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Games Vs. Planning Problems

In many problems you're are pitted against an opponent

. certain operators are beyond your control: you cannot control your opponent’s
moves

You cannot search the entire space for an optimal path
. your opponent may make a move which makes any path you find obsolete

You need a strategy that leads to a winning position regardless of how your
opponent plays

Search strategies must take into account the conflicting goals of the agents

“Unpredictable” opponent: = solution is a strategy
. Agents goals are in conflict: adversarial search (game)
. Specify a move for every possible opponent reply

Time limits: unlikely to find optimal move, must approximate



Why Study Games in AI?

. problems are formalized

. real world knowledge (common sense knowledge) is not too important

. rules are fixed

. adversary modeling is of general importance (e.g., in economic situations, in
military operations, ...)

- opponent introduces uncertainty

- programs must deal with the contingency problem

. complexity of games??

- number of nodes in a search tree (e.g., 1040 legal positions in chess)

- specification is simple (no missing information, well-defined problem)



Types of games

deterministic chance
perfect information || chess, checkers, |backgammon,

go, othello monopoly
imperfect bridge, poker,
information scrabble, nuclear

We restrict our analysis to a very specific set of games:

war

2-player zero-sum discrete finite deterministic games of perfect information



2-player zero-sum discrete finite deterministic games of
perfect information

What does it means?
Two player: :-)

Zero-sum: In any outcome of any game, Player A’s gains equal player B’s
losses.

.Discrete: All game states and decisions are discrete values.
Finite: Only a finite number of states and decisions.
.Deterministic: No chance (no die rolls).

.Perfect information: Both players can see the state, and each decision is
made sequentially (no simultaneous moves).



Types of games




Types of games

Hidden

Involves Animal

Mutiplar
«vﬁ Behavior



Game Tree Search

Initial state: initial board position and player
Operators: one for each legal move

Goal states: winning board positions

Scoring Function: assigns numeric value to states

Game tree: encodes all possible games

We are not looking for a path, only the next move to make

Our best move depends on what the other player does



Move generation

CAME TREE

b = branching factor




(Partial) Game Tree for Tic-Tac-Toe
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Minimax Criterion

Assume game tree of uniform depth (to simplify matters)
. Generate entire game tree
. Apply utility function to each terminal state

. To determine utility of nodes at any level, if Min’s turn to play it will choose child
with minimum utility, otherwise Max will choose child with maximum utility

. Continue backing up values from leaf to root, one level at a time

Maximizes utility under assumption that opponent will play perfectly to minimize it
(assuming also opponent has same evaluation function)



Minimax Algorithm

function MiNiMAX-DECISION(state) returns an action

v+ MAX-VALUE(state)
return the action in SUCCESSORS( state) with value v

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U4 —00
for a,s in SUCCESSORS(state) do
v¢ MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(Sstate)
U 00
for a, s in SUCCESSORS(state) do
v MIN(v, MAX-VALUE(s))
return v




Minimax
Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

. best achievable payoff against best play
E.g., 2-ply game:

MAX /\ 3

MIN \/




Properties of Minimax

Complete: Yes, if tree is finite (chess has specific rules for this)
Optimal: Yes, against an optimal opponent.
. Otherwise??
Time complexity: O(b™)
Space complexity: O(bm) (depth-first exploration)

For chess, b = 35, m = 100 for “reasonable” games
= exact solution completely infeasible



Resource Limits

Suppose we have 100 seconds, explore 104 nodes/second
= 10% nodes per move

Standard approach:

. cutoff test
e.g., depth limit

. evaluation function
= estimated desirability of position and explore only (hopeful) nodes with certain
values

MINIMAX-CUTOFF is identical to MINIMAX except
. T ERMINAL-TEST is replaced by C UTOFF-TEST
. U TILITY is replaced by EVAL

Search depth in chess:
4-ply ® human novice

8-ply = typical PC, human master
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Evaluation functions

S I Y §

| 4
N [
Y
H B

N

$ 2
B
H
H
g
2
e

2
H
H

T o

H
22
2 2%

Black to move Black winning

White slightly better
For chess, typically linear weighted sum of features

L i

Eval(s) = w1l f1(s) + w2 f2(s) + ... + wn fn(s)

e.g., weight of figures on the board:
. Wl = 9 with

. f1(s) = (number of white queens) - (number of black queens), etc.

