nitude or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when
specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to
R-convolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment
kernel ofFröhlich et al.(2006) yet provably positive semi-definite.
Keywords: linear algebra in RKHS, Sylvester equations, spectral decomposition, bioinformatics,
rational kernels, transducers, semirings, random walks

1. Introduction

Machine learning in domains such as bioinformatics (Sharan and Ideker, 2006), chemoinformatics
(Bonchev and Rouvray, 1991), drug discovery (Kubinyi, 2003), web data mining

∗. Also at the Max Planck Institute for Biological Cybernetics.

c©2010 S.V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt.

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

−→

Figure 1: Left: Structure ofE. coli protein fragment APO-BCCP87 (Yao et al., 1997), ID 1a6x
in the Protein Data Bank (Berman et al., 2000). Right: Borgwardt et al.’s (2005) graph
representation for this protein fragment. Nodes represent secondarystructure elements,
and edges encode neighborhood along the amino acid chain (solid) resp.in Euclidean 3D
space (dashed).

(Washio and Motoda, 2003), and social networks (Kumar et al., 2006) involves the study of rela-
tionships between structured objects. Graphs are natural data structures to model such structures,
with nodes representing objects and edges the relations between them. In thiscontext, one often
encounters two questions: “How similar are two nodes in a given graph?” and “How similar are
two graphs to each other?”

In protein function prediction, for instance, one might want to predict whether a given protein is
an enzyme or not. Computational approaches infer protein function by finding proteins with similar
sequence, structure, or chemical properties. A very successful recent method is to model the protein
as a graph (see Figure1), and assign similar functions to similar graphs (Borgwardt et al., 2005).
In Section5.2 we compute graph kernels to measure the similarity between proteins and enzymes
represented in this fashion.

Another application featured in Section5.2involves predicting the toxicity of chemical molecules
by comparing their three-dimensional structure. Here the molecular structure is modeled as a graph,
and the challenge is to compute the similarity between molecules of known and unknown toxicity.

Finally, consider the task of finding web pages with related content. Since documents on the
web link to each other, one can model each web page as the node of a graph, and each link as
an edge. Now the problem becomes that of computing similarities between the nodes of a graph.
Taking this one step further, detecting mirrored sets of web pages requires computing the similarity
between the graphs representing them.

Kernel methods (Scḧolkopf and Smola, 2002) offer a natural framework to study these ques-
tions. Roughly speaking, a kernelk(x,x′) is a measure of similarity between objectsx andx′. It
must satisfy two mathematical requirements: it must be symmetric, that is,k(x,x′) = k(x′,x), and
positive semi-definite (p.s.d.). Comparing nodes in a graph involves constructing a kernel between
nodes, while comparing graphs involves constructing a kernel between graphs. In both cases, the
challenge is to define a kernel that captures the semantics inherent in the graph structure and is
reasonably efficient to evaluate.

The idea of constructing kernelson graphs (i.e., between the nodes of a single graph) was
first proposed byKondor and Lafferty(2002), and extended bySmola and Kondor(2003). In con-

1202

GRAPH KERNELS

trast, in this paper we focus on kernelsbetweengraphs. The first such kernels were proposed by
Gärtner et al.(2003) and later extended byBorgwardt et al.(2005). Much at the same time, the
idea of marginalized kernels (Tsuda et al., 2002) was extended to graphs byKashima et al.(2003,
2004), then further refined byMahé et al.(2004). Another algebraic approach to graph kernels has
appeared recently (Kondor and Borgwardt, 2008). A seemingly independent line of research inves-
tigates the so-called rational kernels, which are kernels between finite stateautomata based on the
algebra of abstract semirings (Cortes et al., 2002, 2003, 2004).

The aim of this paper is twofold: on the one hand we present theoretical results showing that all
the above graph kernels are in fact closely related, on the other hand wepresent new algorithms for
efficiently computing such kernels. We begin by establishing some notation andreviewing pertinent
concepts from linear algebra and graph theory.

1.1 Paper Outline

The first part of this paper (Sections2–5) elaborates and updates a conference publication of
Vishwanathan et al.(2007) to present a unifying framework for graph kernels encompassing many
known kernels as special cases, and to discuss connections to yet others. After defining some basic
concepts in Section2, we describe the framework in Section3, prove that it leads to p.s.d. ker-
nels, and discuss the random walk and marginalized graph kernels as special cases. For ease of
exposition we will work with real matrices in the main body of the paper and relegate the RKHS
extensions to AppendixA. In Section4 we present four efficient ways to compute random walk
graph kernels, namely: 1. via reduction to a Sylvester equation, 2. with a conjugate gradient solver,
3. using fixed-point iterations, and 4. via spectral decompositions. Experiments on a variety of real
and synthetic data sets in Section5 illustrate the computational advantages of our methods, which
generally reduce the time complexity of kernel computation fromO(n6) to O(n3). The experiments
of Section5.3were previously presented at a bioinformatics symposium (Borgwardt et al., 2007).

The second part of the paper (Sections6–7) draws further connections to existing kernels on
structured objects. In Section6 we present a simple proof that rational kernels (Cortes et al., 2002,
2003, 2004) are p.s.d., and show that specializing them to graphs yields random walk graph kernels.
In Section7 we discuss the relation between R-convolution kernels (Haussler, 1999) and various
graph kernels, all of which can in fact be shown to be instances of R-convolution kernels. Extend-
ing the framework through the use of semirings does not always result in ap.s.d. kernel though;
a case in point is the optimal assignment kernel ofFröhlich et al.(2006). We establish sufficient
conditions for R-convolution kernels in semirings to be p.s.d., and provide a “mostly optimal as-
signment kernel” that is provably p.s.d. We conclude in Section8 with an outlook and discussion.

2. Preliminaries

Here we define the basic concepts and notation from linear algebra and graph theory that will be
used in the remainder of the paper.

2.1 Linear Algebra Concepts

We useei to denote theith standard basis vector (that is, a vector of all zeros with theith entry set
to one),e to denote a vector with all entries set to one,0 to denote the vector of all zeros, andI to

1203

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

denote the identity matrix. When it is clear from the context we will not mention the dimensions of
these vectors and matrices.

Definition 1 Given real matrices A∈ R
n×m and B∈ R

p×q, the Kronecker product A⊗B∈ R
np×mq

and column-stacking operatorvec(A) ∈ R
nm are defined as

A⊗B :=




A11B A12B . . . A1mB
...

...
...

...
An1B An2B . . . AnmB


 , vec(A) :=




A∗1
...

A∗m


 ,

where A∗ j denotes the jth column of A.

The Kronecker product and vec operator are linked by the well-knownproperty (e.g.,Bernstein,
2005, Proposition 7.1.9):

vec(ABC) = (C⊤⊗A)vec(B). (1)

Another well-known property of the Kronecker product which we make use of is (Bernstein, 2005,
Proposition 7.1.6):

(A⊗B)(C⊗D) = AC⊗BD. (2)

Finally, the Hadamard product of two real matricesA,B∈ R
n×m, denoted byA⊙B∈ R

n×m, is
obtained by element-wise multiplication. It interacts with the Kronecker productvia

(A⊗B)⊙ (C⊗D) = (A⊙C)⊗ (B⊙D). (3)

All the above concepts can be extended to a Reproducing Kernel HilbertSpace (RKHS) (See Ap-
pendixA for details).

2.2 Graph Concepts

A graphG consists of an ordered set ofn verticesV = {v1,v2, . . . ,vn}, and a set of directed edges
E ⊂V×V. A vertexvi is said to be a neighbor of another vertexv j if they are connected by an edge,
that is, if (vi ,v j) ∈ E; this is also denotedvi ∼ v j . We do not allow self-loops, that is,(vi ,vi) /∈ E
for any i. A walk of lengthk on G is a sequence of indicesi0, i1, . . . ik such thatvir−1 ∼ vir for all
1 ≤ r ≤ k. A graph is said to be strongly connected if any two pairs of vertices can beconnected
by a walk. In this paper we will always work with strongly connected graphs. A graph is said to be
undirected if(vi ,v j) ∈ E ⇐⇒ (v j ,vi) ∈ E.

In much of the following we will be dealing with weighted graphs, which are a slight gener-
alization of the above. In a weighted graph, each edge(vi ,v j) has an associated weightwi j > 0
signifying its “strength”. Ifvi andv j are not neighbors, thenwi j = 0. In an undirected weighted
graphwi j = w ji .

WhenG is unweighted, we define its adjacency matrix as then×n matrix Ã with Ã i j = 1 if
v j ∼ vi , and 0 otherwise. For weighted graphs,Ã i j = w ji . While some authors would call these
matrices the transpose of the adjacency matrix, for our purposes the present definitions will be more
convenient. For undirected graphsÃ is symmetric, and the two definitions coincide. The diagonal
entries ofÃ are always zero.

1204

GRAPH KERNELS

The adjacency matrix has a normalized cousin, definedA := Ã D−1, which has the property that
each of its columns sums to one, and it can therefore serve as the transition matrix for a stochastic
process. Here,D is a diagonal matrix of node degrees, that is,Dii = di = ∑ j Ã i j . A random walk on
G is a process generating sequences of verticesvi1,vi2,vi3, . . . according toP(ik+1|i1, . . . ik) = Aik+1,ik,
that is, the probability atvik of pickingvik+1 next is proportional to the weight of the edge(vik,vik+1).
The t th power ofA thus describest-length walks, that is,(At)i j is the probability of a transition
from vertexv j to vertexvi via a walk of lengtht. If p0 is an initial probability distribution over
vertices, then the probability distributionpt describing the location of our random walker at timet
is pt = At p0. The j th component ofpt denotes the probability of finishing at-length walk at vertex
v j .

A random walk need not continue indefinitely; to model this, we associate every nodevik in
the graph with a stopping probabilityqik. Our generalized random walk graph kernels then use
the overall probability of stopping aftert steps, given byq⊤pt . Like p0, the vectorq of stopping
probabilities is a place to embed prior knowledge into the kernel design. Sincept as a probability
distribution sums to one, auniformvectorq (as might be chosen in the absence of prior knowledge)
would yield the same overall stopping probability for allpt , thus leading to a kernel that is invariant
with respect to the graph structure it is meant to measure. In this case, the unnormalized adjacency
matrixÃ (which simply counts random walks instead of measuring their probability) should be used
instead.

Let X be a set of labels which includes the special labelζ. Every edge-labeled graphG is
associated with a label matrixX ∈ X

n×n in which Xi j is the label of the edge(v j ,vi) andXi j = ζ
if (v j ,vi) /∈ E. LetH be the RKHS induced by a p.s.d. kernelκ : X ×X → R, and letφ : X → H

denote the corresponding feature map, which we assume mapsζ to the zero element ofH . We use
Φ(X) to denote the feature matrix ofG (see AppendixA for details). For ease of exposition we do
not consider labels on vertices here, though our results hold for that case as well. Henceforth we
use the term labeled graph to denote an edge-labeled graph.

Two graphsG = (V,E) and G′ = (V ′,E′) are isomorphic(denoted byG ∼= G′) if there ex-
ists a bijective mappingg : V → V ′ (called the isomorphism function) such that(vi ,v j) ∈ E iff
(g(vi),g(v j)) ∈ E′.

3. Random Walk Graph Kernels

Our generalized random walk graph kernels are based on a simple idea: given a pair of graphs,
perform random walks on both, and count the number of matching walks. We show that this simple
concept underlies both random walk and marginalized graph kernels. Inorder to do this, we first
need to introduce direct product graphs.

3.1 Direct Product Graphs

Given two graphsG(V,E) andG′(V ′,E′), their direct productG× is a graph with vertex set

V× = {(vi ,v
′
r) : vi ∈V, v′r ∈V ′}, (4)

and edge set

E× = {((vi ,v
′
r), (v j ,v

′
s)) : (vi ,v j) ∈ E ∧ (v′r ,v

′
s) ∈ E′}. (5)

1205

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Figure 2: Two graphs (top left & right) and their direct product (bottom).Each node of the direct
product graph is labeled with a pair of nodes (4); an edge exists in the direct product if
and only if the corresponding nodes are adjacent in both original graphs (5). For instance,
nodes 11′ and 32′ are adjacent because there is an edge between nodes 1 and 3 in the first,
and 1′ and 2′ in the second graph.

In other words,G× is a graph over pairs of vertices fromG andG′, and two vertices inG× are
neighbors if and only if the corresponding vertices inG andG′ are both neighbors; see Figure2 for
an illustration. IfÃ and Ã

′
are the respective adjacency matrices ofG andG′, then the adjacency

matrix ofG× is Ã× = Ã⊗ Ã
′
. Similarly, A× = A⊗A′.

Performing a random walk on the direct product graph is equivalent to performing a simulta-
neous random walk onG andG′ (Imrich and Klav̌zar, 2000). If p andp′ denote initial probability
distributions over the vertices ofG andG′, then the corresponding initial probability distribution on
the direct product graph isp× := p⊗ p′. Likewise, ifq andq′ are stopping probabilities (that is, the
probability that a random walk ends at a given vertex), then the stopping probability on the direct
product graph isq× := q⊗q′.

Let |V| =: n and |V ′| =: n′. If G andG′ are edge-labeled, we can associate a weight matrix
W× ∈ R

nn′×nn′ with G× using our extension of the Kronecker product (Definition1) into RKHS
(Definition11 in AppendixA):

W× = Φ(X)⊗Φ(X′). (6)

1206

GRAPH KERNELS

As a consequence of the definition ofΦ(X) and Φ(X′), the entries ofW× are non-zero only if
the corresponding edge exists in the direct product graph. If we simply let H = R, Φ(X) = Ã, and

Φ(X′) = Ã
′
then (6) reduces tõA×, the adjacency matrix of the direct product graph. Normalization

can be incorporated by lettingφ(Xi j) = 1/di if (v j ,vi) ∈ E, and zero otherwise.1 ThenΦ(X) = A
andΦ(X′) = A′, and consequentlyW× = A×.

