
The Evolutionary Ecology of
Technology: The Case of Programming

Languages

Silvia Crafa!

Universita’ di Padova

…numerical
computing

The programming languages timeline

Time

try to grasp the evolutionary process that !
guided / unfolded behind !

the fortune of mainstream PLs

the quest for “good” !
programming abstractions

✤ When a language has been invented VS when became popular?!
✤ Why has been invented VS why became popular?

Complexity 2013

Motivations

Technological change displays numerous life-like features, suggesting a deep
connection with biological evolution. But some differences are also noticeable.

Is it possible to formulate a theory of technological evolution?

• descent with variation !
• selection!
• convergence !
• extinction!
• rapid change and diversification!
• punctuated pattern!
• coevolution!
• macro-evolutionary trends!
• niche construction!
• exaptation !
• …

• tech innovations are examples of
planned design: long-term goals,
efficiency, !

• together with a clear notion of
progress (measures)!

• “The Lazarus effect” !

• …

Motivations

Technological change displays numerous life-like features, suggesting a deep
connection with biological evolution. But some differences are also noticeable.

Is it possible to formulate a theory of technological evolution?

a widespread reuse and combination of available elements !
to build new structures!

• Technology is highly dependent on the combination of
preexisting inventions. Adding new simple elements can completely
reset the path of future technologies!

• In biology, once established, solutions to problems are seldom replaced.

tinkering

Motivations
• consider the role played by social and economic factors:

• issues of compatibility, but also market dominance or trends, often
make it impossible for better solutions to enter, so that the
dominant technology is stuck to suboptimal solutions
(JavaScript and Web Solutions)!

• coevolution of economy and technology: novel technologies can
deeply transform how economy is organised and how new
economic regimes emerge !

! (Internet, Cloud, BigData, CS Education)

Motivations
for information technology !

we have the complete fossil record
while in biology we have !

rich data on the history of phyla

The availability of data is crucial:

• The phylogeny of technology is not hierarchical, but rather is more similar to
that of bacteria

reticulate networks, instead of trees, appear to be more
appropriate when dealing with cultural dynamics. The reticulated
nature is largely due to the rapid and large information exchange,
and the introduction of different types of innovations.

• We need to identify the scales at which technological hierarchies operate.
In biology, such hierarchies can be described including different
levels, from population dynamics to genotype-phenotypic maps.
Information technology, with all its richness and multiplicity of
scales, offers our best to achieve this goal.

Biological Evo Language Evo PL Evo

Discrete heritable units:

nucleotides, aminoacids, genes words, phonemes, syntax primitives, phrases, modules, styles

Mode of inheritance:

parent off-spring, rare clonal
parents, groups, !

prestige bias (cultural traits)
teaching, companies,

backward compatibility,
prestige or trend bias

Mutation:

genetic alteration new words, mistakes, sound
changes, innovation

specification update, !
new version!

e.g. Python 3.3.3, Python 3.4.0

Selection:
natural selection social selection and trends market, social selection,

trends (everything on web)!
stuck to suboptimal solutions

Biological Evo Language Evo PL Evo

Fossils:

fragmented fossil records ancient texts

Extinction:
species (mass) extinction language death

Hybridisation:
language Creoles

Horizontal transfer:
horizontal gene tranfer borrowing

species mixes ??

??

??

??

What is a
species?

What is a Programming Language?

A formal constructed language:

formally defined
syntax

semantics explaining the
 meaning of language phrases

The PL boundaries are precisely (and finitely) defined!
by the Language Specification

Needed by
the parser!

Translation

We know what !
a species is!

differently form biology and human languages

No hybrids!
a code mixing !

Java and C++ constructs!
will not compile…unless !

we define a new language, !
i.e. a new species

Programming Paradigms
• A programming paradigm is a fundamental style of computer

programming, it characterises the structure of programs!
imperative, functional, object-oriented, declarative, logic, … !

• PLs are designed to support one or many paradigms; they are
usually classified in terms of paradigms

multilevel evolution !
and multilevel selection

new paradigms emerge (speciation), !
compete (selection) and !
often merge (hybridise)

if a PL is a species, a paradigm is a group/family/class

Biological Evo Language Evo PL Evo

Fossils:

fragmented fossil records ancient texts
abandoned languages!
deprecated features !
PL for old hardware

Extinction:
species (mass) extinction language death language death!

for high level PL “no” mass extinction!
Cobol survives, what about !

Objective-C after Swift?

