
This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

http://www.elsevier.com/copyright



Author's personal copy

Isotree: Tree clustering via metric embedding

Bai Xiao a,�, Andrea Torsello b, Edwin R. Hancock c

a Department of Computer Science, University of Bath, Bath BA2 7AF, UK
b Dipartimento di Informatica, University ‘‘Ca’ Foscari’’ of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
c Department of Computer Science, University of York, York YO10 5DD, UK

a r t i c l e i n f o

Available online 4 March 2008

Keywords:

Graph clustering

Metric embedding

Spectral graph theory

a b s t r a c t

One of the problems that hinders the spectral analysis of trees is that they have a strong tendency to be

co-spectral. As a result, structurally distinct trees possess degenerate graph-spectra, and spectral

methods can be reliably used to neither compute distances between trees nor to cluster trees. The aim

of this paper is to describe a method that can be used to alleviate this problem. We use the ISOMAP

algorithm to embed the trees in a Euclidean space using the pattern of shortest distances between

nodes. From the arrangement of nodes in this space, we compute a weighted proximity matrix, and from

the proximity matrix a Laplacian matrix is computed. By transforming the graphs in this way we lift the

co-spectrality of the trees. The spectrum of the Laplacian matrix for the embedded graphs may be used

for purposes of comparing trees and for clustering them. Experiments on sets of shock graphs reveal the

utility of the method on real-world data.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Tree structures have been used with considerable effect in

computer vision to represent both object shape, scene structure

and object articulation [27]. Examples include the use of shock

trees to represent object boundary structure [27], the use of free-

trees to represent human form [12] and the use of trees as

compact image data-structures [34]. One of the problems that

arises in the manipulation of large amounts of tree data is that of

clustering. Although this task can be effected by applying pairwise

clustering methods to the edit distance between trees, it does not

allow the distribution of trees to be visualized or the effects of

systematic changes in tree-structure to be assessed. Moreover,

since computing the edit distance between trees relies on the

availability of correspondences between nodes, and this is

potentially an NP-hard problem, the computational overheads

can be large.

One way to overcome the problem of computing the distance

between discrete structures is to embed them in a low-dimensional

space that minimizes the distortion. In this low-dimensional space,

distances may be computed by taking a standard norm between the

embedded pattern vectors. The problem of how to construct such

an embedding has been the focus of activity in pattern recognition

for several decades. For instance principal components analysis

(PCA) projects pattern vectors into a low-dimensional space that

maximally preserves the variance of the original data [13].

Multidimensional scaling (MDS), on the other hand, can be used

to embed non-ordinal data into a low-dimensional space which

preserves the relational pattern residing in the set of pairwise

distances between data-items by minimizing the stress of the data

[7]. However, these pattern analysis methods can only be applied

for the data which is in vectorial form, or a distance function is to

hand, and hence do not extend easily to discrete structures such as

trees or graphs. In the mathematics literature, on the other hand,

there is a considerable body of work aimed at understanding how

graphs can be embedded in manifolds. Broadly speaking there are

three ways in which the problem has been addressed. First, the

graph can be interpolated by a surface whose genus is determined

by the number of nodes, edges and faces of the graph. Second, the

graph can be interpolated by a hyperbolic surface which has the

same pattern of geodesic (internode) distances as the graph [1,5].

Third, a manifold can be constructed whose triangulation is the

simplicial complex of the graph [33,21]. A review of methods for

efficiently computing distance via embedding is presented in the

recent paper of Hjaltason and Samet [11].

In the pattern analysis community, there has recently been

renewed interest in the use of embedding methods motivated by

graph theory. One of the best known of these is ISOMAP [30]. Here

a neighborhood ball is used to convert data-points into a graph,

and Dijkstra’s algorithm is used to compute the shortest

(geodesic) distances between nodes. The matrix of geodesic

distances is used as input to MDS. The resulting algorithm has

been demonstrated to locate well-formed manifolds for a number
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of complex data sets. Related algorithms include locally linear

embedding [16] which is a variant of PCA that restricts the

complexity of the input data using a nearest neighbor graph, and

the Laplacian eigenmap that constructs an adjacency weight

matrix for the data-points and projects the data onto the principal

eigenvectors of the associated Laplacian matrix (the degree matrix

minus the weight matrix) [2]. Collectively, these methods are

sometimes referred to as manifold learning theories.