If the edges of our graphs take on labels from a finite set, without loss of generality{1,2, . . . ,d},
we can letH be R

d endowed with the usual inner product. For each edge(v j ,vi) ∈ E we set
φ(Xi j) = el /di if the edge(v j ,vi) is labeledl ; all other entries ofΦ(X) are0. Thus the weight
matrix (6) has a non-zero entry iff an edge exists in the direct product graph and the corresponding
edges inG andG′ have the same label. LetlA denote the normalized adjacency matrix of the graph
filtered by the labell , that is,lAi j = Ai j if Xi j = l , and zero otherwise. Some simple algebra (omitted
for the sake of brevity) shows that the weight matrix of the direct productgraph can then be written
as

W× =
d

∑
l=1

lA⊗ lA′. (7)

In Section4 we will develop efficient methods to compute kernels defined using the weightmatrix of
the direct product graph. The applicability and time complexity of a particular method will depend
on whether the graphs are unlabeled though possibly edge-weighted (W× = A×), have discrete edge
labels (7), or—in the most general case—employ an arbitrary edge kernel (6); see Table1 for a
summary.

3.2 Kernel Definition

As stated above, performing a random walk on the direct product graphG× is equivalent to per-
forming a simultaneous random walk on the graphsG andG′ (Imrich and Klav̌zar, 2000). There-
fore, the((i−1)n′ + r, (j−1)n′ +s)th entry ofAk

× represents the probability of simultaneous length
k random walks onG (starting from vertexv j and ending in vertexvi) andG′ (starting from ver-
tex v′s and ending in vertexv′r). The entries ofW× (6) represent similarity between edges: The
((i−1)n′ + r, (j−1)n′ + s) entry of Wk

× represents the similarity between simultaneous lengthk
random walks onG andG′, measured via the kernel functionκ. Given initial and stopping proba-
bility distributionsp× andq× one can computeq⊤×Wk

×p×, which is the expected similarity between
simultaneous lengthk random walks onG andG′.

To define a kernel which computes the similarity betweenG andG′, one natural idea is to simply
sum upq⊤×Wk

×p× for all values ofk. However, this sum might not converge, leaving the kernel value
undefined. To overcome this problem, we introduce appropriately chosennon-negative coefficients
µ(k), and define the kernel betweenG andG′ as

k(G,G′) :=
∞

∑
k=0

µ(k)q⊤×Wk
×p×. (8)

This definition is very flexible and offers the kernel designer many parameters to adjust in an
application-specific manner: Appropriately choosingµ(k) allows one to (de-)emphasize walks of
different lengths; if initial and stopping probabilities are known for a particular application, then

1. The technical problem that nowφ(Xi j) depends ondi can be addressed by makingdi a feature of all edges(v j ,vi)∈E.

1207

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

this knowledge can be incorporated into the kernel; and finally, appropriate kernels or similarity
measures between edges can be incorporated via the weight matrixW×. Despite its flexibility, this
kernel is guaranteed to be p.s.d. and—as we will see in Section4—can be computed efficiently by
exploiting the special structure ofW×. To show that (8) is a valid p.s.d. kernel we need the following
technical lemma:

Lemma 2 ∀ k∈ N : Wk
×p× = vec[Φ(X′)kp′ (Φ(X)kp)⊤].

Proof By induction overk. Base case:k = 0. Using (1) we find

W0
×p× = p× = (p⊗ p′)vec(1) = vec(p′1p⊤) = vec[Φ(X′)0p′ (Φ(X)0p)⊤]. (9)

Induction fromk to k+1: Using the induction assumptionWk
×p× = vec[Φ(X′)kp′ (Φ(X)kp)⊤] and

Lemma12we obtain

Wk+1
× p× = W×Wk

×p× = (Φ(X)⊗Φ(X′))vec[Φ(X′)kp′ (Φ(X)kp)⊤]

= vec[Φ(X′)Φ(X′)kp′ (Φ(X)kp)⊤Φ(X)⊤] (10)

= vec[Φ(X′)k+1p′ (Φ(X)k+1p)⊤].

Base case (9) and induction (10) together imply Lemma2 ∀ k∈ N0.

Theorem 3 If the coefficients µ(k) are such that(8) converges, then(8) defines a valid p.s.d. kernel.

Proof Using Lemmas12and2 we can write

q⊤×Wk
×p× = (q⊗q′)⊤ vec[Φ(X′)kp′ (Φ(X)kp)⊤]

= vec[q′⊤Φ(X′)kp′ (Φ(X)kp)⊤q]

= (q⊤Φ(X)kp)⊤︸ ︷︷ ︸
ρk(G)⊤

(q′⊤Φ(X′)kp′)︸ ︷︷ ︸
ρk(G′)

. (11)

Each individual term of (11) equalsρk(G)⊤ρk(G′) for some functionρk, and is therefore a valid
p.s.d. kernel. The theorem follows because the class of p.s.d. kernels is closed under non-negative
linear combinations and pointwise limits (Berg et al., 1984).

3.3 Special Cases

Kashima et al.(2004) define a kernel between labeled graphs via walks and their label sequences.
Recall that a walk of lengtht on G is a sequence of indicesi1, i2, . . . it+1 such thatvik ∼ vik+1 for all
1≤ k ≤ t. In our setting (where we do not consider node labels), the label sequenceh = h1, . . . ,ht

associated with a walk is simply the sequence of edge labels encountered during the walk. LetP
denote a transition probability matrix, wherePi j denotes the probability of transition from nodevi

to nodev j . For instance,P might be the normalized adjacency matrix ofG. Furthermore, letp

1208

GRAPH KERNELS

andq denote starting and stopping probabilities. Then one can compute the probability of a walk
i1, i2, . . . it+1 and hence the label sequenceh associated with it as

p(h|G) := qit+1

t

∏
j=1

Pi j ,i j+1 pi1. (12)

Now let φ̂ denote a feature map on edge labels, and define a kernel between label sequences of
lengtht by

κ(h,h′) :=
t

∏
i=1

κ(hi ,h
′
i) =

t

∏
i=1

〈
φ̂(hi), φ̂(h′i)

〉
(13)

if h andh′ have the same lengtht, and zero otherwise. Using (12) and (13) we can define a kernel
between graphs via marginalization:

k(G,G′) := ∑
h

∑
h′

κ(h,h′) p(h|G) p(h|G′). (14)

Kashima et al.(2004, Eq. 1.19) show that (14) can be written as

k(G,G′) = q⊤×(I −T×)−1p×, (15)

whereT× = [vec(P)vec(P′)⊤]⊙ [Φ̂(X)⊗Φ̂(X′)]. (As usual,X andX′ denote the edge label matrices
of G andG′, respectively, and̂Φ the corresponding feature matrices.)

Although this kernel is differently motivated, it can be obtained as a specialcase of our frame-
work. Towards this end, assumeµ(k) = λk for someλ > 0. We can then write

k(G,G′) =
∞

∑
k=0

λkq⊤×Wk
×p× = q⊤×(I −λW×)−1p×. (16)

To recover the marginalized graph kernels letλ = 1, and defineΦ(Xi j) = Pi j Φ̂(Xi j), in which case
W× = T×, thus recovering (15).

Given a pair of graphs,Gärtner et al.(2003) also perform random walks on both, but thencount
the number of matching walks. Their kernel is defined as (Gärtner et al., 2003, Definition 6):

k(G,G′) =
n

∑
i=1

n′

∑
j=1

∞

∑
k=0

λk

[
Ã

k
×

]
i j

. (17)

To obtain (17) in our framework, setµ(k) := λk, assume uniform distributions for the starting and
stopping probabilities over the vertices ofG andG′ (i.e., pi = qi = 1/n andp′i = q′i = 1/n′), and let

Φ(X) := Ã andΦ(X′) = Ã
′
. Consequently,p× = q× = e/(nn′), andW× = Ã×, the unnormalized

adjacency matrix of the direct product graph. This allows us to rewrite (8) to obtain

k(G,G′) =
∞

∑
k=0

µ(k)q⊤×Wk
×p× =

1
n2n′2

n

∑
i=1

n′

∑
j=1

∞

∑
k=0

λk

[
Ã

k
×

]
i j

, (18)

which recovers (17) to within a constant factor.Gärtner et al.(2003) also extend their kernels to
graphs with labels from a finite set by replacingÃ× in (17) with a sumW̃× of label-filtered (but

1209

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

sparsity dense sparse
edge labels none/scalar finite set finite-dim. ∞-dim.

any
Method (Section) W× = A⊗A′ (7) kernel (6)

Sylvester Equation (4.1) m2n3 unknown — —
Conjugate Gradient (4.2) m2rn3 m2rdn3 m2rn4 m2rn2

Fixed-Point Iterations (4.3) m2kn3 m2kdn3 m2kn4 m2kn2

Spectral Decomposition (4.4) (m+n)mn2 m2n6 —

Nearest Kron. Product (4.5) 1 m2k′dn2 m2k′n4 m2k′n2

Table 1: Worst-case time complexity (inO(·) notation) of our methods for anm×m graph kernel
matrix, wheren = size of the graphs (number of nodes),d = size of label setresp.dimen-
sionality of feature map,r = effective rank ofW×, k = number of fixed-point iterations
(31), andk′ = number of power iterations (37).

unnormalized) adjacency matrices, analogous to our (7). The reduction to our framework extends
to this setting in a straightforward manner.

Gärtner et al.(2003) discuss two cases of special interest: First, theirgeometrickernel employs
a fixed decay factorλ to down-weight the contribution of long walks to the kernel, settingλk := λk as
in our (16). The choice ofλ is critical here: It must be small enough for the sum in (17) to converge,
depending on the spectrum ofW× (Vishwanathan, 2002, Chapter 6). Second, theirexponential
kernel is defined as

k(G,G′) =
n

∑
i=1

n′

∑
j=1

[eλÃ×]i j = e⊤eλÃ×e, (19)

using the matrix exponential. This is obtained in our framework by settingλk := λk/k!, so that the

right-most sum in (18) becomes the series expansion ofeλÃ× .
The kernels ofGärtner et al.(2003) differ from our definition (8) in that they do not explicitly

model starting or stopping probabilities, and employ unnormalized adjacency matrices instead of
our more general weight matrix (6) which allows for normalization and arbitrary kernels on edges.

4. Efficient Computation

Computing a geometric random walk graph kernel withµ(k) = λk amounts to inverting(I −λW×),
an n2×n2 matrix if G andG′ haven vertices each. Since the complexity of inverting a matrix is
essentially cubic in its dimensions, direct computation of (16) would requireO(n6) time. Below
we develop methods based on Sylvester equations (Section4.1), conjugate gradients (Section4.2),
fixed-point iterations (Section4.3), and spectral decompositions (Section4.4) that greatly accelerate
this computation. Section4.5 introduces an approximation that can further speed up the kernel
computation for labeled graphs.

Table 1 summarizes our results, listing the worst-case time complexity of our methods as a
function of graph density and labeling. Exact computation of the full kernel matrix betweenm
dense, unlabeled (but possibly edge-weighted) graphs ofnnodes each (leftmost column) is generally
quadratic in the number of graphs and cubic in their size; for the iterative methods this must be
multiplied by the number of iterations, which is given by the effective rankr of the weight matrixW×

1210

GRAPH KERNELS

for conjugate gradient, and by (31) for fixed-point iterations. The spectral decomposition approach
(Section4.4) is exceptional here in that it can be linear inm resp.quadratic inn (but not both) if
precomputation of themspectral graph decompositions dominates (resp.is dominated by) the actual
kernel computations.

The cost of the iterative algorithms increases by another factor ofd for graphs with edge labels
from a finite set ofd symbols or an edge kernel withd-dimensional feature map; for an arbitrary
edge kernel (whose feature map may be infinite-dimensional) this factor becomesn. On labeled
graphs our spectral decomposition approach offers no savings, andthe Sylvester equation method
applies only if the labels come from a finite set of symbols, and then with unknown time complexity.
A nearest Kronecker product approximation can be used, however,to approximate the direct product
of labeled graphs with a weight matrix that can be handled by any of our methods for unlabeled
graphs. This approximation requiresk′ (37) iterations, each costingO(dn2) time when the labels
come from a finite set ofd symbols, andO(n4) in general.

Finally, when the graphs are sparse (i.e., only haveO(n) edges each; rightmost column in Ta-
ble 1) our iterative methods (conjugate gradient, fixed-point, and nearest Kronecker product) take
only O(n2) time per iteration, regardless of how the graphs are labeled. We cannot authoritatively
state the time complexity for sparse graphs of solving Sylvester equations or performing spectral
decompositions.Spielman and Teng(2008) have shown that graphs can be sparsified (i.e., approxi-
mated by sparse graphs) in nearly linear time, although the constants involvedare quite large.

4.1 Sylvester Equation Methods

Consider the following equation, commonly known as the Sylvester or Lyapunov equation:

M = SMT+M0. (20)

Here,S,T,M0 ∈ R
n×n are given and we need to solve forM ∈ R

n×n. These equations can be readily
solved inO(n3) time with freely available code (Gardiner et al., 1992), such as Matlab’sdlyap
method. Solving the generalized Sylvester equation

M =
d

∑
i=1

SiMTi +M0 (21)

involves computing generalized simultaneous Schur factorizations ofd symmetric matrices
(Lathauwer et al., 2004). Although technically involved, (21) can also be solved efficiently, al-
beit at a higher computational cost. The computational complexity of this generalized factorization
is at present unknown.

We now show that for graphs with discrete edge labels, whose weight matrixW× can be written
as (7), the problem of computing the graph kernel (16) can be reduced to solving the following
generalized Sylvester equation:

M =
d

∑
i=1

λ iA′M iA⊤ +M0, (22)

where vec(M0) = p×. We begin byflattening(22):

vec(M) = λ
d

∑
i=1

vec(iA′M iA⊤)+ p×. (23)

1211

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Using Lemma12 (which extends (1) into an RKHS) we can rewrite (23) as

(I −λ
d

∑
i=1

iA⊗ iA′)vec(M) = p×, (24)

use (7), and solve (24) for vec(M):

vec(M) = (I −λW×)−1p×. (25)

Multiplying both sides of (25) by q⊤× yields

q⊤×vec(M) = q⊤×(I −λW×)−1p×. (26)

The right-hand side of (26) is the graph kernel (16). Given the solutionM of the Sylvester
equation (22), the graph kernel can be obtained asq⊤×vec(M) in O(n2) time. The same argument
applies for unlabeled graphs by simply settingd = 1, which turns (22) into a simple Sylvester
equation. Since solving that only takesO(n3) time, computing the random walk graph kernel in this
fashion is much faster than theO(n6) time required by the direct approach.