Hybridisation:
language Creoles no hybridisation!

hybrid code does not run

Horizontal transfer:
horizontal gene tranfer borrowing lateral influence!

but no hybrid

species mixes

What is a
species?

Coevolution:

Niche Construction: Exaptation:

Macro-Evolutionary Trend:

PLs co-evolve with hardware !
(e.g. multicores, GPUs, Cloud, IoT)!
 and with programmers (PL theory)

PLs increase their abstraction level.!
focus on “what to do” rather than on “how to do it”!

This is due to more efficient hardware, which
supports stratifications of virtual machines, and

enhanced theory

Web PL ecosystem!
• page content: HTML5 !
• page apperance: CSS !
• Client side: JavaScript!
• Server side: Php, CGI!
• data: XML

after 50 years, functional abstractions!
appear to work well in concurrent programming

Fortran!
Lisp!

Cobol
Pascal C!

ML
C++!

Haskell
Java JavaScript

Ruby !
Python

X10Scala
GoC#

PHP

CONCURRENCYINTERNET

DISTRIBUTION

BIG DATA

…..linearize evolutionary leaps!Changes need a catalyst

✤ multicore —> concurrent programming!
✤ cloud computing —> distributed programming
✤ big data applications —> High Performance Computing

The programming languages timeline

The Quest for good Abstractions

Expressiveness!
Performance

Easy to think!
Easy to reason about

different
abstraction levels!

✤ Big Data Application Framework !
✤ Map - Reduce Model!
✤ Bulk Synchronous Parallel Model

✤ Shared Memory!
✤ GPU Concurrency Model

✤ Message Passing Model
which abstractions !

interoperate!
productively?

Moving towards conclusions

✤ Modern Mainstream Programming Languages: !
✤ become more declarative/high-level, moving stuff into the runtime!
✤ productively mix paradigms !
✤ heterogeneous concurrency models (Distribution)!

!

✤ What is the right level of abstraction? !
✤ What are good abstractions? Expressive, flexible, easy to reason

about, easy to implement in a scalable/resilient way!

!

✤ What about theory?

The role of PL theory
✤ Formal languages are well suited to test new abstractions and new

mix of abstractions in a concise and expressive model. i.e. they allow
for experimentation in a controlled environment.!
✤ Asynchrony, locality, scope extrusion, futures, mobility, security, timing, probability, ecc.,

have been studied both in isolation and in combination !

✤ To develop formal (and mechanisable) techniques to reason about
software systems

✤ When working in a formal framework it is easier to distinguish the different
abstraction levels involved: study them separately and then integrating them

Conclusions
✤ cloud computing, reactive programming, BigData bring about

new shuffle of old issues and new problems !
! (scalability, heterogeneity, fault tolerance, security, privacy, efficiency)!

✤ this scenario will act as the environment operating a selection over
the features of actual PLs.

…what’s Java8 if not a form of adaptation?

✤ hence “language mutations” will appear to adapt to these new
requirements, and to co-evolve with hardware evolution.!

PLs struggle for life in the language arena. !

✤ Will only survive those equipped with higher plasticity, either in their
design choices or in their marketing strategies?

About Numerical Computing

• The Lorenz system: a system of 3 ordinary differential equations
nonlinear, three-dimensional and deterministic

Consider a mathematical problem to be solved numerically

notable for having chaotic solutions for certain parameter values
and initial conditions !

simplified math model for atmospheric convection, also in models
for lasers, electric circuits, chemical reactions,…

About Numerical Computing

1. Specify the mathematical problem!

2. Write a software capable of solving the numerical problem!

3. Run the numerical software to find solution!

4. Plot results into a graphic

(Matlab, !
Mathematica!

DSL, Python,…)

Maths

Maths

CS

CS

IDEA:!
translate it into another PL so

to use it as input of the
numerical solution software

Specify the math problem…

…in the Maths
language

…in LaTeX !
CS

Specify ODE coefficients, ODEs, the time interval, the
discretisation method in time, initial conditions

executable !Python script

CFL tool!
• parse a LaTeX text!
• recognize a math problem!
• generate a Python script that

computes the solution

 problem’s resolution
pattern

problem specification

The gap between the math def and the
computation of its solution is covered by relying

on high-level mathematical abstractions, !
which!

 can be expressed both in LaTeX and in Python,
helping both in problem recognition and in the
generation of the code for the resolution pattern

CFL: computing from LaTeX
a numerical problem-solving environment

that converts the specification of a
mathematical problem into an appropriate

resolution pattern that can be directly executed

…different abstraction levels…

Maths

LaTeX Python

Maths