In this paper, we are interested in the problem of embedding

trees in a pattern space for the purposes of both visualization and

analysis (including clustering and classification). One of the

methods that has proved effective for the embedding and pattern

analysis of trees is spectral graph theory [6]. For instance, Dickinson

and his co-workers [25,14] have shown how graph-spectra can be

used to index shock-trees. There are two criticisms that can be

leveled at the spectral analysis of trees. First, graphs that are not

isomorphic can be co-spectral. As demonstrated by Schwenk et al.

[23,3], due to their sparse edge-structure this problem is accen-

tuated for trees. The second problem is the distortion produced by

the embedding. In [14] the metric embedding algorithm gives a

distortion that is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log log jAj
p

, where A is a set of

points in the original metric space, jAj is the number of points in

that space. In [9] the distortion is OðlðTÞ1=dÞ, where lðTÞ is the

number of leaves in a tree T. So, when size of the trees becomes

large, then the distortion will also become large.

To overcome these problems in this paper we investigate

whether methods frommanifold learning theory can be combined

with spectral graph theory to develop effective tools for tree

analysis. The idea is to use manifold learning methods to embed

the trees in a low-dimensional space, and to perform spectral

analysis on the co-ordinate data for the embedded tree-nodes. We

proceed as follows. We commence by using a strategy similar to

ISOMAP to embed the trees in a Euclidean pattern space. This is

done by computing a matrix of shortest (geodesic) distances

between nodes in the tree. We then apply MDS to the distance

matrix, and this embeds the individual nodes of the tree in a

Euclidean space. Once embedded in this space, we construct a

weighted Laplacian matrix for the nodes of the tree by

exponentiating the negative squared-distance between nodes.

The spectrum of eigenvalues of the Laplacian can be used for the

purposes of tree clustering and visualization.

2. Metric embedding of trees

The problem of embedding finite metric space into Euclidean

spaces, or other normed spaces, that approximately preserve the

metric is one that has received considerable attention in recent

years. A number of ways have been proposed for measuring the

quality of an embedding procedure. The distortion has been widely

accepted as a measure of the quality of the embedding. For a finite

metric space ðX; dÞ and cX1, there is an embedding j of X into Y

where for every two points x1; x2 2 X satisfy the condition

dðx1; x2ÞXkjðx1Þ � jðx2ÞkX
1

c
dðx1; x2Þ (1)

Such an embedding is said to be have distortion pc [16]. Recently

low-distortion embedding has provided powerful tools for

designing efficient pattern analysis algorithms. This is because

that they enable us to reduce problems defined over difficult

metrics to problems over much simpler ones.

The starting point for most metric embedding methods is

Bourgain’s [4] Lemma:

Any finite metric ðX; dÞ can be embedded into l
p
2 with po1

with distortion Oðlog jXjÞ.

We denote Rn equipped with lq norm by l
n
q. The Euclidean norm is

l2. The lq norm is defined as kðx1; . . . ; xnÞkq ¼ ð
P

jxijqÞ1=q. The

original bound on p proved by Bourgain was exponential with n

and too large to be of practical use. We seek to introduce an

embedding with a much lower distortion.