One drawback of this strategy is that Sylvester equation solvers are quite sophisticated and
typically available only as black-box library routines, which limits their applicability. Matlab’s
dlyap solver, for instance, does not exploit sparsity, and only handles the casesd = 1 andd = 2. A
solver for the simple Sylvester equation (20) can still be used to efficiently compute kernels between
labeled graphs though by employing the nearest Kronecker product approximation (Section4.5).

4.2 Conjugate Gradient Methods

Given a matrixM and a vectorb, conjugate gradient (CG) methods solve the system of equations
Mx = b efficiently (Nocedal and Wright, 1999). While they are designed for symmetric p.s.d. ma-
trices, CG solvers can also be used to solve other linear systems efficiently.They are particularly
efficient if the matrix is rank deficient, or has a smalleffective rank, that is, number of distinct
eigenvalues. Furthermore, if computing matrix-vector products is cheap—becauseM is sparse, for
instance—the CG solver can be sped up significantly (Nocedal and Wright, 1999). Specifically, if
computingMv for an arbitrary vectorv requiresO(m) time, and the effective rank ofM is r, then a
CG solver takesO(r) iterations, and hence onlyO(rm) time, to solveMx = b.

The graph kernel (16) can be computed by a two-step procedure: First we solve the linear system

(I −λW×)x = p×, (27)

for x, then we computeq⊤×x. We now focus on efficient ways to solve (27) with a CG solver. Recall
that if G andG′ containn vertices each thenW× is ann2×n2 matrix. Naively, multiplyingW by
some vectory inside the CG algorithm requiresO(n4) operations. However, by our extension of the
vec-ABC formula (1) into RKHS (Lemma12), introducing the matrixY ∈ R

n×n with y = vec(Y),
and recalling thatW× = Φ(X)⊗Φ(X′), by Lemma12we can write

W×y = (Φ(X)⊗Φ(X′))vec(Y) = vec(Φ(X′)YΦ(X)⊤). (28)

If φ(·) ∈ R
d then the above matrix-vector product can be computed inO(dn3) time. If Φ(X) and

Φ(X′) are sparse, thenΦ(X′)YΦ(X)⊤ can be computed yet more efficiently: If there areO(n) non-ζ
entries inΦ(X) andΦ(X′), then computing (28) takes onlyO(n2) time.

1212

GRAPH KERNELS

4.3 Fixed-Point Iterations

Fixed-point methods begin by rewriting (27) as

x = p× +λW×x. (29)

Now, solving for x is equivalent to finding a fixed point of (29) taken as an iteration
(Nocedal and Wright, 1999). Letting xt denote the value ofx at iterationt, we setx0 := p×, then
compute

xt+1 = p× +λW×xt (30)

repeatedly until‖xt+1 − xt‖ < ε, where‖ · ‖ denotes the Euclidean norm andε some pre-defined
tolerance. This is guaranteed to converge if all eigenvalues ofλW× lie inside the unit disk; this can
be ensured by settingλ < |ξ1|

−1, whereξ1 is the largest-magnitude eigenvalue ofW×. Assuming
that each iteration of (30) contractsx to the fixpoint by a factor ofλξ1, we converge to withinε of
the fixpoint ink iterations, where

k = O

(
lnε

lnλ+ ln |ξ1|

)
. (31)

The above is closely related to the power method used to compute the largest eigenvalue of
a matrix (Golub and Van Loan, 1996); efficient preconditioners can also be used to speed up con-
vergence (Golub and Van Loan, 1996). Since each iteration of (30) involves computation of the
matrix-vector productW×xt , all speed-ups for computing the matrix-vector product discussed in
Section4.2 are applicable here. In particular, we exploit the fact thatW× is a sum of Kronecker
products to reduce the worst-case time complexity toO(dn3) per iteration in our experiments, in
contrast toKashima et al.(2004) who computed the matrix-vector product explicitly.

4.4 Spectral Decomposition Method

In the previous two sections we have introduced methods that are efficientfor both unlabeled and
labeled graphs, but specifically computed the geometric kernel (16), that is, assumed thatµ(k) = λk.
We now turn to a method based on spectral decompositions that can compute thegeneral random
walk kernel (8) for any convergent choice ofµ(k), but is only efficient for unlabeled graphs. (In
fact, it will turn out to be ourmostefficient method for computing an entire kernel matrix between
unlabeled graphs.)

LetW× = P×D×P−1
× denote the spectral decomposition ofW×, that is, the columns ofP× are its

eigenvectors, andD× is a diagonal matrix of corresponding eigenvalues. The random walk graph
kernel (8) can then be written as

k(G,G′) :=
∞

∑
k=0

µ(k)q⊤×(P×D×P−1
×)kp× = q⊤×P×

(
∞

∑
k=0

µ(k)Dk
×

)
P−1
× p×. (32)

This simplifies matters in that (32) only takes weighted powers of a diagonal matrix, which decouple
into scalar powers of its entries. An implementable graph kernel can then be obtained by employing
a power series that is known to converge to a given nonlinear function. The geometric kernel (16),
for instance, uses the fact that∑∞

k=0xk = 1
1−x; settingµ(k) := λk in (32) we thus obtain

k(G,G′) := q⊤×P×(I −λD×)−1P−1
× p×. (33)

1213

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

The crucial difference to (16) is that the inverse in (33) is of a diagonal matrix, hence trivial to
compute: just take the reciprocal of each entry. To give another example, settingµ(k) := λk/k! in
(32) yields the exponential kernel (19) by way of spectral decomposition:

k(G,G′) := q⊤×P×eλD×P−1
× p×, (34)

becauseex = ∑∞
k=0xk/k!. Again, unlike in (19) the matrix exponential here is trivial to compute

becauseλD× is diagonal: simply exponentiate each entry.
Thus by diagonalizing the nonlinearity central to a random walk graph kernel, spectral decom-

position can greatly expedite its computation. As described above, however, it is computationally
unattractive: Computing the spectral decomposition of a dense matrix takes time cubic in its size
(Golub and Van Loan, 1996); sinceW× is ann2×n2 matrix this would result inO(n6) time com-
plexity per kernel computation.2 By leveraging the properties of the Kronecker product, however,
we can obtain a far better result for unlabeled (though possibly edge-weighted) graphs:

Theorem 4 The kernel matrix for any random walk kernel(8) between m unlabeled, possibly edge-
weighted graphs with n nodes can be computed in O((mp+n)mn2) time via spectral decompositions,
where computing the corresponding scalar power series takes O(p) time.

Proof Because the graphs are unlabeled, we haveW× := A× = Ai ⊗A j , whereAi andA j (i, j ∈
{1,2, . . . ,m}) are the adjacency matrices (normalized or not) of individual graphs. Begin by pre-
computing the spectral decomposition of each graph:(∀i)Ai = PiDiP

−1
i . Using Propositions 7.1.6,

7.1.7 ofBernstein(2005) we have

Ai ⊗A j = (PiDiP
−1
i)⊗ (PjD jP

−1
j) = (Pi ⊗Pj)(Di ⊗D j)(Pi ⊗Pj)

−1. (35)

Proposition 7.1.10 ofBernstein(2005) tells us that in factDi ⊗D j = D×, which implies that also
Pi ⊗Pj = P× and that indeed the spectral decomposition of a Kronecker product decomposes into
those of its constituents, as seen in (35). We can therefore use Propositions 7.1.6, 7.1.7 ofBernstein
(2005) again to rewrite (32) as

k(Gi ,G j) = (q⊤i Pi ⊗q⊤j Pj)

(
∞

∑
k=0

µ(k)(Di ⊗D j)
k

)
(P−1

i pi ⊗P−1
j p j). (36)

Computing the central power series here takesO(n2p) time just as in (32), but the cost of calculating
the two flanking factors has been reduced fromO(n4) to O(n2) in (36). The entirem×m kernel
matrix can thus be obtained inO(m2n2p) time, plus theO(mn3) time it takes to precompute spectral
decompositions of them individual adjacency matrices.

Note that in practice we will always pick a power series with known limit that is trivial to evaluate
(i.e., p = 1), as exemplified by the geometric (33) and exponential (34) kernels. Theorem4 then
gives us a very efficient method to compute entire kernel matrices, albeit only between unlabeled
graphs. (It is tempting to try to extend the spectral approach for the exponential kernel to labeled
graphs, but this runs into a key technical difficulty: a sum of (label-filtered adjacency) matrices in
the exponent cannot be separated unless those matrices commute, that is, generallyeA+B 6= eAeB

unlessAB= BA.)

2. ThusGärtner et al.(2003) give a time complexity cubic in theO(n2) size of the product graph.

1214

GRAPH KERNELS

4.5 Nearest Kronecker Product Approximation

As we have seen above, some of our fast methods for computing random walk graph kernels may
become computationally expensive, or not even be available, for labeled graphs, in particular when
the numberd of distinct labels is large or a general edge kernel is employed. In such cases we can
find thenearest Kronecker productto W×, that is, compute matricesSandT such thatW× ≈ S⊗T,
then use any of our methods onS⊗T as if it were the adjacency matrix of a direct product of
unlabeledgraphs.

Finding the nearest Kronecker product approximating a matrix such asW× is a well-studied
problem in numerical linear algebra, and efficient algorithms which can exploit the sparsity ofW×

are available (Pitsianis, 1992; Van Loan, 2000). Formally, these methods minimize the Frobenius
norm‖W×−S⊗T‖F by computing the largest singular value ofŴ×, a permuted version ofW×. We
employ the power method3 for this purpose, each iteration of which entails computing the matrix-
vector productŴ×vec(T ′), whereT ′ ∈ R

n×n is the current approximation ofT. The result of the
matrix-vector product is then reshaped into ann×n matrix to formT ′ for the next iteration (Pitsianis,
1992). It is easy to see that computinĝW× vec(T ′) requiresO(n4) time.

If W× can be written as a sum ofd Kronecker products (7), then so canŴ× (Pitsianis, 1992;
Van Loan, 2000), and the cost per iteration hence drops toO(dn2). Furthermore, if the two graphs
are sparse withO(n) edges each, thenW× will haveO(n2) non-zero entries, and each iteration only
takesO(n2) time. The numberk′ of iterations required is

k′ = O

(
lnn

ln |ξ1|− ln |ξ2|

)
, (37)

whereξ1 andξ2 are the eigenvalues ofW× with largestresp.second-largest magnitude.
As described above, the nearest Kronecker product approximation iscalculated separately for

each entry of anm×m kernel matrix. This causes two problems: First, the spectral decomposition
method will now takeO(m2n3) time, as it is no longer possible to precompute them graph spec-
tra. Second, like the optimal assignment kernel (Section7.2) the resulting kernel matrix may have
negative eigenvalues, and hence fail to be p.s.d. In future work, it may be possible to address these
shortcomings by computing asimultaneousnearest Kronecker product approximation for the entire
kernel matrix. For now, we verified empirically on the MUTAG and PTC data sets (cf. Section5.2)
that the most negative eigenvalue is relatively small: its magnitude was 4.4%resp.0.1% ofξ2. We
also found the nearest Kronecker product to provide a better approximation than simply ignoring the
graph labels: the angle between vec(W×) and its unlabeled variant was 2.2resp.4.7 times greater
than that between vec(W×) and vec(S⊗T).

5. Experiments

Numerous studies have applied random walk graph kernels to problems such as protein function
prediction (Borgwardt et al., 2005) and chemoinformatics (Kashima et al., 2004). In our experi-
ments we therefore focus on the runtime of computing the kernels, rather thantheir utility in any
given application. We present three sets of experiments: First, we study the scaling behaviour of our
algorithms on unlabeled random graphs. Second, we assess the practical impact of our algorithmic
improvement on four real-world data sets whose size mandates fast kernel computation. Third, we

3. Lanczos iterations are typically faster but more difficult to handle numerically.

1215

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Figure 3: Time to compute a 10×10 kernel matrix on random graphs withn nodes and 3n edges as
a function of the graph sizen. Left: The Sylvester equation (Sylv.), conjugate gradient
(CG), fixed-point iteration (FP), and spectral decomposition (spec.) approaches, com-
pared to the dense and sparse direct method. Thin straight lines indicateO(n6) (black
dots)resp. O(n3) (red dashes) scaling. Right:Kashima et al.’s (2004) fixed-point itera-
tion (original) compared to our version, which exploits Lemma12 (vec-trick).

devise novel methods for protein-protein interaction (PPI) network comparison using graph kernels.
The algorithmic challenge here is to efficiently compute kernels on large sparse graphs.

The baseline for comparison in all our experiments is the direct approach of Gärtner et al.
(2003), implemented via a sparse LU factorization; this already runs orders of magnitude faster
on our data sets than a dense (i.e., non-sparse) implementation. Our code was written in Matlab
Release 2008a, and all experiments were run under Mac OS X 10.5.5 on anApple Mac Pro with a
3.0 GHz Intel 8-Core processor and 16 GB of main memory. We employed Lemma12 to speed up
matrix-vector multiplication for both CG and fixed-point methods (cf. Section4.2), and used the
functiondlyap from Matlab’s control toolbox to solve the Sylvester equation. By default, we used a
value ofλ = 10−4, and set the convergence tolerance for both CG solver and fixed-point iteration to
10−6. For the real-world data sets, the value ofλ was chosen to ensure that the random walk graph
kernel converges. Since our methods are exact and produce the samekernel values (to numerical
precision), we only report the CPU time of each algorithm.

5.1 Unlabeled Random Graphs

The aim here is to study the scaling behaviour of our algorithms as a function of graph size and
sparsity. We generated several sets of unlabeled random graphs. For the first set we began with
an empty graph ofn = 2k nodes, wherek = 2,3, . . . ,10, randomly added 3n edges, then checked
the graph’s connectivity. For eachk we repeated this process until we had collected 10 strongly
connected random graphs.

The time required to compute the 10×10 kernel matrix between these graphs for each value of
n is shown in Figure3 (left). We see that the direct approach scales asymptotically asO(n6) in
both the dense and the sparse implementation. For a graph of 64 nodes the direct approach already
takes over half an hour (sparse)resp.3 hours (dense) of CPU time. Our Sylvester equation (Sylv.),

1216

GRAPH KERNELS

Figure 4: Time to compute a 10×10 kernel matrix on random graphs as a function of their fill factor.
Left: The dense and sparse direct method on 32-node graphs, compared to our Sylvester
equation (Sylv.), conjugate gradient (CG), fixed point iteration (FP), and spectral decom-
position (spec.) approaches. Right: Our approaches on larger graphs with 256 nodes,
where the direct method is infeasible.

conjugate gradient (CG) and fixed-point iteration (FP) methods, by contrast, all scale asO(n3), and
can thus be applied to far larger graphs. Our spectral decomposition approach (spec.) is the fastest
method here; it too scales asO(n3) asn asymptotically dominates over the fixed kernel matrix size
m= 10.

