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Games Vs. Planning Problems

In many problems  you’re are pitted against an opponent

● certain operators are beyond your control: you cannot control your opponent’s 
moves

You cannot search the entire space for an optimal path

● your opponent may make a move which makes any path you find obsolete

You need  a strategy that leads to a winning position regardless of how your 
opponent plays

Search strategies must take into account the conflicting goals of the agents

“Unpredictable” opponent: ⇒ solution is a strategy

● Agents goals are in conflict: adversarial search (game)

● Specify a move for every possible opponent reply

Time limits: unlikely to find optimal move, must approximate



Why Study Games in AI?

● problems are formalized

● real world knowledge (common sense knowledge) is not too important

● rules are fixed

● adversary modeling is of general importance (e.g., in economic situations, in 
military operations, ...)

– opponent introduces uncertainty

– programs must deal with the contingency problem

● complexity of games??

– number of nodes in a search tree (e.g., 1040 legal positions in chess)

– specification is simple (no missing information, well-defined problem)



Types of games

We restrict our analysis to a very specific set of games:

2-player zero-sum discrete finite deterministic games of perfect information



2-player zero-sum discrete finite deterministic games of 
perfect information

What does it means?

● Two player: :-)

●Zero-sum: In any outcome of any game, Player A’s gains equal player B’s 
losses.

●Discrete: All game states and decisions are discrete values.

●Finite: Only a finite number of states and decisions.

●Deterministic: No chance (no die rolls).

●Perfect information: Both players can see the state, and each decision is 
made sequentially (no simultaneous moves).



Types of games



Types of games
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Game Tree Search

Initial state: initial board position and player

Operators: one for each legal move

Goal states: winning board positions

Scoring Function: assigns numeric value to states

Game tree: encodes all possible games

We are not looking for a path, only the next move to make

Our best move depends on what the other player does



Move generation



(Partial) Game Tree for Tic-Tac-Toe



Minimax Criterion

Assume game tree of uniform depth (to simplify matters)

● Generate entire game tree

● Apply utility function to each terminal state

● To determine utility of nodes at any level, if Min’s turn to play it will choose child 
with minimum utility, otherwise Max will choose child with maximum utility

● Continue backing up values from leaf to root, one level at a time

Maximizes utility under assumption that opponent will play perfectly to minimize it 
(assuming also opponent has same evaluation function)



Minimax Algorithm



Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

● best achievable payoff against best play

E.g., 2-ply game:



Properties of Minimax

Complete: Yes, if tree is finite (chess has specific rules for this)

Optimal: Yes, against an optimal opponent.

● Otherwise??

Time complexity: O(bm )

Space complexity: O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games 
⇒ exact solution completely infeasible



Resource Limits

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move

Standard approach:

● cutoff test
e.g., depth limit

● evaluation function
= estimated desirability of position and explore only (hopeful) nodes with certain 
values

MINIMAX-CUTOFF is identical to MINIMAX except

● T ERMINAL-TEST is replaced by C UTOFF-TEST

● U TILITY is replaced by EVAL

Search depth in chess:

4-ply ≈ human novice

8-ply ≈ typical PC, human master

12-ply ≈ Deep Blue, Kasparov



Evaluation functions

For chess, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

e.g., weight of figures on the board:

● w1 = 9 with

● f1(s) = (number of white queens) – (number of black queens), etc.

Other features which could be taken into account: number of threats, good structure 
of pawns, measure of safety of the king.



a-b Pruning

The problem with minimax algorithm search is that the number of game states it has 
to examine is exponential in the number of moves:

α-β proposes to compute the correct minimax algorithm decision without looking at 
every node in the game tree.

PRUNING!
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Properties of a-b Pruning

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = O(bm/2)

● doubles possible depth of search doable in the same time

A simple example of the value of reasoning about which computations are relevant (a 
form of meta-reasoning)



a-b Algorithm



a-b Algorithm



Why is it called of a-b?

a is the value of the best (i.e., highest-
value) choice found so far at any choice 
point along the path for max

If v is worse than a, max will avoid it

● prune that branch

Define b similarly for min



Practical Matters



Non-Deterministic Games

E.g. backgammon: dice rolls determine legal moves

We can do Minimax with a extra “chance” layer

Simplified example with coin-flipping instead of dice-rolling



EXPECT-MINIMAX Algorithm

EXPECTIMINIMAX gives perfect play for non-deterministic games

Like MINIMAX, except add chance nodes

● For max node return highest EXPECTIMINIMAX of SUCCESSORS

● For min node return lowest EXPECTIMINIMAX of SUCCESSORS

● For chance node return average of EXPECTIMINIMAX of SUCCESSORS

Here exact values of evaluation function do matter (“probabilities”, “expected gain”, 
not just order)

α-β pruning possible by taking weighted averages according to probabilities



Games of Imperfect Information

E.g. card games (bridge, hearts, some forms of poker)

● Opponent’s initial cards are unknown

● Not quite like non-deterministic games

We can calculate probabilities for each possible deal

● Seems just like one big dice roll at the beginning

● Idea:

– Compute the minimax value of each action in each deal

– Then choose action with highest expected value over all deals

– Special case: an action optimal for all deals, is optimal

● Take weighted average over all possible situations to make decision at the top of 
the game tree

● Requires a lot of computation. . .