2.1. Metric embedding of trees by using isomap

We first define a suitable metric for the trees or graphs. For a

given graph G ¼ ðA;EÞ, A represents the nodes in the graph and E

represents the edge relations between the nodes. Suppose that D

is a metric on the graph G. The metric must satisfy the condition

that for any three vertices u, v and w 2 A, if Dðu; vÞ ¼ Dðw; vÞX0,

then Dðu;uÞ ¼ 0 and Dðu; vÞpDðu;wÞ þ Dðw; vÞ. There are many

ways to define metric distances on a graph. The best known is the

shortest-path metric Dðu; vÞ ¼ dðu; vÞ, which is the shortest path

distance between u and v for all u; v 2 A. In fact, if the graph G is a

tree, the shortest path between any two vertices is unique, and the

weights of the shortest paths between any two vertices will define

a metric Dð:; :Þ. Since we can treat trees as a special kind of graph,

we can use the shortest-path metric for trees.

Our goal is to find a low-distortion or distortion-free embed-

ding from the tree metric space into a normed space. Here we use

Isomap (isometric feature mapping) [30] as a way to solve the

low-distortion tree embedding problem. The idea behind Isomap

is to apply classical MDS [7] to map data points from their high-

dimensional input space to low-dimensional coordinates of a

nonlinear manifold. The key contribution is hence to apply MDS to

the pairwise distances not in the input Euclidean space, but in the

geodesic space of the manifold.

Although the method was originally devised for dimensionality

reduction, we can use it here for the low-distortion tree

embedding problem. Viewed as an isometric feature mapping,

Isomap is a mapping f : X ! Y from the observation space X to a

Euclidean feature space Y that preserves as closely as possible the

intrinsic metric structure of the observations, i.e. the distances

between observations as measured along geodesic (shortest)

paths of X [30]. The distortion c in this embedding is nearly 1.

For trees, the embedding procedure is straightforward. We first

construct the shortest path distance matrix S for each tree. Each

element di1 ;i2 in S is the shortest path distance between the pair of

nodes i1 and i2 of the tree. We embed each tree in a Euclidean

space by performing MDS on the matrix S.

2.2. Multidimensional scaling

MDS is a procedure which allows data specified in terms of a

matrix of pairwise distances to be embedded in a Euclidean space.

The pairwise geodesic distances between nodes di1;i2 are used as

the elements of an N � N dissimilarity matrix S, whose elements

are defined as follows:

Si1;i2 ¼
di1;i2 if i1ai2

0 if i1 ¼ i2

(

(2)

In this paper, we use the classical MDS method. The first step of

MDS is to calculate a matrix T whose element with row r and

column c is given by Trc ¼ � 1
2 ½d

2
rc � d̂

2
r: � d̂

2
:c þ d̂

2
:: �, where d̂r: ¼

ð1=NÞ
PN

c¼1 drc is the average dissimilarity value over the rth row,

d̂:c is the similarly defined average value over the cth column and

d̂:: ¼ ð1=N2Þ
PN

r¼1

PN
c¼1 dr;c is the average similarity value over all

rows and columns of the similarity matrix T.

We subject the matrix T to an eigenvector analysis to obtain a

matrix of embedding co-ordinates X. If the rank of T is k; kpN,

then we will have k non-zero eigenvalues. We arrange these k

non-zero eigenvalues in descending order, i.e. l1Xl2X � � �Xlk40.

ARTICLE IN PRESS

B. Xiao et al. / Neurocomputing 71 (2008) 2029–20362030



Author's personal copy

The corresponding ordered eigenvectors are denoted by ui where li
is the ith eigenvalue. The embedding co-ordinate system for the

graphs obtained from different views is X ¼ ½f 1; f 2; . . . ; f s�; where

f i ¼
ffiffiffi

li
p

ui are the scaled eigenvectors. For the tree-nodes indexed

i, the embedded vector of co-ordinates is xi ¼ ðXi;1;Xi;2; . . . ;Xi;sÞT.