We also examined the impact of Lemma12on enhancing the runtime performance of the fixed-
point iteration approach as originally proposed byKashima et al.(2004). For this experiment, we
again computed the 10×10 kernel matrix on the above random graphs, once using the original
fixed-point iteration, and once using fixed-point iteration enhanced by Lemma12. As Figure3
(right) shows, our approach consistently outperforms the original version, sometimes by over an
order of magnitude.

For the next set of experiments we fixed the graph size at 32 nodes (the largest size that the
direct method could handle comfortably), and randomly added edges until the fill factor (i.e., the
number of non-zero entries in the adjacency matrix) reachedx%, wherex = 5,10,20,30, . . . ,100.
For eachx, we generated 10 such graphs and computed the 10×10 kernel matrix between them.
Figure4 (left) shows that as expected, the sparse direct method is faster than its dense counterpart
for small fill factors but slower for larger ones. Both however are consistently outperformed by our
four methods, which are up to three orders of magnitude faster, with fixed-point iterations (FP) and
spectral decompositions (spec.) the most efficient.

To better understand how our algorithms take advantage of sparsity, we generated a set of larger
random graphs (with 256 nodes) by the same procedure as before, but with a geometric progression
of fill factors: x = 0.1,0.2,0.5,1,2,5,10,20,50,100. The direct methods are infeasible here. The
CPU times taken by our algorithms to compute a 10×10 kernel matrix is shown in Figure4 (right).
Both conjugate gradient and fixed point iteration methods have runtimes roughly proportional to
the fill factor. The runtime of the Sylvester equation solver, by contrast, is largely independent of
the fill factor because our black-boxdlyap solver does not aggressively exploit sparsity in the adja-

1217

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

cency matrices. The same holds for our spectral decomposition approach, which however exhibits
impressive performance here: although it does not exploit sparsity at all, it is the fastest method
by far on all but the sparsest (≤ 2% filled) graphs. Clearly, well-designedsparseimplementations
of Sylvester equation solvers, and in particular spectral decomposition, could facilitate substantial
further gains in efficiency here.

5.2 Real-World Data Sets

Our next set of experiments used four real-world data sets: Two sets ofmolecular compounds
(MUTAG and PTC), and two data sets describing protein tertiary structure (Protein and Enzyme).
Graph kernels provide useful measures of similarity for all of these.

5.2.1 THE DATA SETS

We now briefly describe each data set, and discuss how graph kernels are applicable.

Chemical Molecules.Toxicity of chemical molecules can be predicted to some degree by compar-
ing their three-dimensional structure. We employed graph kernels to measure similarity between
molecules from the MUTAG and PTC data sets (Toivonen et al., 2003). The average number of
nodes per graph in these data sets is 17.72resp.26.70; the average number of edges is 38.76resp.
52.06.

Protein Graphs.A standard approach to protein function prediction involves classifying proteins
into enzymes and non-enzymes, then further assigning enzymes to one of the six top-level classes
of the Enzyme Commission (EC) hierarchy. Towards this end,Borgwardt et al.(2005) modeled a
data set of 1128 proteins as graphs in which vertices represent secondary structure elements, and
edges represent neighborhood within the 3-D structure or along the aminoacid chain, as illustrated
in Figure1.

Comparing these graphs via a modified random walk graph kernel and classifying them with a
Support Vector Machine (SVM) led to function prediction accuracies competitive with state-of-the-
art approaches (Borgwardt et al., 2005). We usedBorgwardt et al.’s (2005) data to test the efficacy
of our methods on a large data set. The average number of nodes and edges per graph in this data
is 38.57resp.143.75. We used a single label on the edges, and the delta kernel to definesimilarity
between edges.

Enzyme Graphs.We repeated the above experiment on an enzyme graph data set, also due to
Borgwardt et al.(2005). This data set contains 600 graphs, with 32.63 nodes and 124.27 edgeson
average. Graphs in this data set represent enzymes from the BRENDA enzyme database
(Schomburg et al., 2004). The biological challenge on this data is to correctly assign the enzymes
to one of the EC top-level classes.

5.2.2 UNLABELED GRAPHS

For this experiment, we computed kernels taking into account only the topologyof the graph, that
is, we did not consider node or edge labels. Table2 lists the CPU time required to compute the full
kernel matrix for each data set, as well as—for comparison purposes—a100×100 submatrix. The
latter is also shown graphically in Figure5 (left).

1218

GRAPH KERNELS

data set MUTAG PTC Enzyme Protein
nodes/graph 17.7 26.7 32.6 38.6
edges/node 2.2 1.9 3.8 3.7

#graphs 100 230 100 417 100 600 100 1128

Sparse 31” 1’45” 45” 7’23” 1’52” 1h21’ 23’23” 2.1d*
Sylvester 10” 54” 28” 7’33” 31” 23’28” 5’25” 11h29’

Conj. Grad. 23” 1’29” 26” 4’29” 14” 10’00” 45” 39’39”
Fixed-Point 8” 43” 15” 2’38” 5” 5’44” 43” 22’09”

Spectral 5” 27” 7” 1’54” 7” 4’32” 27” 23’52”
∗extrapolated number of days; run did not finish in time available.

Table 2: Time to compute kernel matrix for unlabeled graphs from various data sets.

On these unlabeled graphs, conjugate gradient, fixed-point iterations, and spectral
decompositions—sped up via Lemma12—are consistently faster than the sparse direct method.
The Sylvester equation approach is very competitive on smaller graphs (outperforming CG on MU-
TAG) but slows down with increasing number of nodes per graph. Even so, it still outperforms the
sparse direct method. Overall, spectral decomposition is the most efficientapproach, followed by
fixed-point iterations.

5.2.3 LABELED GRAPHS

For this experiment, we compared graphs with edge labels. Note that node labels can be dealt
with by concatenating them to the edge labels of adjacent edges. On the two protein data sets we
employed a linear kernel to measure similarity between edge weights representing distances (in
Ångstr̈oms) between secondary structure elements; sinced = 1 we can use all our methods for
unlabeled graphs here. On the two chemical data sets we used a delta kernel to compare edge
labels reflecting types of bonds in molecules; for the Sylvester equation andspectral decomposition
approaches we then employed the nearest Kronecker product approximation. We report CPU times
for the full kernel matrix as well as a 100×100 submatrix in Table3; the latter is also shown
graphically in Figure5 (right).

On labeled graphs, the conjugate gradient and the fixed-point iteration always outperform the
sparse direct approach, more so on the larger graphs and with the linearkernel. As expected, spectral
decompositions are inefficient in combination with the nearest Kronecker product approximation,

kernel delta, d=7 delta, d=22 linear, d=1
data set MUTAG PTC Enzyme Protein
#graphs 100 230 100 417 100 600 100 1128

Sparse 42” 2’44” 1’07” 14’22” 1’25” 57’43” 12’38” 1.1d*
Sylvester 1’08” 6’05” 1’06” 18’20” 2’13” 76’43” 19’20” 11h19’

Conj. Grad. 39” 3’16” 53” 14’19” 20” 13’20” 41” 57’35”
Fixed-Point 25” 2’17” 37” 7’55” 10” 6’46” 25” 31’09”

Spectral 1’20” 7’08” 1’40” 26’54” 8” 4’22” 26” 21’23”
∗extrapolated number of days; run did not finish in time available.

Table 3: Time to compute kernel matrix for labeled graphs from various data sets.

1219

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Figure 5: Time (in seconds on a log-scale) to compute 100×100 kernel matrix for unlabeled (left)
resp. labeled (right) graphs from several data sets, comparing the conventional sparse
method to our fast Sylvester equation, conjugate gradient (CG), fixed-point iteration (FP),
and spectral approaches.

but with the linear kernel they perform as well as fixed-point iterations for m= 100, and better yet
on the large kernel matrices. The Sylvester equation approach (at leastwith the Sylvester solver we
used) cannot take advantage of sparsity, but still manages to perform almost as well as the sparse
direct method.

5.3 Protein-Protein Interaction Networks

In our third experiment, we used random walk graph kernels to tackle a large-scale problem in
bioinformatics involving the comparison of fairly large protein-protein interaction (PPI) networks.
Using a combination of human PPI and clinical microarray gene expression data, the task is to
predict the disease outcome (dead or alive, relapse or no relapse) of cancer patients. As before, we
setλ = 0.001 and the convergence tolerance to 10−6 for all our experiments reported below.

5.3.1 CO-INTEGRATION OFGENE EXPRESSION ANDPPI DATA

We co-integrated clinical microarray gene expression data for cancer patients with known human
PPI fromRual et al.(2005). Specifically, a patient’s gene expression profile was transformed into a
graph as follows: A node was created for every protein which—according to Rual et al.(2005)—
participates in an interaction, and whose corresponding gene expression level was measured on this
patient’s microarray. We connect two proteins in this graph by an edge ifRual et al.(2005) list
these proteins as interacting, and both genes are up-resp.downregulated with respect to a reference
measurement. Each node bears the name of the corresponding protein as itslabel.

This approach of co-integrating PPI and gene expression data is built onthe assumption that
genes with similar gene expression levels are translated into proteins that aremore likely to interact.
Recent studies confirm that this assumption holds significantly more often forco-expressed than
for random pairs of proteins (Fraser et al., 2004; Bhardwaj and Lu, 2005). To measure similarity
between these networks in a biologically meaningful manner, we compare which groups of proteins
interact and are co-regulated in each patient. For this purpose, a random walk graph kernel is the

1220

GRAPH KERNELS

data set Leukemia Breast Cancer
kernel vanilla composite vanilla composite

Sparse 24” 52” 39” 1’19”
Conj. Grad. 6” 13” 12” 26”
Fixed-Point 4” 7” 7” 13”

Table 4: Average time to compute kernel matrix on protein-protein interaction networks.

natural choice, as a random walk in this graph represents a group of proteins in which consecutive
proteins along the walk are co-expressed and interact. As each node bears the name of its corre-
sponding protein as its node label, the size of the product graph is at most that of the smaller of the
two input graphs.

5.3.2 COMPOSITEGRAPH KERNEL

The presence of an edge in a graph signifies an interaction between the corresponding nodes. In
chemoinformatics, for instance, edges indicate chemical bonds between twoatoms; in PPI net-
works, edges indicate interactions between proteins. When studying protein interactions in disease,
however, theabsenceof a given interaction can be as significant as its presence. Since existing
graph kernels cannot take this into account, we propose to modify them appropriately. Key to our
approach is the notion of a complement graph:

Definition 5 Let G= (V,E) be a graph with vertex set V and edge set E. Its complementḠ= (V, Ē)
is a graph over the same vertices but with complementary edgesĒ := (V ×V)\E.

In other words, the complement graph consists of exactly those edgesnot present in the original
graph. Using this notion we define thecompositegraph kernel

kcomp(G,G′) := k(G,G′)+k(Ḡ,Ḡ′). (38)

This deceptively simple kernel leads to substantial gains in performance in our experiments com-
paring co-integrated gene expression/protein-protein interaction networks.

5.3.3 DATA SETS

Leukemia.Bullinger et al.(2004) provide a data set of microarrays of 119 leukemia patients. Since
50 patients survived after a median follow-up time of 334 days, always predicting a lethal outcome
here would result in a baseline prediction accuracy of 1 - 50/119 = 58.0%.Co-integrating this data
with human PPI, we found 2,167 proteins fromRual et al.(2005) for which Bullinger et al.(2004)
report expression levels among the 26,260 genes they examined.
Breast Cancer.This data set consists of microarrays of 78 breast cancer patients, of which 44
had shown no relapse of metastases within 5 years after initial treatment (van’t Veer et al., 2002).
Always predicting survival thus gives a baseline prediction accuracyof 44/78 = 56.4% on this data.
When generating co-integrated graphs, we found 2,429 proteins fromRual et al.(2005) for which
van’t Veer et al.(2002) measure gene expression out of the 24,479 genes they studied.

5.3.4 RESULTS

In Table4 we contrast the CPU runtimes of our conjugate gradient and fixed-point approaches to
graph kernel computation on the cancer patients modeled as labeled graphswith that of the direct

1221

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

sparse method. On both data sets, our fast graph kernel computation methods yield an impressive
gain in speed.

Using either the “vanilla” graph kernel (16) or our composite graph kernel (38), we predict the
survivors by means of a support vector machine (SVM) in 10-fold cross-validation. The vanilla
random walk graph kernel offers slightly higher prediction accuracy than the baseline classifier on
one task (Leukemia: 59.2 % vs 58.0 %), and gives identical results on the other (Breast Cancer: both
56.4 %). Our composite graph kernel attains 5 percentage points above baseline in both experiments
(Leukemia: 63.3 %; Breast cancer: 61.5 %).

The vanilla kernel suffers from its inability to measure network discrepancies, the paucity of the
graph model employed, and the fact that only a small minority of genes could be mapped to inter-
acting proteins; due to these problems, its accuracy remains close to the baseline. The composite
kernel, by contrast, also models missing interactions. With it, even our simple graph model, which
only considers 10% of the genes examined in both studies, is able to capture some relevant biolog-
ical information, which in turn leads to better classification accuracy on thesechallenging data sets
(Warnat et al., 2005).

6. Rational Kernels

Rational kernels (Cortes et al., 2004) were conceived to compute similarity between variable-length
sequences and, more generally, weighted automata. For instance, the output of a large-vocabulary
speech recognizer for a particular input speech utterance is typically a weighted automaton com-
pactly representing a large set of alternative sequences. The weights assigned by the system to each
sequence are used to rank different alternatives according to the models the system is based on. It
is therefore natural to compare two weighted automata by defining a kernel.

As discussed in Section3, random walk graph kernels have a very different basis: They compute
the similarity between two random graphs by matching random walks. Here the graph itself is the
object to be compared, and we want to find a semantically meaningful kernel.Contrast this with a
weighted automaton, whose graph is merely a compact representation of the set of variable-length
sequences which we wish to compare. Despite these differences we find rational kernels and random
walk graph kernels to be closely related.

