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Abstract

Discovering causal relationships is a hard task, often dvied by the need for
intervention, and often requiring large amounts of dataesolve statistical un-
certainty. However, humans quickly arrive at useful causkdtionships. One
possible reason is that humans extrapolate from past exyperito new, unseen
situations: that is, they encode beliefs over causal iamags, allowing for sound
generalization from the observations they obtain fromdadiyeacting in the world.

Here we outline a Bayesian model of causal induction wheliefs@ver compet-

ing causal hypotheses are modeled using probability ti8ased on this model,
we illustrate why, in the general case, we need intervestfns constraints on
our causal hypotheses in order to extract causal inform&tion our experience.

1 Introduction

A fundamental problem of statistical causality is the pemblof causal induction®; namely, the
generalization from particular instances to abstractalalasvs [5, 4]. For instance, how can you
conclude that it is dangerous to ride a bike on ice from a badall on wet floor?

In this work, we are concerned with the following problemwhado we determine from experience
whether X — Y andU — V" or"“Y — X andV — U"? That is, which of the two causal
hypotheses oveX, Y, U andV is correct,

even in the case when both models represent identical jtnttiitions? Furthermore, if we collect
evidence supporting the claimX* — Y, how do we extrapolate this to the (yet unseen) situation
“U — V"? The main challenge in this problem is that the hypothesig 4, is a random variable
that controls the very causal structure. That is, a morerategraphical representation would be
the model:

@ meta-level

which cannot be analyzed using the framework of graphicaletealone because the random vari-
able H operates on a meta-level of the graphical model &gy, U andV'.

For a thorough treatment of non-causal induction, refeg}o [



Figure 1: (Left) A device with a green and a red light bulb. AitsW allows controlling the state
of the green light: either “on”, “off” or “undisturbed”. (Bht) A second device having a green
spinner and a red spinner, both of which can either lock irftorézontal or vertical position. The
two devices are connected through a cable, establishirgahelation among their randomizing
mechanisms.

In this work these difficulties are overcome by using a prdfgltree to model the causal structure

over the random events [9]. Probability trees can entadternative causal realizations, and in
particular alternative causal hypotheses. All randomaldeis are of the same type—no distinctions
between meta-levels are needed. Furthermore, we defimeantens [7] on probability trees so as

to predict the statistical behavior after manipulation. ¥Men show that such a formalization leads
to a probabilistic method for causal induction that is itinely appealing.

2 Causal Induction in Probability Trees

Imagine we are given a device with two light bulbs, one gre€h4nd one redY), whose states
obey a hidden mechanism that correlates them positivelyedber, the box has a switch that allows
us controlling the state of the green bulb: we can eitherdéanndisturbed, or we can intercept the
mechanism by turning the light on or off as we please (FigylefL.device). We encode the “on”
and “off” states of the green light a8 = x and X = —x respectively. Analogouslyy = y and

Y = -y denote the “on” and “off” states of the red light. We ponder &xplanatory power of two
competing hypotheses: either “green causes r&d*=( h) or “red causes greenH = —h).

2.1 Representation

Assume that the probabilities governing the realizatiof/ofX andY” are as detailed in Figure 2a.
In this tree, each (internal) node is interpreted as a cansahanism; hence a path from the root
node to one of the leaves corresponds to a particular sdglierdlization of causal mechanists
The logic underlying the structure of this tree is self-extory:

1. Causal precedence: A node causally precedes its descendants. For instanceydheode
corresponding to the sure evéhtausally precedes all other nodes.

2. Resolution of variables: Each node resolves the value of a random variable. For iostan
given the node corresponding 6 = h and X = —z, eitherY = y will happen with
probability P(y|h, =) = 1 orY = —y with probability P(—y|h, —)

3. Heterogeneous order: The resolution order of random variables can vary acrogerdifit
branches. For instancé&] preceded” underH = h, butY precedesX underH = —h.
This allows modeling different causal hypotheses.

While the probability tree represents our subjective medplaining the order in which the random
values are resolved, it does not necessarily corresportkettetmporal order in which the events
are revealed to us. So for instance, under hypothiésis h, the value of the variabl& might be
revealed befor&, even thoughX causally precedes; and the hypothesi®, which precedes both
X andY, is never observed.

2Conditional independencies are also captured within agiility tree [9, Chapter 8.2].
3Note that the set of paths is the sample space of the expetinpeobability space.