2.3. Spectral characterization

Our aim is cluster trees using a spectral characterization of the

co-ordinates of the embedded nodes. To this end, we commence

by computing a weighted proximity matrix W with elements

W i1 ;i2 ¼
exp

�kxi1 � xi2k
2
2

2s2

" #

if kxi1 � xi2k2or

0 otherwise

8

>

<

>

:

(3)

where s is a scale constant and r is the radius of a neigbourhood

hypersphere in the embedding space. Unfortunately, the matrixW

may have negative eigenvalues. Hence, we turn our attention

instead to the Laplacian matrix, since it is positive semi-definite

and therefore has positive or zero eigenvalues. The Laplacian

matrix is L ¼ W � D where D is diagonal degree matrix with

elements Dði; iÞ ¼
P

j2V Wði; jÞ. The spectral decomposition of the

Laplacian matrix is L ¼
Pn

i¼1 lieie
T
i , where lki is the ith eigenvalue

and ei is the corresponding eigenvector of the Laplacian matrix L.

Our spectral characterization of the tree is based on the vector of

N leading Laplacian eigenvalues B
!

¼ ðl1; . . . ; lNÞT. We can perform

pattern analysis on sets of trees by applying clustering or

dimensionality reduction techniques to the vectors of Laplacian

eigenvalues.

2.4. Principal component analysis

After constructing the feature vector B
!
, our next aim is to

construct a pattern-space for a set of graphs with pattern vectors

B
!

k, k ¼ 1; . . . ;M. There are a number of ways in which the graph

pattern vectors can be analyzed. Here, for the sake of simplicity,

we use PCA. We commence by constructing the matrix S ¼
½B
!

1jB
!

2j � � � jB
!

kj � � � jB
!

M � with the graph feature vectors as columns.

Next, we compute the covariance matrix for the elements of the

feature vectors by taking the matrix product C ¼ ŜŜT, where Ŝ is

computed by subtracting the mean of the feature vectors from

each column of the matrix S. We extract the principal components

directions by performing the eigendecomposition C ¼
PM

i¼1liu
!

iu
!T

i

on the covariance matrix C, where the li are the eigenvalues and

the u
!

i are the eigenvectors. We use the first s leading eigenvectors

(three in practice for visualization purposes) to represent the

graphs extracted from the images. The co-ordinate system of the

eigenspace is spanned by the s orthogonal vectors U
!

¼
u
!

1; u
!

2; . . . ; u
!

sÞ. The individual graphs represented by the vectors

Bk, k ¼ 1;2; . . . ;M can be projected onto this eigenspace using the

formula B
!

k ¼ U
!T

B
!

k. Hence each graph Gk is represented by an s-

component vector B
!

k in the eigenspace.

3. Experiments

In this section we experiment with the application of our

clustering algorithm. We tested our algorithm on two databases.

The first one is shock tree graphs which composed of 150

silhouettes of 10 kinds of objects [32]. The second database is

COIL [19] which is a more realistic and complex database.

3.1. Experiments on shock trees

The shock tree is a tree structure based representation of the

differential structure of the boundary of a 2D shape. It is obtained

by locating the shape skeleton, and examining the differential

behavior of the radius of the bitangent circle from the skeleton to

the object boundary, as the skeleton is traversed [15]. The idea is

to evolve the boundary of an object to a canonical skeletal form

using the reaction–diffusion equation. The skeleton represents the

singularities in the curve evolution, where inward moving

boundaries collide. With the skeleton to hand, then the next step

is to devise ways of using it to characterize the shape of the

original object boundary. We follow the idea [26] by labeling

points on the skeleton using so-called shock-labels. The skeletons

can then be abstracted as trees in which the level in the tree is

determined by their time of formation [26,15]. The later the time

of formation, and hence their proximity to the center of the shape,

the higher the shock in the hierarchy. The shock tree extraction

process has been further improved by Torsello and Hancock [31]

recently. In this paper we use the methods in [31] to extract tree

structure representations from the silhouettes. A representative

view of each object is shown in Fig. 1.

We have followed the procedure outlined in Section 2. First we

embed the trees in a Euclidean pattern space. This involves first

computing the shortest (geodesic) distance between nodes and

applying MDS to the shortest distance matrix S. The result is the

embedding of the individual nodes of the tree in a Euclidean

space. After the nodes have been embedded in this way, we

construct a weighted Laplacian matrix for the nodes of the tree by

exponentiating the negative squared-distance between nodes. We

then extract the spectrum of eigenvalues of the Laplacian matrix

and encode them as a vector for each tree. Finally, we apply the

PCA to these vectors to visualize them in a two-dimensional

space.