To understand the connection recall that every random walk on a labeledgraph produces a se-
quence of edge labels encountered during the walk. Viewing the set of alllabel sequences generated
by random walks on a graph as a language, one can design a weighted transducer which accepts this
language, with the weight assigned to each label sequence being the probability of a random walk
generating this sequence. (This transducer can be represented by a graph whose adjacency matrix
is the normalized weight matrix of the original graph.)

In this section we formalize this observation and thus establish connections between rational
kernels on transducers (Cortes et al., 2004) and random walk graph kernels. In particular, we show
that composition of transducers is analogous to computing product graphs, and that rational ker-
nels on weighted transducers may be viewed as generalizations of randomwalk graph kernels to
weighted automata. In order to make these connections explicit we adopt notation commonly used
for describingalgebraic path problems, wherein disparate problems related to graphs, automata,
and transducers are described in a common framework using matrices and tensors (Eilenberg, 1974;
Lehmann, 1977; Berstel, 1979; Kuich and Salomaa, 1986).

1222

GRAPH KERNELS

6.1 Semirings

At the most general level, weighted transducers are defined over semirings. In a semiring addi-
tion and multiplication are generalized to abstract operations⊕̄ and⊙̄ with the same distributive
properties:

Definition 6 (Mohri , 2002) A semiring is a system(K,⊕̄,⊙̄, 0̄, 1̄) such that

1. (K,⊕̄, 0̄) is a commutative monoid in which̄0∈ K is the identity element for̄⊕ (i.e., for any
x,y,z∈ K, we have x̄⊕y∈ K, (x⊕̄y)⊕̄z= x⊕̄(y⊕̄z), x⊕̄ 0̄ = 0̄⊕̄x = x and x⊕̄y = y⊕̄x);

2. (K,⊙̄, 1̄) is a monoid in which̄1 is the identity operator for̄⊙ (i.e., for any x,y,z∈ K, we
have x⊙̄y∈ K, (x⊙̄y)⊙̄z= x⊙̄(y⊙̄z), and x⊙̄ 1̄ = 1̄⊙̄x = x);

3. ⊙̄ distributes over⊕̄, that is, for any x,y,z∈ K,

(x⊕̄y)⊙̄z= (x⊙̄z)⊕̄(y⊙̄z)

and z⊙̄(x⊕̄y) = (z⊙̄x)⊕̄(z⊙̄y);

4. 0̄ is an annihilator for⊙̄: ∀x∈ K, x⊙̄ 0̄ = 0̄⊙̄x = 0̄.

Thus, a semiring is a ring that may lack negation.(R,+, ·,0,1) is the familiar semiring of real
numbers. Other examples include

Boolean: ({FALSE,TRUE},∨,∧,FALSE,TRUE);

Logarithmic: (R∪{−∞},⊕̄ln,+,−∞,0), where∀x,y∈ K : x⊕̄ln y := ln(ex +ey);

Tropical: (R∪{−∞},max,+,−∞,0).

Linear algebra operations such as matrix addition and multiplication as well as Kronecker products
can be carried over to a semiring in a straightforward manner. For instance, for M,M′ ∈ K

n×n we
have

[M ⊙̄M′]i, j =

n
M

k=1

Mik ⊙̄M′
k j. (39)

The (⊕̄,⊙̄) operations in some semirings can be mapped into ordinary(+, ·) operations by
applying an appropriatemorphism:

Definition 7 Let (K,⊕̄,⊙̄, 0̄, 1̄) be a semiring. A functionψ : K → R is a morphism if

ψ(x⊕̄y) = ψ(x)+ψ(y);

ψ(x⊙̄y) = ψ(x) ·ψ(y);

ψ(0̄) = 0 and ψ(1̄) = 1.

1223

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

In the following, by ’morphism’ we will always mean a morphism from a semiring tothe real
numbers. Not all semirings have such morphisms: For instance, the logarithmicsemiring has a
morphism—namely, the exponential function—but the tropical semiring does not have one. If the
semiring has a morphismψ, applying it to the matrix product (39), for instance, yields

ψ([M ⊙̄M′]i, j) = ψ
(n

M

k=1

Mik ⊙̄M′
k j

)

=
n

∑
k=1

ψ(Mik ⊙̄M′
k j) =

n

∑
k=1

ψ(Mik) ·ψ(M′
k j). (40)

As in AppendixA, we can extend the morphismψ to matrices (and analogously to vectors) by
defining[Ψ(M)]i j := ψ(Mi j). We can then write (40) concisely as

Ψ(M ⊙̄M′) = Ψ(M)Ψ(M′). (41)

6.2 Weighted Transducers

Loosely speaking, a transducer is a weighted automaton with an input and anoutput alphabet. We
will work with the following slightly specialized definition:4

Definition 8 A weighted finite-state transducer T over a semiring(K,⊕̄,⊙̄, 0̄, 1̄) is a 5-tuple T=
(Σ,Q,H, p,q), whereΣ is a finite input-output alphabet, Q is a finite set of n states, p∈ K

n is a
vector of initial weights, q∈ K

n is a vector of final weights, and H is a four-dimensional tensor in
K

n×|Σ|×|Σ|×n which encodes transitions and their corresponding weights.

Fora,b∈ Σ we will use the shorthandHab to denote then×n sliceH∗ab∗ of the transition tensor,
which represents all valid transitions on input symbola emitting the output symbolb. The output
weight assigned byT to a pair of stringsα = a1a2 . . .al andβ = b1b2 . . .bl is

[[T]](α,β) = q⊤ ⊙̄Ha1b1 ⊙̄Ha2b2 ⊙̄ . . .⊙̄Hal bl ⊙̄ p. (42)

A transducer is said to accept a pair of strings(α,β) if it assigns non-zero output weight to them,
that is,[[T]](α,β) 6= 0̄. A transducer is said to be regulated if the output weight it assigns to any pair
of strings is well-defined inK. Since we disallowε transitions, our transducers are always regulated.

The inverse ofT = (Σ,Q,H, p,q), denoted byT−1, is obtained by transposing the input and
output labels of each transition. Formally,T−1 = (Σ,Q,H⊤, p,q) whereH⊤

ab := Hba. The composi-
tion of two transducersT = (Σ,Q,H, p,q) andT ′ = (Σ,Q′,H ′, p′,q′) is a transducerT× = T ◦T ′ =
(Σ,Q×,H×, p×,q×), whereQ× = Q×Q′, p× = p⊗̄ p′,5 q× := q⊗̄q′, and(H×)ab = ¯L

c∈ΣHac⊗̄H ′
cb.

It can be shown that

[[T×]](α,β) = [[T ◦T ′]](α,β) =
M

γ
[[T]](α,γ)⊙̄[[T ′]](γ,β). (43)

4. We disallowε transitions, and use the same alphabet for both input and output. Furthermore, in a departure from
tradition, we represent the transition function as a four-dimensional tensor.

5. We use⊗̄ to denote the Kronecker product using the semiring operation⊙̄, in order to distinguish it from the regular
Kronecker product⊗.

1224

GRAPH KERNELS

Composing T with its inverse yields T ◦ T−1 = (Σ,Q × Q,H∗, p⊗̄ p,q⊗̄q), where
H∗

ab = ¯L
c∈ΣHac⊗̄Hbc. There exists a general and efficient algorithm for composing transducers

as in (43) which takes advantage of the sparseness of the input transducers (Mohri et al., 1996;
Pereira and Riley, 1997).

6.3 Weighted Automata

A weighted automaton is a transducer with identical input and output symbols. The transition matrix
of a weighted automaton is therefore a three-dimensional tensor inK

n×|Σ|×n. As before, we will use
the shorthandHa to denote then×n slice H∗a∗ of the transition tensor, which represents all valid
transitions on the input symbola emitting output symbolxa. If Σ containsd symbols, then by
specializing (42) it is easy to see that a weighted automaton accepts a stringα = a1a2 . . .al with
weight

[[T]](α) = q⊤ ⊙̄Ha1 ⊙̄Ha2 ⊙̄ . . .⊙̄Hal ⊙̄ p. (44)

The composition of two weighted automataT = (Σ,Q,H, p,q) and T ′ = (Σ,Q′,H ′, p′,q′) is an
automatonT× = T ◦T ′ = (Σ,Q×,H×, p×,q×), whereQ× = Q×Q′, p× = p⊗̄ p′, q× := q⊗̄q′, and
(H×)a = Ha⊗̄H ′

a. The composition operation is also defined for a weighted automatonW and a
transducerT:

[[W◦T]](α,β) = [[W]](α)⊙̄[[T]](α,β). (45)

Every random walk on a labeled graph results in a sequence of edge labels encountered during
the walk. The set of all label sequences generated by random walks ona given graph is a language.
One can construct a weighted automaton which accepts this language as follows: Use the standard
semiring(R,+, ·,0,1), let the alphabetΣ consist of the labels{1, . . . ,d} of the graph, and identify
the nodes of the graph with the states of the weighted automaton. Let the startingand stopping
probabilitiesp andq on the graph equal those of the weighted automaton, and complete the con-
struction by identifying for eachl ∈ Σ the label-filtered adjacency matrixlA of the graph withHl ,
the transition tensor of the weighted automaton for that symbol.

Under the above mapping (44) has a natural interpretation: The weight assigned by the au-
tomaton to a string of symbols is the probability of encountering the corresponding labels while
performing a random walk on the corresponding labeled graph. The composition of weighted au-
tomata, when specialized to labeled graphs, is equivalent to computing a direct product graph.

An unlabeled graph corresponds to a weighted automaton whose input-output alphabet contains
exactly one symbol, and which therefore only accepts strings of the formak = aa. . .a. The transition
matrix of such a graph (equivalently, its adjacency matrix) is a 2-dimensionaltensor inK

n×n. If A
denotes the adjacency matrix of a graphG, then the output weight assigned byG to ak is [[G]](ak) =
q⊤AA. . .Ap= q⊤Akp.

6.4 The Rational Kernel for Strings

Given a weighted transducerT and a functionψ : K → R, the rational kernel between two strings
α = a1a2 . . .al andβ = b1b2 . . .bl is defined as (Cortes et al., 2004):

k(α,β) := ψ([[T]](α,β)) . (46)

1225

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Cortes et al.(2004) show that a generic way to obtain p.s.d. rational kernels is to replaceT in (46) by
T ◦T−1, and letψ be a semiring morphism. We now present an alternate proof which uses properties
of the Kronecker product. Sinceψ is a semiring morphism, by specializing (42) to T ◦T−1, we can
write k(α,β) = ψ

(
[[T ◦T−1]](α,β)

)
as

Ψ(q⊗̄q)⊤Ψ

(
M

c1

Ha1c1 ⊗̄Hb1c1

)
. . .Ψ

(
M

cl

Hal cl ⊗̄Hbl cl

)
Ψ(p⊗̄ p). (47)

Rules analogous to (41) give us

Ψ

(
M

c∈Σ
Hac⊗̄Hbc

)
= ∑

c∈Σ
Ψ(Hac)⊗Ψ(Hbc). (48)

Using (48) we can rewrite (47) as

∑
c1c2...cl

Ψ(q)⊤⊗Ψ(q)⊤ (Ψ(Ha1c1)⊗Ψ(Hb1c1)) . . .(Ψ(Hal cl)⊗Ψ(Hbl cl))Ψ(p)⊗Ψ(p). (49)

Finally, successively applying (2) to (49) yields

k(α,β) = ∑
c1c2...cl

(
Ψ(q)⊤Ψ(Ha1c1) . . .Ψ(Hal cl)Ψ(p)

)

︸ ︷︷ ︸
ρ(α)

(
Ψ(q)⊤Ψ(Hb1c1) . . .Ψ(Hbl cl)Ψ(p)

)

︸ ︷︷ ︸
ρ(β)

, (50)

Each term of (50) equalsρ(α)ρ(β) for some scalar functionρ, and is therefore a valid p.s.d. kernel.
Since p.s.d. kernels are closed under addition and pointwise limits (Berg et al., 1984), k(α,β) is a
valid p.s.d. kernel.

6.5 The Rational Kernel for Weighted Automata

Rational kernels on strings can be naturally extended to weighted automataSandU via (Cortes et al.,
2004):

k(S,U) = ψ


M

α,β
[[S]](α)⊙̄[[T]](α,β)⊙̄[[U]](β)




= ψ


M

α,β
[[S◦T ◦U]](α,β)


 , (51)

where we obtained (51) by using (45) twice. If ψ is a semiring morphism, then we can use Defini-
tion 7 to rewrite (51) as

k(S,U) = ∑
α,β

ψ([[S◦T ◦U]](α,β)) . (52)

Since p.s.d. kernels are closed under addition and pointwise limits, ifψ([[S◦T ◦U]](α,β)) is a p.s.d.
kernel for any givenα andβ, then so is (52).

1226

GRAPH KERNELS

6.6 Recovering Random Walk Graph Kernels

In order to recover random walk graph kernels we use the standard(R,+, ·,0,1) ring as our semi-
ring, and hence setψ to be the identity function. Next we set the transducerT to simply transform
any input string of lengthk into an identical output string with weightµ(k) ≥ 0. With these restric-
tions (52) can be written as

k(S,U) = ∑
α

µ(|α|)[[S◦U]](α), (53)

where|α| denotes the length ofα. Let us rearrange (53) to

k(S,U) = ∑
k

µ(k)

(

∑
a1,a2,...,ak

[[S◦U]](a1,a2, . . . ,ak)

)
. (54)

Specializing the definition of◦ to weighted automata, and lettingHa (resp.H ′
a) denote the transition

tensor ofS(resp.U), we can rewrite (54) as

k(S,U) = ∑
k

µ(k)

(

∑
a1,a2,...,ak∈Σk

(q⊗q′)⊤(Ha1 ⊗H ′
a1

) . . .(Hak ⊗H ′
ak

)(p⊗ p′)

)

= ∑
k

µ(k)(q⊗q′)⊤
(

∑
a1,a2,...,ak∈Σk

(Ha1 ⊗H ′
a1

) . . .(Hak ⊗H ′
ak

)

)
(p⊗ p′)

= ∑
k

µ(k)(q⊗q′)⊤
(

∑
a∈Σ

Ha⊗H ′
a

)
. . .