Other features which could be taken into account: number of threats, good structure
of pawns, measure of safety of the king.



a-f Pruning

The problem with minimax algorithm search is that the number of game states it has
to examine is exponential in the number of moves:

a-B proposes to compute the correct minimax algorithm decision without looking at
every node in the game tree.

PRUNING!



a-B Pruning

The problem with minimax algorithm search is that the number of game states it has
to examine is exponential in the number of moves:

a-B proposes to compute the correct minimax algorithm decision without looking at
every node in the game tree.

PRUNING!
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a-B Pruning

The problem with minimax algorithm search is that the number of game states it has
to examine is exponential in the number of moves:
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a-B Pruning

The problem with minimax algorithm search is that the number of game states it has
to examine is exponential in the number of moves:

a-B proposes to compute the correct minimax algorithm decision without looking at
every node in the game tree.

PRUNING!

EXAMPLE
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We see: possibility to prune depends on the order of processing the successors!
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a-B Pruning

The problem with minimax algorithm search is that the number of game states it has
to examine is exponential in the number of moves:

a-B proposes to compute the correct minimax algorithm decision without looking at
every node in the game tree.

PRUNING!
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We see: possibility to prune depends on the order of processing the successors!



Properties of a-p Pruning

Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = O(b™/2)

. doubles possible depth of search doable in the same time

A simple example of the value of reasoning about which computations are relevant (a
form of meta-reasoning)



o-p Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game

v+ MAX-VALUE(state, —oo, +00)
return the action in SUCCESSORS|( state) with value v

function MAX-VALUE(state, a, 3) returns a utility value
inputs: siate, current state in game
«, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
U4 —0C
for a,s in SUCCESSORS(state) do
v+ MAaX(v, MIN-VALUE(S, 0, 3))
if v > 5 then return v
a +— MaX(a, v)
return v




o-p Algorithm

function MIN-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UriLiTy(state)
U4 +00C
for a,s in SUCCESSORS(state) do
v MiIN(v, MAX-VALUE(Ss, «, 3))
if v € o then return v
B« MIN(3, v)
return v




Why is it called of a-?

a is the value of the best (i.e., highest-
value) choice found so far at any choice
point along the path for max MAX

If v is worse than o, max will avoid it MIN

. prune that branch

Define B similarly for min

MAX

MIN v



Practical Matters

Variable branching

—  |ioraiive deepening

- order Dest move from last search hirst

L. use previous backsd up valus Lo inibali zs
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- keep track of repeated positions
transpositon tables)

Haorizon effect
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Non-Deterministic Games

E.g. backgammon: dice rolls determine legal moves
We can do Minimax with a extra “chance” layer

Simplified example with coin-flipping instead of dice-rolling

MAX A\

CHANCE 3 @ (-1

0.5 0.5 0.5 0.5

MIN 2\/ 4/ 0/ -2V/



EXPECT-MINIMAX Algorithm

EXPECTIMINIMAX gives perfect play for non-deterministic games
Like MINIMAX, except add chance nodes
. For max node return highest EXPECTIMINIMAX of SUCCESSORS
. For min node return lowest EXPECTIMINIMAX of SUCCESSORS
. For chance node return average of EXPECTIMINIMAX of SUCCESSORS

7\

Here exact values of evaluation function do matter (“probabilities”, “expected gain”,
not just order)

a-B pruning possible by taking weighted averages according to probabilities



Games of Imperfect Information

E.g. card games (bridge, hearts, some forms of poker)
. Opponent’s initial cards are unknown
. Not quite like non-deterministic games
We can calculate probabilities for each possible deal
. Seems just like one big dice roll at the beginning
. Idea:
- Compute the minimax value of each action in each deal
- Then choose action with highest expected value over all deals
- Special case: an action optimal for all deals, is optimal

. Take weighted average over all possible situations to make decision at the top of
the game tree

. Requires a lot of computation. . .