In our experiments, we will compare the results obtained by

using our algorithmwith those obtained by using spectral analysis

of trees. We compare two different spectral methods. The first

method is so-called ‘‘eigenvalue’’ method [17,22]. We commence

by first constructing the Laplacian matrix L for the tree. Then we

use the leading Laplacian eigenvalues li of the matrix L to
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construct the spectral feature vector B ¼ ðl1; . . . ; lNÞT. After the

spectral feature vectors have been extracted from the trees, we

also apply PCA as dimension reduction techniques for the

purposes of visualisation.

The second spectral method which has been recently proposed

by Wilson et al. [35]. In their recent paper, Wilson et al. [35] have

reported a family of invariants that can be computed by applying

symmetric polynomials to the elements from the graph spectral

matrix. The spectral matrix is obtained by performing eigende-

composition on the Laplacian matrix L of the graph,

L ¼
Pn

i¼1 lieie
T
i , where li is the ith eigenvalue ei is the correspond-

ing eigenvector of the symmetric Laplacian L. The spectral matrix

SM is defined as

SM ¼ ð
ffiffiffiffi

l1
p

u1;
ffiffiffiffi

l2
p

u2; . . . ;
ffiffiffiffi

ln
p

unÞT (4)

It can also be written as SM ¼
ffiffiffiffiffiffi

LL

p
FL, where LL and FL are the

eigen matrices of the Laplacian matrix corresponding to the

eigenvalues and eigenvectors. There are two sets of symmetric

polynomials defined in the paper [35], the elementary symmetric

polynomials and power-sum symmetric polynomials. For a set of

variables fv1; v2 . . . vng the elementary symmetric polynomials are

defined as

E1ðv1; . . . vnÞ ¼
X

n

i¼1

vi

E2ðv1; . . . vnÞ ¼
X

n

i¼1

X

n

j¼iþ1

vivj

.

.

.

Erðv1; . . . vnÞ ¼
X

i1oi2o���oir

vi1vi2 . . . vir

.

.

.

Enðv1; . . . vnÞ ¼
Y

n

i¼1

vi

The output for the n set input variable fv1; v2 . . . vng is E1; E2; . . . ; En.
The power-sum symmetric polynomial functions, which are

defined as below:

P1ðv1; . . . vnÞ ¼
X

n

i¼1

vi

P2ðv1; . . . vnÞ ¼
X

n

i¼1

v2i

.

.

.

Prðv1; . . . vnÞ ¼
X

n

i¼1

vri

.

.

.

Pnðv1; . . . vnÞ ¼
X

n

i¼1

vni

also form a basis set over the set of symmetric polynomials. Any

polynomial function which is invariant to permutation of the

variable indices ðvi; v2; . . . ; vnÞ can be expressed in terms of one of

these sets of polynomials. The two sets of polynomials are related

to one another by the Newton-Girard formula:

Er ¼
ð�1Þrþ1

r

X

r

k¼1

ð�1ÞkþrPkEr�k (5)

where we have used the shorthand Er for Erðv1; . . . ; vnÞ and Pr for

Prðv1; . . . ; vnÞ. As a consequence, the elementary symmetric

polynomials Sr can be efficiently computed using the power-

sum symmetric polynomials. In [35] Wilson et al. proposed to use

the elements of the spectral matrix
ffiffiffiffiffiffi

LL

p
FL as input for the

symmetric polynomial to compute the invariants as features for

graph characterization. In our experiment, the arguments of the

polynomials are the column elements of the spectral matrix
ffiffiffiffiffiffi

LL

p
FL. We choose six different symmetric polynomials invar-

iants, which are E1; E2; . . . ; E5; E6, to construct a feature vector for

our experiment.