(

∑
a∈Σ

Ha⊗H ′
a

)
(p⊗ p′)

= ∑
k

µ(k)(q⊗q′)⊤
(

∑
a

Ha⊗H ′
a

)k

(p⊗ p′). (55)

Next, we identifyHa (resp.H ′
a) with the label-filtered adjacency matrixaA (resp.aA′) of a graphG

(resp.G′) with discrete edge labels. It easy to see thatH× := ∑aHa⊗H ′
a is the weight matrix (7) of

the direct product ofG andG′. Letting p× = p⊗ p′ andq× = q⊗q′, (55) reduces to

k(G,G′) = ∑
k

µ(k)q⊤×Hk
× p×, (56)

which recovers the random walk graph kernel (8) with W× = H×.
The generality of the rational kernel comes at a computational cost: Even when restricted as in

(53), it requires the compositionS◦U of two transducers, which takes up toO((|QS|+ |ES|)(|QU |+
|EU |)) time, where|Q| is the number of states and|E| the number of transitions (Cortes et al., 2004,
Section 4.1). In our setting|Q| = n, the number of nodes in the graph, and|E| is the number of
its edges, which can be ofO(n2); the worst-case time complexity of the composition operation is
thereforeO(n4). Cortes et al.(2004) showed that the sum in (53) can be computed via a single-
source shortest distance algorithm over a semiring. IfS◦U is acyclic, then this is linear in the
size ofS◦U , which in the worst case isO(n2). In general, however, an all-pairs shortest-distance
algorithm must be employed, such as the generalization of the Floyd-Warshall algorithm due to
Lehmann(1977). This algorithm is cubic in the size ofS◦U , thus leading to anO(n6) worst-
case time complexity. Since computingS◦U is the same as computingW×, and theLehmann

1227

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

(1977) algorithm is a way to compute(I −W×)−1 (the transitive closureof W×), our linear algebra
techniques to speed up computation of random walk graph kernels can alsobe applied to rational
kernels.6 The key insight here is that we never explicitly construct the composition (i.e.,direct
product graph) in order to compute the kernel.

For ease of exposition we derived (56) by settingT to be an identity transducer. Instead, one can
use a weighted transducer which allows for more flexible matching between strings in the alphabet.
Basically, the transducer now plays the role of the kernel functionκ, and this in turn leads to a more
flexible similarity matrixW×.

There is one important difference between graph kernels and rational kernels. Graph kernels
can handle arbitrary edge kernels, including continuous edge labels via the weight matrixW×. In
contrast, rational kernels, which were designed to work with strings and automata, assume that the
alphabet (set of labels) is finite. As we saw above, they can incorporateflexible similarity matrices
W× in this setting, but cannot handle continuous edge labels. Furthermore, to date rational kernels
have not been extended to deal with labels mapped to an RKHS.

7. R-convolution Kernels

Haussler’s (1999) R-convolution kernels provide a generic way to construct kernels fordiscrete
compound objects. Letx∈ X be such an object, and~x := (x1,x2, . . . ,xD) denote a decomposition of
x, with eachxi ∈ X i . We can define a boolean predicate

R : X ×X →{TRUE,FALSE}, (57)

whereX := X 1× . . .×XD andR(x,~x) is TRUE whenever~x is a valid decomposition ofx. Now
consider the inverse of (57), the set of all valid decompositions of an object:

R−1(x) := {~x|R(x,~x) = TRUE}. (58)

Like Haussler(1999) we assume that (58) is countable. We define the R-convolution⋆ of the kernels
κ1,κ2, . . . ,κD with κi : X i ×X i → R to be

k(x,x′) = κ1 ⋆κ2 ⋆ . . . ⋆κD(x,x′) := ∑
~x∈R−1(x)

~x′∈R−1(x′)

µ(~x,~x′)
D

∏
i=1

κi(xi ,x
′
i), (59)

whereµ denotes a set of non-negative coefficients onX×X , which ensures that the sum in (59) con-
verges.7 Haussler (1999) showed thatk(x,x′) is p.s.d. and hence admissible as a kernel
(Scḧolkopf and Smola, 2002), provided that all the individualκi are. The deliberate vagueness of
this setup in regard to the nature of the underlying decomposition leads to a richframework: Many
different kernels can be obtained by simply changing the decomposition.

7.1 Graph Kernels as R-Convolutions

To apply R-convolution kernels to graphs, one decomposes the graph intosmaller substructures,
and builds the kernel based on similarities between those components. Most graph kernels are—
knowingly or not—based on R-convolutions; they mainly differ in the way theydecompose the
graph for comparison and the similarity measure they use to compare the components.

6. We thank an anonymous reviewer for pointing this out.
7. Haussler(1999) implicitly assumed this sum to be well-defined, hence did not useµ in his definition.

1228

GRAPH KERNELS

Gärtner et al.(2003) observed that any graph kernel whose feature map is injective could be used
to determine whether two graphsG andG′ are isomorphic: Simply computed(G,G′) := k(G,G)−
2k(G,G′)+k(G′,G′); since by definitionanystructural difference between the graphs would yield a
non-zerod(G,G′), they are isomorphic iffd(G,G′) = 0. The graph isomorphism problem, however,
is widely believed to be not solvable in polynomial time (Garey and Johnson, 1979). Gärtner et al.
(2003) also showed that computing inner products in a feature space constructed over all subgraphs
of a graph is NP-hard. One must therefore choose which substructures to distinguish in defining a
practical graph kernel, and this choice is generally motivated by runtime considerations.

Random walks provide a straightforward graph decomposition that—as we have seen in Sec-
tion 4—leads to kernels that can be computed efficiently. To see that our randomwalk graph kernel
(8) is indeed an R-convolution kernel, note that the definition of our weight matrix (6) and the RKHS
Kronecker product (Definition11) imply

[W×](i−1)n′+r,(j−1)n′+s = [Φ(X)⊗Φ(X′)](i−1)n′+r,(j−1)n′+s

=
〈
φ(vi ,v j),φ(v′r ,v

′
s)
〉
H

=: κ((vi ,v j),(v
′
r ,v

′
s)),

whereκ is our edge kernel. We can thus expand (8) by explicitly taking all paths through the
repeated matrix products, giving

k(G,G′) :=
∞

∑
k=1

µ(k)q⊤×Wk
×p× =

∞

∑
k=1

µ(k)q⊤×

(k

∏
i=1

W×

)
p×

=
∞

∑
k=1

µ(k) ∑
v0,v1,...vk∈V
v′0,v

′
1,...v

′
k∈V ′

qvk
q′v′k

(k

∏
i=1

κ((vi−1,vi),(v
′
i−1,v

′
i))

)
pv0

p′v′0. (60)

This is easily identified as an instance of the R-convolution kernel (59), where the decomposition is
into all equal-length sequences~v,~v′ of nodes fromV andV ′, respectively, and

µ(~v,~v′) := µ(|~v|)qv|~v|
q′v′|~v|

pv0
p′v′0, (61)

where| · | in (61) denotes the length of a sequence. Finally, note that by definition of our edge kernel
κ, only pairs of sequences that are both actual walks on their respectivegraphs will make a non-zero
contribution to (60).

Random walk graph kernels as proposed byGärtner et al.(2003) likewise decompose a graph
into random walks, but then employ a delta kernel between nodes.Borgwardt et al.(2005), on
the other hand, use a kernel defined on both nodes and edges. The marginalized graph kernels
of Kashima et al.(2004) are closely related but subtly different in that they decompose the graph
into all possiblelabel sequences generated by a walk.Mahé et al.(2004) extend this approach in
two ways: They enrich the labels via the so-called Morgan index, and modify the kernel definition
to preventtottering, that is, the generation of high similarity scores by multiple, similar, small
substructures. Both these extensions are particularly relevant for chemoinformatics applications.

Further afield,Horváth et al.(2004) decompose a graph into cyclic patterns, then count the
number of common cyclic patterns which occur in both graphs. Their kernelis plagued by com-
putational issues; in fact they show that computing the cyclic pattern kernelof a general graph is
NP-hard. They consequently restrict their attention to practical problem classes where the number
of simple cycles is bounded.

1229

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Ramon and G̈artner(2003) consider subtree patterns to define graph kernels. Starting from a
given nodev, a tree is created by adding all the nodes that can be reached fromv in 1, . . . ,h steps,
whereh is the height of the tree. If more than one walk connects two nodes, then each one of these
is used to define a distinct subtree. This means that the same node is counted several times, thus
leading to tottering. Furthermore, the number of candidate trees grows exponentially with the height
of the subtree under consideration, thus severely limiting the depth of graphstructure one can probe
at reasonable computational cost.

Borgwardt and Kriegel(2005) define a kernel (62) based on shortest paths. They represent a
graphG = (V,E) by a complete graphS= (V, Ē) over the same vertices, wherein the weight of
each edge in̄E equals the length of the shortest path between the corresponding nodes inG. Their
shortest path kernel is then defined as

ksp(G,G′) = ∑
e∈Ē

∑
e′∈Ē′

κ(e,e′), (62)

whereκ is any kernel defined on the edges ofSandS′.
Shervashidze et al.(2009) use subgraphs of fixed size to define kernels. Their key idea is to

represent the graph by a normalized frequency vector which counts thefrequency of occurrence of
various fixed-size subgraphs. The kernel is then simply computed as the dot product between these
vectors.

Other decompositions of graphs which are well suited for particular application domains include
molecular fingerprints based on various types of depth-first searches(Ralaivola et al., 2005) and
structural elements such as rings or functional groups (Fröhlich et al., 2006).

7.2 R-Convolutions in Abstract Semirings

There have been a few attempts to extend the R-convolution kernel (59) to abstract semirings, by
defining:

k(x,x′) :=
M

~x∈R−1(x)

~x′∈R−1(x′)

µ(~x,~x′)⊙̄

D
K

i=1

κi(xi ,x
′
i). (63)

The optimal assignment graph kernel ofFröhlich et al.(2006) is motivated along these lines, using
the tropical semiring. It can be defined as

k(x,x′) = max
~x∈R−1(x)

~x′∈R−1(x′)

(
µ(~x,~x′)+

D

∑
i=1

κi(xi ,x
′
i)

)
. (64)

Unfortunately (64) is not always p.s.d. (Vert, 2008). The problem is that the class of p.s.d. kernels
is not closed under the max operation (Berg et al., 1984).

For semirings that have a morphismψ to the reals, however, we can rewrite (63) as

ψ(k(x,x′)) = ∑
~x∈R−1(x)

~x′∈R−1(x′)

µ(~x,~x′)
D

∏
i=1

ψ(κi(xi ,x
′
i)). (65)

1230

GRAPH KERNELS

Comparing (65) with (59) makes it clear thatψ ◦ k is p.s.d. and hence admissible if allψ ◦κi are.
This can be used to construct p.s.d. R-convolution kernels in such semirings.

For instance, take the logarithmic semiring(R∪{−∞},⊕̄ln,+,−∞,0) augmented with an in-
verse temperature parameterβ > 0, so thatx⊕̄ln y := ln(eβx + eβy)/β. This has the morphism
ψ(x) = eβx. We can thus specialize (65) to define

k(x,x′) := ∑
~x∈R−1(x)

~x′∈R−1(x′)

eβκ(~x,~x′), where κ(~x,~x′) := µ(~x,~x′)+
D

∑
i=1

κi(xi ,x
′
i), (66)

which is a valid p.s.d. kernel if alleβκi are. Note that ifκi is a p.s.d. kernel, then sinceβ > 0 so is
βκi , and since p.s.d. kernels are closed under exponentiation (Genton, 2001, Equation 5) so iseβκi .

What makes (66) interesting is that when the temperature approaches zero (β → ∞), the aug-
mented logarithmic semiring approaches the tropical semiring, asx⊕̄ln y → max(x,y). We thus
obtain a kernel that approximates (an exponentiated version of) the optimalassignment kernel (64)
yet is provably p.s.d. Since at low temperatures the value of (66) is dominated by the optimal
assignment, one might call it the “mostly optimal assignment kernel.”

The finite range of floating-point computer arithmetic unfortunately limits how low atemper-
ature (66) can be used with in practice, though this can be greatly extended via suitablesoftware,
such as theextnum C++ class.8

8. Discussion and Outlook

As evidenced by the large number of recent papers, random walk and marginalized graph kernels
have received considerable research attention. Although the connections between these two kernels
were hinted at byKashima et al.(2004), no effort was made to pursue this further. Our aim in
presenting a unified framework for random walk and marginalized graph kernels that combines
the best features of previous formulations is to highlight the similarities as well as the differences
between these approaches. Furthermore, it allows us to use extended linear algebra in an RKHS to
efficiently compute all these kernels by exploiting common structure inherent inthese problems.

As more and more graph-structured data (e.g., molecular structures and protein interaction net-
works) becomes available in fields such as biology, web data mining,etc., graph classification will
gain importance over the coming years. Hence there is a pressing need to speed up the computation
of similarity metrics on graphs. We have shown that sparsity, low effective rank, and Kronecker
product structure can be exploited to greatly reduce the computational cost of graph kernels; taking
advantage of other forms of structure inW× remains a computational challenge. Now that the com-
putation of random walk graph kernels is viable for practical problem sizes, it will open the doors
for their application in hitherto unexplored domains.

A major deficiency of geometric random walk graph kernels is that the admissible range of
values of the decay parameterλ in (16) depends on the spectrum of the weight matrixW×. Since
this is typically unknown, in practice one often resorts to very low values ofλ—but this makes the
contributions of higher-order terms (corresponding to long walks) to the kernel negligible. In fact
in many applications a naive kernel which simply computes the average kernel between all pairs of
edges in the two graphs has performance comparable to the random walk graph kernel.

8. extnum can be found athttp://darwin.nmsu.edu/molb_resources/bioinformatic s/extnum/extnum.html .

1231

http://darwin.nmsu.edu/molb_resources/bioinformatics/extnum/extnum.html

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Trying to remedy this situation by normalizing the matrices involved leads to anotherphe-
nomenon calledtottering (Mahé et al., 2004). Roughly speaking tottering occurs when short self-
repeating walks make a disproportionately large contribution to the kernel value. Consider two
adjacent verticesv andv′ in a graph. Because of tottering, contributions due to walks of the form
v → v′ → v → . . . dominate the kernel value. Unfortunately a kernel using self-avoiding walks
(walks which do not visit the same vertex twice) cannot be computed in polynomial time.

A natural question to ask is the following: Since diffusion can be viewed as acontinuous time
limit of random walks, can the ideas behind the random walk kernel be extended to diffusion?
Unfortunately, the Laplacian of the product graph does not decomposeinto the Kronecker product
of the Laplacian matrices of the constituent graphs; this rules out a straightforward extension.