Figure 2: a) The probability tree representing the stasstif the device with two lights. The proba-

bility of a realization (written under the leaves) is calteld by multiplying the probabilities starting

from the root until a leave is reached. Note that the two hypses are statistically indistinguishable.
b) The probability tree resulting from (a) after settiNg= .

2.2 Interventions

Suppose we observe that both lights are on. Have we learnghirg about their causal depen-
dency? A brief calculation shows that this is not the caseabse the posterior probabilities are
equal to the prior probabilities:

P(y|h, )P (xz|h)P(h) 133 1

PO = B PP () + Pl ) PGTAPCR) 13- 5+3-3-3 2 )

This makes sense intuitively, because by just observingthigatwo lights are on, it is statistically
impossible to tell which one caused the other. Note how tbifaation of the likelihood(x, y| H)
depends on whethdi = h or H = —h. How do we extract causal information then? To answer
this question, we make use of a crucial insight of statiktieasality:

To obtain new causal information from statistical data, cédisal information
needs to be supplied (paraphrased as “no causes in, no cau5§y or “to find
out what happens when you kick the system, you have to kickykim” [1]).

Thus, we now repeat our experiment, but this tiwveeturn on the green light = z). We reflect

this choice by changing all the mechanisms that resolve dhdam variableX, placing all the
probability mass on the outcondé = x (see Figure 2b). Assume that we subsequently observe that
the second light is on. Then, the posterior probabilities ar

P(y|h, 2)P(2|h)P(h) i l3 3

P(hla,y) = = =z
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wherez is Pearl’s notation to indicate a causal interventioXofSinceP(h) > P(h|Z,y), we have
gathered evidence favoring the hypothesis “green causésTais was only possible because our
intervention introduced a statistical asymmetry amongulehypotheses that did not exist before.

2.3 Extrapolation

Let us now connect a second device to the first one (Figurglt dievice). This device carries two
spinners, a greerl/) and a red onel(). A hidden randomizing mechanism chooses their orien-
tations (either horizontal or vertical) independentlynfrthe state of the colored lights. However,
the connection and the mysterious color coding suggesthieat must be a relation between the
two randomizing mechanisms. Hence, we impose that the cwdlsystem either follows the law
“green causes red” or “red causes green"—intentionalljushng the casesX — Y andU + V”

and “X <« Y andU — V",

The probability tree over the random variabl®sY, U and V' extends the probability tree from
Figure 2a by appending sub-trees oleand V' having the restriction that the nodes resolviig

precede the nodes resolviligunder hypothesigél = h, and that the nodes resolvifgprecede the

nodes resolving/ in the cased = —h.



Note however, that for this new tree, the posterior prolitghdlver the hypothesis “green causes
red” given that we turned on the green light and saw the ret lighting up is identical to the
previous tree, namelp(h|2,y) = £. The restriction we have imposed over the possible causal
hypotheses has enabled us extrapolating causal infonmfation our experience witkk’ andY” to

the yet unobserved variablésandV’. This extrapolation would not have been possible if we had
kept all four causal hypotheses. Hence, in the general cagsal extrapolation rests on constraints

on our causal hypotheses.

3 Concluding Remarks

The problem of causal induction has been addressed rdjatdeently by the statistics and machine
learning community, mainly under the context of graphicabels [7, 11, 10, 3, 4, 6]. This has led
to the development of many algorithms that propose a seitedlisal graphical model explaining
the data. Many of these algorithms rely on independencergdsens, and hence naturally they
proceed by exploiting the independence relations founkerdiata to construct a causal model.

This work outlines a general method for causal inductiohithBayesian in nature and does not rely
on independence assumptions. It is based on the idea of novwglgrobability trees [9] with inter-
ventions [7] for predicting the behavior of a manipulatedtseyn with multiple causal hypotheses.
We have seen that both the interventions and the (constrainthe) causal hypotheses introduce
statistical asymmetries that permit the extraction anthgxtiation of causal information. Of course,
this means that the amount and the forms of causal relati@isase can discover are determined
(a) by our constraints on the set of causal hypotheses anuly(the interventions that we are al-
lowed to apply to the system (and essentially, to our hysEbe In a sense, one could say that we
are “imprinting our own causal laws onto our experience”wdwer, this raises more fundamental
guestions that we have not addressed here: where do thesgabots on our causal hypotheses
come from and what logic do they obey?
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