Our first experiment compares our algorithm with the two

spectral analysis of the trees from the entire database of 150 shock

trees. We extracted feature vectors for the shock trees by using the

methods mentioned above, then we perform PCA on the feature

vectors to project them into two-dimensional spaces. In Fig. 2, the

left-hand polt shows the results of the spectral eigenvalue

analysis of the shock trees, the middle one is the result of spectral

polynomial method, and the right-hand figure is the result by

using our algorithm. In the different plots, the different shapes of a

particular class are represented by symbols of different color.

There is a legend in the top left-hand corner of each plot that

explains the shape correspondence of each of the symbols.

There are a number of points that can be drawn from these

plots. First, in the case of the spectral eigenvalue analysis the data

distribute themselves along a trajectory in the embedding space.

This implies that the tree-spectra are nearly uni-dimensional in

terms of the distribution of both their variance and dissimilarity.

This underlines the problem of co-spectrality mentioned in the

introduction. Moreover, in the case of the spectral eigenvalue
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Fig. 2. Shock tree clustering—left (spectral eigenvalue method), middle (spectral polynomial method) and right (our method).
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analysis the different shapes are interspersed along the trajectory.

It is hence not possible to allocate the shapes to reliably assign

shapes to classes on the basis of their position in the plots. The

spectral polynomial result looks better than the spectral eigenva-

lue result. But there is considerable overlap near the center of the

plot. In the case of the Isomap embedding, the trees could be

better separated.

3.2. Qualitative analysis

To give these three methods a qualitative evaluation, we

introduce the idea of Rand index [20]. The Rand index is defined

as

RI ¼
CA

CA þWD
(6)

where CA is the number of agreements and WD is the number of

disagreements in cluster assignment. If two objects are in the

same cluster in both the ground truth clustering and the

clustering from our experiment, this counts as an agreement. If

two objects are in the same cluster in the ground truth clustering

but in different clustering from our experiment, this counts as a

disagreement. The index is hence the fraction of views of a

particular class that are closer to an object of the same class than

to one of another class. The Rand index takes a value in the

interval ½0;1�, where 1 corresponds to a perfect clustering. Since

we have already known the ground truth clustering before the

experiments, finding out the clustering results from the low-

dimensional embedded coordinates can use the K-nearest algo-

rithm. The idea is for each embedded coordinate we search its K

nearest-neighbors. We then check the ground truth cluster

numbers of these K-neighbors to see if over half of these

neighbors belong to the same category as its ground truth one.

In our experiment we set K to 5. For example, a tree where in the

ground truth it belongs to the first object class. In the embedded

coordinate space, we check its five nearest-neighbors. If three or

more of its neighbors also belong to the first object class in their

ground truth clustering, thenwe say it is an agreement. Otherwise

it is a disagreement. We repeat this process for shock trees used in

the experiments and compute the Rand Index value according to

Eq. (6). In our experiment the spectral eigenvalue method’s rand

index value is 0.58, the spectral polynomial is 0.76 and our

method is 0.89 which is the highest.

We have repeated the procedure above for a smaller database

which contains only three representative shapes. The three shapes

used for test are the hands, the leafs and the men. For each shape

there are 15 different views corresponding to different viewing

directions. The left-hand plot of Fig. 3 shows the results of spectral

eigenvalue analysis. The middle one is from the spectral

polynomial method. The right-hand plot shows the result of

applying Isomap embedding to the three shapes. From the results,

it can be concluded that the Isomap embedding gives the best

result in separation.