Although rational kernels have always been viewed as distinct from graph kernels, we have
shown that in fact these two research areas are closely related. It is our hope that this will facilitate
cross-pollination of ideas such as the use of semirings and transducers indefining graph kernels.
A return to the tensor and matrix notation which was commonly used to describe algebraic path
problems would help make these connections explicit.

It is fair to say that R-convolution kernels are the mother of all kernels on structured data.
It is enlightening to view various graph kernels as instances of R-convolution kernels since this
brings into focus the relevant decomposition used to define a given kernel, and the similarities and
differences between various kernels. Extending R-convolutions to abstract semirings, however, does
not always result in a valid p.s.d. kernel. We have shown that a morphism tothe reals is sufficient to
successfully transport an R-convolution kernel into a semiring; whetherit is necessary remains an
open problem.

We do not believe that the last word on graph comparison has been said yet. Thus far, simple
decompositions like random walks have been used to compare graphs. Thisis mainly driven by
computational considerations and not by the application domain at hand. Thealgorithmic challenge
of the future is to integrate higher-order structures such as spanning trees in graph comparisons, and
to compute such kernels efficiently.

Acknowledgments

We thank Markus Hegland and Tim Sears for enlightening discussions, Alex Smola for pointing out
to us that the optimal assignment kernel may fail to be p.s.d., and the anonymousreviewers for their
detailed comments and suggestions which greatly helped improve this paper.

This publication only reflects the authors’ views. It was supported by NICTA, funded by the
Australian Government through the Backing Australia’s Ability and Centre ofExcellence pro-
grams, by the IST Programme of the European Community under the PASCAL2 Network of Excel-
lence, IST-2007-216886, by the German Ministry for Education, Science, Research and Technology
(BMBF) under grant No. 031U112F within the BFAM (Bioinformatics for theFunctional Analysis
of Mammalian Genomes) project, part of the German Genome Analysis Network (NGFN), by NIH
grant GM063208-05 “Tools and Data Resources in Support of Structural Genomics”, and NSF grant
IIS-0916686.

1232

GRAPH KERNELS

Appendix A. Extending Linear Algebra to RKHS

It is well known that any continuous, symmetric, positive definite kernelκ : X ×X → R has a
corresponding Hilbert spaceH , called the Reproducing Kernel Hilbert Space or RKHS, which
induces a feature mapφ : X →H satisfyingκ(x,x′) = 〈φ(x),φ(x′)〉

H
. The natural extension of this

so-called feature map to matrices isΦ : X n×m→H
n×m defined[Φ(A)]i j := φ(Ai j). In what follows,

we useΦ to lift tensor algebra fromX to H , extending various matrix products to the RKHS, and
proving some of their their useful properties. Straightforward extensionsvia the commutativity
properties of the operators have been omitted for the sake of brevity.

A.1 Matrix Product

Definition 9 Let A∈ X
n×m, B∈ X

m×p, and C∈ R
m×p. The matrix productsΦ(A)Φ(B) ∈ R

n×p and
Φ(A)C∈H

n×p are given by

[Φ(A)Φ(B)]ik := ∑
j

〈
φ(Ai j),φ(B jk)

〉
H

and [Φ(A)C]ik := ∑
j

φ(Ai j)Cjk.

It is straightforward to show that the usual properties of matrix multiplication—namely associa-
tivity, transpose-commutativity, and distributivity with addition—hold for Definition 9 above, with
one exception: associativity doesnot hold if the elements of all three matrices involved belong to
the RKHS. In other words, givenA∈X

n×m, B∈X
m×p, andC∈X

p×q, generally[Φ(A)Φ(B)]Φ(C) 6=
Φ(A)[Φ(B)Φ(C)]. The technical difficulty is that in general

〈
φ(Ai j),φ(B jk)

〉
H

φ(Ckl) 6= φ(Ai j)
〈
φ(B jk),φ(Ckl)

〉
H

. (67)

Further examples of statements like (67), involving properties which do not hold when extended to
an RKHS, can be found for the other matrix products at (69) and (76) below.

Definition9 allows us to state a first RKHS extension of the vec(ABC) formula (1):

Lemma 10 If A ∈ R
n×m, B∈ X

m×p, and C∈ R
p×q, then

vec(AΦ(B)C)) = (C⊤⊗A)vec(Φ(B)) ∈ X
nq×1 .

Proof Analogous to Lemma12below.

A.2 Kronecker Product

Definition 11 Let A∈ X
n×m and B∈ X

p×q. The Kronecker productΦ(A)⊗Φ(B) ∈ R
np×mq is

defined as

[Φ(A)⊗Φ(B)](i−1)p+k,(j−1)q+l :=
〈
φ(Ai j),φ(Bkl)

〉
H

.

Similarly to (67) above, for matrices in an RKHS

∗ (Φ(A)⊗Φ(B))(Φ(C)⊗Φ(D)) = (Φ(A)Φ(C))⊗ (Φ(B)Φ(D)) (68)

1233

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

doesnot necessarily hold. The technical problem with (68) is that generally

〈φ(Air),φ(Bks)〉H
〈
φ(Cr j),φ(Dsl)

〉
H
6=
〈
φ(Air),φ(Cr j)

〉
H
〈φ(Bks),φ(Dsl)〉H . (69)

In SectionA.3 we show that analogous properties (Lemmas14 and15) do hold for theheteroge-
neousKronecker product between RKHS and real matrices.

Definition11gives us a second extension of the vec(ABC) formula (1) to RKHS:

Lemma 12 If A ∈ X
n×m, B∈ R

m×p, and C∈ X
p×q, then

vec(Φ(A)BΦ(C)) = (Φ(C)⊤⊗Φ(A))vec(B) ∈ R
nq×1 .

Proof We begin by rewriting thekth column ofΦ(A)BΦ(C) as

[Φ(A)BΦ(C)]∗k = Φ(A)∑
j

B∗ j φ(Cjk) = ∑
j

φ(Cjk)Φ(A)B∗ j

= [φ(C1k)Φ(A),φ(C2k)Φ(A), . . .φ(Cnk)Φ(A)]




B∗1

B∗2
...

B∗n




︸ ︷︷ ︸
vec(B)

= ([φ(C1k),φ(C2k), . . .φ(Cnk)]⊗Φ(A))vec(B). (70)

To obtain Lemma12we stack up the columns of (70):

vec(Φ(A)BΦ(C)) =







φ(C11) φ(C21) . . . φ(Cn1)
...

...
. ..

...
φ(C1n) φ(C2n) . . . φ(Cnn)


⊗Φ(A)


vec(B)

= (Φ(C)⊤⊗Φ(A))vec(B).

Direct computation of the right-hand side of Lemma12requiresnmpqkernel evaluations; when
m, p, andq are allO(n) this is O(n4). If H is finite-dimensional, however—in other words, if
the feature map can be taken to beφ : X → R

d with d < ∞—then the left-hand side of Lemma12
can be obtained inO(n3d) operations. Our efficient computation schemes in Section4 exploit this
observation.

A.3 Heterogeneous Kronecker Product

Definition 13 Let A∈ X
n×m and B∈ R

p×q. The heterogeneous Kronecker productΦ(A)⊗B ∈
X

np×mq is given by

[Φ(A)⊗B](i−1)p+k,(j−1)q+l = φ(Ai j)Bkl.

Recall that the standard Kronecker product obeys (2); here we prove two extensions:

1234

GRAPH KERNELS

Lemma 14 If A ∈ X
n×m, B∈ X

p×q, C∈ R
m×o, and D∈ R

q×r , then

(Φ(A)⊗Φ(B))(C⊗D) = (Φ(A)C)⊗ (Φ(B)D).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗Φ(B))(C⊗D)](i−1)p+k,(j−1)q+l = ∑
r,s
〈φ(Air),φ(Bks)〉H Cr j Dsl

=

〈
∑
r

φ(Air)Cr j , ∑
s

φ(Bks)Dsl

〉

H

=
〈
[Φ(A)C]i j , [Φ(B)D]kl

〉
H

= [(Φ(A)C)⊗ (Φ(B)D)](i−1)p+k,(j−1)q+l

Lemma 15 If A ∈ X
n×m, B∈ R

p×q, C∈ X
m×o, and D∈ R

q×r , then

(Φ(A)⊗B)(Φ(C)⊗D) = (Φ(A)Φ(C))⊗ (BD).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗B)(Φ(C)⊗D)](i−1)p+k,(j−1)q+l = ∑
r,s

〈
φ(Air)Bks,φ(Cr j)Dsl

〉
H

= ∑
r

〈
φ(Air),φ(Cr j)

〉
H ∑

s
BksDsl

= [Φ(A)Φ(C)]i j [BD]kl

= [(Φ(A)Φ(C))⊗ (BD)](i−1)p+k,(j−1)q+l

Using the heterogeneous Kronecker product, we can state four more RKHS extensions of the
vec-ABC formula (1):

Lemma 16 If A ∈ X
n×m, B∈ R

m×p, and C∈ R
p×q, then

vec(Φ(A)BC) = (C⊤⊗Φ(A))vec(B) ∈ X
nq×1 .

Proof Analogous to Lemma12.

Lemma 17 If A ∈ R
n×m, B∈ R

m×p, and C∈ X
p×q, then

vec(ABΦ(C)) = (Φ(C)⊤⊗A)vec(B) ∈ X
nq×1 .

Proof Analogous to Lemma12.

1235

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Lemma 18 If A ∈ X
n×m, B∈ X

m×p, and C∈ R
p×q, then

vec(Φ(A)Φ(B)C) = (C⊤⊗Φ(A))vec(Φ(B)) ∈ R
nq×1 .

Proof Analogous to Lemma12.

Lemma 19 If A ∈ R
n×m, B∈ X

m×p, and C∈ X
p×q, then

vec(AΦ(B)Φ(C)) = (Φ(C)⊤⊗A)vec(Φ(B)) ∈ R
nq×1 .

Proof Analogous to Lemma12.

Note that there is no analogous lemma for vec(Φ(A)Φ(B)Φ(C)) since this term is not well-
defined due to non-associativity (67).

A.4 Kronecker Sum

A concept closely related to the Kronecker product is that of the Kronecker sum, which is defined
for real matricesA∈ R

n×m andB∈ R
p×q as

A⊕B := A⊗ I pq+ Inm⊗B, (71)

with Inm (resp.I pq) denoting then×m (resp.p× q) identity matrix. Many of its properties can
be derived from those of the Kronecker product. Unlike the Kronecker product, however, the Kro-
necker sum of two matrices in an RKHS is a matrix in the RKHS. From Definition1 and (71) we
find that

[A⊕B](i−1)p+k,(j−1)q+l := Ai j δkl +δi j Bkl. (72)

We can extend (72) to RKHS, defining analogously:

Definition 20 Let A∈ X
n×m and B∈ X

p×q. The Kronecker sumΦ(A)⊕Φ(B) ∈ X
np×mq is defined

as

[Φ(A)⊕Φ(B)](i−1)p+k,(j−1)q+l := φ(Ai j)δkl +δi j φ(Bkl).

In other words, in an RKHS the Kronecker sum is defined just as in (71):

Φ(A)⊕Φ(B) = Φ(A)⊗ IB + IA⊗Φ(B), (73)

whereIM denotes the real-valued identity matrix of the same dimensions (not necessarilysquare) as
matrixM. In accordance with Definition13, the result of (73) is an RKHS matrix.

The equivalent of the vec-ABC formula (1) for Kronecker sums is:

(A⊕B)vec(C) = (A⊗ IB+ IA⊗B)vec(C)

= (A⊗ IB)vec(C)+(IA⊗B)vec(C)

= vec(IBCA⊤)+vec(BCI ⊤A) (74)

= vec(IBCA⊤+BCI ⊤A).

This also works for matrices in an RKHS:

1236

GRAPH KERNELS

Lemma 21 If A ∈ X
n×m, B∈ X

p×q, and C∈ X
q×m, then

(Φ(A)⊕Φ(B))vec(Φ(C)) = vec(IB Φ(C)Φ(A)⊤+Φ(B)Φ(C) I ⊤A) ∈ R
np×1 .

Proof Analogous to (74), using Lemmas18and19.

Furthermore, we have two valid heterogeneous forms that map into the RKHS:

Lemma 22 If A ∈ X
n×m, B∈ X

p×q, and C∈ R
q×m, then

(Φ(A)⊕Φ(B))vec(C) = vec(IBCΦ(A)⊤+Φ(B)CI ⊤A) ∈ X
np×1 .

Proof Analogous to (74), using Lemmas16and17.

Lemma 23 If A ∈ R
n×m, B∈ R

p×q, and C∈ X
q×m, then

(A⊕B)vec(Φ(C)) = vec(IB Φ(C)A⊤+BΦ(C) I ⊤A) ∈ X
np×1 .

Proof Analogous to (74), using Lemma10.

A.5 Hadamard Product

While the extension of the Hadamard (element-wise) product to an RKHS is notrequired to imple-
ment our fast graph kernels, the reader may find it interesting in its own right.

Definition 24 Let A,B∈ X
n×m and C∈ R

n×m. The Hadamard productsΦ(A)⊙Φ(B) ∈ R
n×m and

Φ(A)⊙C∈H
n×m are given by

[Φ(A)⊙Φ(B)]i j =
〈
φ(Ai j),φ(Bi j)

〉
H

and [Φ(A)⊙C]i j = φ(Ai j)Ci j .