To investigate the role of distance in more detail, Fig. 4 shows

the scatter plots of different distances estimate for the trees with

the edit distance computed from [32]. In the paper [32], Torsello

et al. propose a robust and stable way to compute edit distance

between pairs of shock trees. For the whole 150 data sets, we

compute a 150� 150 size pairwise distance matrix by using the

methods from [32]. For the other three methods including ours,

we also compute the pairwise dissimilarity distance matrices. The

left-hand of Fig. 4 shows scatter plot between the distance matrix

of the spectral eigenvalue (x-axis) and the distance matrix

computed from edit distance (y-axis). The middle plot shows

the scatter plot between the distance matrix computed from

spectral polynomial method (x-axis) and the distance matrix from

edit distance (y-axis). The right-hand plot shows the scatter plot

between the distance matrix computed from our methods (x-axis)

and the distance matrix from edit distance (y-axis). In the first

(left-hand) scatter plot there is a regression trend in the data,

while in the last (right-hand) plot there is no trend. Hence, the

dissimilarity distance computed for the embedding method better

reflect the edit distances between the trees.

3.3. Experiments on COIL databases

In the second experiment, we experimented our algorithms on

COIL [19] database. The database contains views of 3D objects

under controlled viewer and lighting conditions. For each object in

the database there are 72 equally spaced views, which are

obtained as the camera circumscribes the object. We study the

images from eight example objects. A sample view of each object

is shown in Fig. 5. For each image of each object we extract feature

points using the method of [10]. We have extracted graphs from

the images by computing the Voronoi tessellations of the feature

points, and constructing the region adjacency graph, i.e. the

Delaunay triangulation, of the Voronoi regions. Our embedding

procedure has been applied to the resulting graph structures.

In Fig. 6, the left-hand plot is the spectral eigenvalue clustering

results, the middle is spectral polynomial clustering result while

the right-hand plot is the result by using our method. The main

qualitative feature is that the different views of the eight objects

are more overlapped by using the spectral eigenvalue and

polynomial methods than our method. This time for the

ARTICLE IN PRESS

−100−50 0 50 100 150 200 250 300 350 400

−100

−80

−60

−40

−20

0

20

40

60

80

First eigenvector

S
e

c
o

n
d

 e
ig

e
n

v
e

c
to

r

hand

leaf

man

7 8 9 10 11 12 13 14 15 16 17

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

First eigenvector

S
e

c
o

n
d

 e
ig

e
n

v
e

c
to

r

4 5 6 7 8 9 10 11

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

First eigenvector

S
e

c
o

n
d

 e
ig

e
n

v
e

c
to

r

hand

leaf

man

hand

leaf

man

Fig. 3. Shock tree clustering—left (spectral eigenvalue method), middle (spectral polynomial method) and right (our method).
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visualization purpose we project the graph into a three-dimensional

space. In the plots, the different shapes of a particular class are

represented by symbols of different color. We also computed the

Rand index value for these three methods. The spectral eigenvalue

method for COIL database clustering rand index value is 0.78, the

spectral polynomial method is 0.86 and our method is 0.96.

ARTICLE IN PRESS

Fig. 5. Eight objects with their Delaunay graphs overlayed.
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4. Conclusion and future work

This paper has presented an efficient approach for tree (graph)

clustering. The approach first use the Isomap algorithm to embed

the trees in a Euclidean space by using the geodesic distance

between nodes. From the arrangement of the nodes in this space,

we compute a weighted proximity matrix, and from the proximity

matrix a Laplacian matrix is computed. The spectrum of the

Laplacian matrix for the embedded graphs may be used for

purposes of comparing trees and for clustering them. Our

algorithm can lift the co-spectrality of the trees and can keep

the lowest distortion produced by the metric embedding.

In our experiments we have proved the feasibility of our

algorithm and applied our algorithm to shock trees and COIL

database. Our algorithm can also be applied to other types of

graphs. We plan to extend our work in several directions. These

are: first to experiment with different shock representations,

second to apply this algorithm to the graphs and trees for solving

the matching problems and third to exploit the feasibility of using

the embedded vector representations for indexing purposes.

Another interesting extension of the work reported in this

paper would be to explore the use of tensor representations for

graphs. The apparatus for this kind of representation has been

developed in the mathematics literature [18], and the spectra of

tensor products have been studied in some detail [8]. Recently,

tensor factorization has been used for multiway-clusterning [24],

while Tao et al. [29,28] have developed a tensor framework for

discriminative learning.
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