We prove two extensions of (3):

Lemma 25 If A ∈ X
n×m, B∈ X

p×q, C∈ R
n×m, and D∈ R

p×q, then

(Φ(A)⊗Φ(B))⊙ (C⊗D) = (Φ(A)⊙C)⊗ (Φ(B)⊙D).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗Φ(B))⊙ (C⊗D)](i−1)p+k,(j−1)q+l =
〈
φ(Ai j),φ(Bkl)

〉
H

Ci j Dkl

=
〈
φ(Ai j)Ci j ,φ(Bkl)Dkl

〉
H

=
〈
[Φ(A)⊙C]i j , [Φ(B)⊙D]kl

〉
H

= [(Φ(A)⊙C)⊗ (Φ(B)⊙D)](i−1)p+k,(j−1)q+l

1237

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Lemma 26 If A ∈ X
n×m, B∈ R

p×q, C∈ X
n×m, and D∈ R

p×q, then

(Φ(A)⊗B)⊙ (Φ(C)⊗D) = (Φ(A)⊙Φ(C))⊗ (B⊙D).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗B)⊙ (Φ(C)⊗D)](i−1)p+k,(j−1)q+l =
〈
φ(Ai j)Bkl,φ(Ci j)Dkl

〉
H

=
〈
φ(Ai j),φ(Ci j)

〉
H

BklDkl

= [Φ(A)⊙Φ(C)]i j [B⊙D]kl

= [(Φ(A)⊙Φ(C))⊗ (B⊙D)](i−1)p+k,(j−1)q+l

As before,

∗ (Φ(A)⊗Φ(B))⊙ (Φ(C)⊗Φ(D)) = (Φ(A)⊙Φ(C))⊗ (Φ(B)⊙Φ(D)) (75)

doesnot necessarily hold, the difficulty with (75) being that in general,

〈
φ(Ai j),φ(Bkl)

〉
H

〈
φ(Ci j),φ(Dkl)

〉
H
6=
〈
φ(Ai j),φ(Ci j)

〉
H
〈φ(Bkl),φ(Dkl)〉H . (76)

References

Christian Berg, Jens P. R. Christensen, and Paul Ressel.Harmonic Analysis on Semigroups.
Springer, New York, 1984.

Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig,
Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank.Nucleic Acids Research,
28:235–242, 2000.

Dennis S. Bernstein.Matrix Mathematics. Princeton University Press, 2005.

Jean Berstel.Transductions and Context-Free Languages. Teubner, 1979.

Nitin Bhardwaj and Hui Lu. Correlation between gene expression profiles and protein-protein in-
teractions within and across genomes.Bioinformatics, 21(11):2730–2738, June 2005.

Danail Bonchev and Dennis H. Rouvray, editors.Chemical Graph Theory: Introduction and Fun-
damentals, volume 1. Gordon and Breach Science Publishers, London, UK, 1991.

Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernelson graphs. InProceedings of
the International Conference on Data Mining, pages 74–81, 2005.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexan-
der J. Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels.
In Proceedings of Intelligent Systems in Molecular Biology (ISMB), Detroit, USA, 2005.
http://www.stat.purdue.edu/ ˜ vishy/papers/BorOngSchVisetal05.pdf .

1238

http://www.stat.purdue.edu/~vishy/papers/BorOngSchVisetal05.pdf

GRAPH KERNELS

Karsten M. Borgwardt, Hans-Peter Kriegel, S. V. N. Vishwanathan, and Nicol N. Schraudolph.
Graph kernels for disease outcome prediction from protein-protein interaction networks. In
Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany Murray, and Teri E. Klein, edi-
tors,Proceedings of the Pacific Symposium of Biocomputing 2007, Maui Hawaii, January 2007.
World Scientific.

Lars Bullinger, Konstanze D̈ohner, Eric Bair, Stefan Fröhling, Richard F. Schlenk, Robert Tibshi-
rani, Hartmut D̈ohner, and Jonathan R. Pollack. Use of gene-expression profiling to identify
prognostic subclasses in adult acute myeloid leukemia.New England Journal of Medicine, 350
(16):1605–1616, Apr 2004.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational kernels. In Suzanna Becker, Sebas-
tian Thrun, and Klaus Obermayer, editors,Advances in Neural Information Processing Systems
15, volume 14, Cambridge, MA, 2002. MIT Press.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Positive definiterational kernels. In Bernhard
Scḧolkopf and Manfred K. Warmuth, editors,Procedings of the Annual Conference on Compu-
tational Learning Theory, pages 41–56, 2003.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational kernels: Theory and algorithms.
Journal of Machine Learning Research, 5:1035–1062, 2004.

Samuel Eilenberg.Automata, Languages and Machines, volume A. Academic Press, 1974.

Hunter B. Fraser, Aaron E. Hirsh, Dennis P. Wall, and Michael B. Eisen. Coevolution of gene
expression among interacting proteins.Proceedings of the National Academy of Science USA,
101(24):9033–9038, Jun 2004.

Holger Fr̈ohlich, J̈org K Wegner, Florian Siker, and andreas Zell. Kernel functions for attributed
molecular graphs — a new similarity based approach to ADME prediction in classification and
regression.QSAR and Combinatorial Science, 25(4):317–326, 2006.

Judith D. Gardiner, Alan J. Laub, James J. Amato, and Cleve B. Moler. Solution of the Sylvester
matrix equationAXB⊤ +CXD⊤ = E. ACM Transactions on Mathematical Software, 18(2):223–
231, 1992.

Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. Series of Books in Mathematical Sciences. W. H. Freeman, 1979.

Thomas G̈artner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hardness results and effi-
cient alternatives. In Bernhard Schölkopf and Manfred K. Warmuth, editors,Proceedings of the
Annual Conference on Computational Learning Theory, pages 129–143. Springer, 2003.

Marc G. Genton. Classes of kernels for machine learning: A statistics perspective. Journal of
Machine Learning Research, 2:299–312, 2001.

Gene H. Golub and Charles F. Van Loan.Matrix Computations. John Hopkins University Press,
Baltimore, MD, 3rd edition, 1996.

1239

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

David Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10,
Computer Science Department, UC Santa Cruz, 1999.

Tamás Horv́ath, Thomas G̈artner, and Stefan Wrobel. Cyclic pattern kernels for predictive graph
mining. In Proceedings of the International Conference on Knowledge Discoveryand Data
Mining (KDD), pages 158–167, 2004.

Wilfried Imrich and Sandi Klav̌zar. Product Graphs, Structure and Recognition. Wiley, 2000.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled graphs.
In Proceedings of the International Conference on Machine Learning, pages 321–328, San Fran-
cisco, CA, 2003. Morgan Kaufmann.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Kernels for graphs. In Koji Tsuda, Bernhard
Scḧolkopf, and Jean-Philippe Vert, editors,Kernels and Bioinformatics, pages 155–170, Cam-
bridge, MA, 2004. MIT Press.

Risi Kondor and Karsten Borgwardt. The skew spectrum of graphs. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 496–503. ACM, 2008.

Risi Kondor and John D. Lafferty. Diffusion kernels on graphs and other discrete structures. InPro-
ceedings of the International Conference on Machine Learning, pages 315–322, San Francisco,
CA, 2002. Morgan Kaufmann.

Hugo Kubinyi. Drug research: Myths, hype and reality.Nature Reviews: Drug Discovery, 2(8):
665–668, August 2003.

Werner Kuich and Arto Salomaa.Semirings, Automata, Languages. Number 5 in EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, 1986.

Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolutionof online social net-
works. In Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors,
Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Philadelphia, PA, USA, August 20-23, 2006, pages 611–617. ACM, 2006.
ISBN 1-59593-339-5.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. Computation of the canonical decom-
position by means of a simultaneous generalized Schur decomposition.SIAM Journal on Matrix
Analysis and Applications, 26(2):295–327, 2004.

Daniel J. Lehmann. Algebraic structures for transitive closure.Theoretical Computer Science, 4(1):
59–76, February 1977.

Pierre Mah́e, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Extensions
of marginalized graph kernels. InProceedings of the Twenty-First International Conference on
Machine Learning, pages 552–559, 2004.

Mehryar Mohri. Semiring frameworks and algorithms for shortest-distanceproblems.Journal of
Automata, Languages and Combinatorics, 7(3):321–350, 2002.

1240

GRAPH KERNELS

Mehryar Mohri, Fernando C. N. Pereira, and Michael D. Riley. Weighted automata in text and
speech processing. In András Kornai, editor,Extended Finite State Models of Language: Pro-
ceedings of the ECAI’96 Workshop, pages 46–50, 1996.

Jorge Nocedal and Stephen J. Wright.Numerical Optimization. Springer Series in Operations
Research. Springer, 1999.

Fernando C. N. Pereira and Michael D. Riley. Speech recognition by composition of weighted finite
automata. InFinite-State Language Processing, pages 431–453. MIT Press, 1997.

Nikos P. Pitsianis.The Kronecker Product in Approximation and Fast Transform Generation. PhD
thesis, Department of Computer Science, Cornell University, 1992.

Liva Ralaivola, Sanjay J. Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chemical
informatics.Neural Networks, 18(8):1093–1110, October 2005.

Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph kernels. Techni-
cal report, First International Workshop on Mining Graphs, Trees and Sequences (held with
ECML/PKDD’03), 2003.

Jean-François Rual, Kavitha Venkatesan, Tong Hao, Tomoko Hirozane-Kishikawa, Aḿelie Dricot,
Ning Li, Gabriel F. Berriz, Francis D. Gibbons, Matija Dreze, Nono Ayivi-Guedehoussou, Niels
Klitgord, Christophe Simon, Mike Boxem, Stuart Milstein, Jennifer Rosenberg, Debra S. Gold-
berg, Lan V. Zhang, Sharyl L. Wong, Giovanni Franklin, Siming Li, Joanna S. Albala, Janghoo
Lim, Carlene Fraughton, Estelle Llamosas, Sebiha Cevik, Camille Bex, Philippe Lamesch,
Robert S. Sikorski, Jean Vandenhaute, Huda Y. Zoghbi, Alex Smolyar,Stephanie Bosak, Rey-
naldo Sequerra, Lynn Doucette-Stamm, Michael E. Cusick, David E. Hill, Frederick P. Roth, and
Marc Vidal. Towards a proteome-scale map of the human protein-protein interaction network.
Nature, 437(7062):1173–1178, Oct 2005.

Bernhard Scḧolkopf and Alexander J. Smola.Learning with Kernels. MIT Press, Cambridge, MA,
2002.

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. BRENDA, the enzyme database: Updates and major new developments.
Nucleic Acids Research, 32D:431–433, Jan 2004.

Roded Sharan and Trey Ideker. Modeling cellular machinery through biological network compari-
son.Nature Biotechnology, 24(4):427–433, Apr 2006.

Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Max Welling and David van Dyk, edi-
tors,Proceedings of the International Workshop on Artificial Intelligence andStatistics. Society
for Artificial Intelligence and Statistics, 2009.

Alexander J. Smola and Risi Kondor. Kernels and regularization on graphs. In Bernhard Scḧolkopf
and Manfred K. Warmuth, editors,Proceedings of the Annual Conference on Computational
Learning Theory, Lecture Notes in Computer Science, pages 144–158, Heidelberg, Germany,
2003. Springer-Verlag.

1241

V ISHWANATHAN , SCHRAUDOLPH, KONDOR AND BORGWARDT

Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. Technical Report
0808.4134, arXiv, 2008.http://arxiv.org/abs/0808.4134 .

Hannu Toivonen, Ashwin Srinivasan, Ross D. King, Stefan Kramer, and Christoph Helma. Sta-
tistical evaluation of the predictive toxicology challenge 2000-2001.Bioinformatics, 19(10):
1183–1193, July 2003.

Koji Tsuda, Taishin Kin, and Kiyoshi Asai. Marginalized kernels for biological sequences.Bioin-
formatics, 18 (Suppl. 2):S268–S275, 2002.

Charles F. Van Loan. The ubiquitous Kronecker product.Journal of Computational and Applied
Mathematics, 123(1–2):85–100, 2000.

Laura J. van’t Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D.He, Augustinus A. M. Hart,
Mao Mao, Hans L. Peterse, Karin van der Kooy, Matthew J. Marton, Anke T. Witteveen, George J.
Schreiber, Ron M. Kerkhoven, Chris Roberts, Peter S. Linsley, René Bernards, and Stephen H.
Friend. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415:530–
536, 2002.

Jean-Philippe Vert. The optimal assignment kernel is not positive definite.Technical Report
0801.4061, arXiv, May 2008.http://aps.arxiv.org/abs/0801.4061 .

S. V. N. Vishwanathan. Kernel Methods: Fast Algorithms and Real Life Applica-
tions. PhD thesis, Indian Institute of Science, Bangalore, India, November 2002.
http://www.stat.purdue.edu/ ˜ vishy/papers/Vishwanathan02.pdf .

S. V. N. Vishwanathan, Karsten Borgwardt, and Nicol N. Schraudolph. Fast computation of graph
kernels. In B. Scḧolkopf, J. Platt, and T. Hofmann, editors,Advances in Neural Information
Processing Systems 19, Cambridge MA, 2007. MIT Press.

Patrick Warnat, Roland Eils, and Benedikt Brors. Cross-platform analysis of cancer microarray data
improves gene expression based classification of phenotypes.BMC Bioinformatics, 6:265, Nov
2005.

Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining.SIGKDD Explo-
rations, 5(1):59–68, 2003.

Xiang Yao, Dong Wei, Cylburn Soden Jr., Michael F. Summers, and Dorothy Beckett. Structure
of the carboxy-terminal fragment of the apo-biotin carboxyl carrier subunit of Escherichia coli
acetyl-CoA carboxylase.Biochemistry, 36:15089–15100, 1997.

1242

http://arxiv.org/abs/0808.4134
http://arxiv.org/
http://arxiv.org/abs/0808.4134
http://aps.arxiv.org/abs/0801.4061
http://aps.arxiv.org/
http://aps.arxiv.org/abs/0801.4061
http://www.stat.purdue.edu/~vishy/papers/Vishwanathan02.pdf

	Introduction
	Paper Outline

	Preliminaries
	Linear Algebra Concepts
	Graph Concepts

	Random Walk Graph Kernels
	Direct Product Graphs
	Kernel Definition
	Special Cases

	Efficient Computation
	Sylvester Equation Methods
	Conjugate Gradient Methods
	Fixed-Point Iterations
	Spectral Decomposition Method
	Nearest Kronecker Product Approximation

	Experiments
	Unlabeled Random Graphs
	Real-World Data Sets
	The Data Sets
	Unlabeled Graphs
	Labeled Graphs

	Protein-Protein Interaction Networks
	Co-Integration of Gene Expression and PPI Data
	Composite Graph Kernel
	Data Sets
	Results

	Rational Kernels
	Semirings
	Weighted Transducers
	Weighted Automata
	The Rational Kernel for Strings
	The Rational Kernel for Weighted Automata
	Recovering Random Walk Graph Kernels

	R-convolution Kernels
	Graph Kernels as R-Convolutions
	R-Convolutions in Abstract Semirings

	Discussion and Outlook
	Extending Linear Algebra to RKHS
	Matrix Product
	Kronecker Product
	Heterogeneous Kronecker Product
	Kronecker Sum
	Hadamard Product

