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Abstract. We address the problem of comparing attributed trees and
propose a novel distance measure centered around the notion of a max-
imal similarity common subtree. The proposed measure is general and
defined on trees endowed with either symbolic or continuous-valued at-
tributes, and can be equally applied to ordered and unordered, rooted
and unrooted trees. We prove that our measure satisfies the metric con-
straints and provide a polynomial-time algorithm to compute it. This
is a remarkable and attractive property since the computation of tra-
ditional edit-distance-based metrics is NP-complete, except for ordered
structures. We experimentally validate the usefulness of our metric on
shape matching tasks, and compare it with edit-distance measures.

1 Introduction

Graph-based representations have long been used with considerable success in
computer vision and pattern recognition in the abstraction and recognition of ob-
jects and scene structure. Concrete examples include the use of shock graphs to
represent shape-skeletons [11,15], the use of trees to represent articulated objects
[7] and the use of aspect graphs for 3D object representation [3]. The attractive
feature of structural representations is that they concisely capture the relational
arrangement of object primitives, in a manner which can be invariant to changes
in object viewpoint. Using this framework we can transform a recognition prob-
lem into a relational matching problem. The problem of how to measure the
similarity or distance of pictorial information using graph abstractions has been
a widely researched topic of over twenty years.

The classic metric approach to graph comparison is edit-distance [4]. The
idea behind this approach is that it is possible to identify a set of basic edit
operations on nodes and edges of a structure, and to associate with these op-
erations a cost. The edit-distance is found by searching for sequences of edit
operations that will make the two graphs isomorphic with one-another, and the
distance between the two graphs is then defined to be the minimum over all the
costs of these sequences. By making the evaluation of structural modification
explicit, edit-distance provides a very effective way of measuring the similarity
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of relational structures. Moreover, the method has considerable potential for er-
ror tolerant object recognition and indexing problems. Unfortunately, the task
of calculating edit-distance is an NP-hard problem [24], hence, goal-directed ap-
proximations are necessary to calculate it. The result is that the approximation
almost invariably breaks the theoretical metric properties of the measure.

Recently, a new and more principled approach to the definition of distance
measure has emerged. In [2], Bunke and Shearer introduce a distance measure
on unattributed graphs based on the maximum common subgraph and prove
that it is a metric. Wallis et al. [20] introduce a variant of this distance based on
the size of the minimum common supergraph. Finally, Fernandez and Valiente
[5] define a metric based on the difference in size between maximum common
subgraph and minimum common supergraph. More recently, in [6] Hidović and
Pelillo extend these metrics to the case of attributed graphs. Unfortunately all
these metrics require the calculation of the maximum common subgraph, which
is computationally equivalent to the calculation of edit-distance.

In many computer vision and pattern recognition applications, such as shape
recognition [13,15,17], the graphs at hand have a peculiar structure: they are
connected and acyclic, i.e., they are trees, either rooted or unrooted, ordered or
unordered, and frequently they are endowed with symbolic and/or continuous-
valued attributes. Most metrics on trees found in the literature are defined in
terms of edit-distance [18,21]. Zhang and Shasha [23] have investigated a special
case of edit-distance which involves trees with an order relation among sibling
nodes in a rooted tree. This special case constrains the solution to maintain the
order of the children of a node. They showed that this constrained tree-matching
problem is solvable in polynomial time and gave an algorithm to solve it. Re-
cently, Sebastian, Klein and Kimia [13] use a similar algorithm to compare shock
trees. Unfortunately, in the general case the problem has been proven to be NP-
complete both for rooted [24] and unrooted trees [25]. Recently, Valiente [19]
introduced a bottom-up distance measure between trees that is an extension to
trees of the graph metric introduced by Bunke and Shearer [2], proving that the
measure can be calculated in polynomial time on trees, but falling short of prov-
ing that the measure is a metric. While this measure can be calculated efficiently
both on ordered and unordered trees, it is limited to rooted and unattributed
trees.

Motivated by the work described in [6], in this paper we propose a normalized
distance measure for trees equipped with either symbolic or continuous-valued
attributes. We prove that the proposed measure fulfills the properties of a met-
ric, and provide a polynomial-time algorithm to compute it. At an abstract level,
our approach involves the computation of a maximum similarity common sub-
tree. This allows us to define equivalent variations of the metric on ordered and
unordered, rooted and unrooted, and attributed and unattributed trees. Since
edit-distance on ordered trees can be computed in polynomial time, in the paper
we focus on the unordered case where our approach provides a clear compu-
tational advantage. To show the validity of the proposed measures, we present
experiments on various shape matching tasks and compare our results with those
obtained using edit-distance metrics.
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2 Preliminaries

Let G = (V, E) be a graph, where V is the set of nodes (or vertices) and E is
the set of undirected edges. Two nodes u, v ∈ V are said to be adjacent (denoted
u ∼ v) if they are connected by an edge. A path is any sequence of distinct nodes
u0u1 . . . un such that for all i = 1 . . . n, ui−1 ∼ ui; in this case, the length of the
path is n. If un ∼ u0 the path is called a cycle. A graph is said to be connected if
any two nodes are joined by a path. Given a subset of nodes C ⊆ V , the induced
subgraph G[C] is the graph having C as its node set, and two nodes are adjacent
in G[C] if and only if they are adjacent in G. With the notation |G| we shall
refer to the cardinality of the node-set of graph G.

A connected graph with no cycles is called an unrooted tree. A rooted (or
hierarchical) tree is a tree with a special node that can be identified as the root.
In what follows, when using the word “tree” without qualification, we shall refer
to both the rooted and unrooted cases. Given two nodes u, v ∈ V in a rooted
tree, u is said to be an ancestor of v (and similarly v is said to be a descendent
of u ) if the path from the root node to u is a subpath of the path from the root
to v. Furthermore, if u ∼ v, u is said to be the parent of v and v is said to be a
child of u. Both ancestor and descendent relations are order relations in V .

Let T1 = (V1, E1) and T2 = (V2, E2) be two trees. Any bijection φ : H1 → H2,
with H1 ⊆ V1 and H2 ⊆ V2, is called a subtree isomorphism if it preserves both
the adjacency relationships between the nodes and the connectedness of the
matched subgraphs. Formally, this means that, given u, v ∈ H1, we have u ∼ v
if and only if φ(u) ∼ φ(v) and, in addition, the induced subgraphs T1[H1] and
T2[H2] are connected. Two trees or rooted trees T1 and T2 are isomorphic, and
we write T1 ∼= T2, if there exists an isomorphism between them that maps every
node in T1 to every node in T2. It is easy to verify that isomorphism is an
equivalence relation. We shall use the notations Dom(φ) and Im(φ) to denote
the domain and the image of φ, respectively.

Formally, an attributed tree is a triple T = (V, E, α), where (V, E) is the
“underlying” tree and α is a function which assigns an attribute vector α(u)
to each node u ∈ V . It is clear that in matching two attributed trees, our
objective is to find an isomorphism which pairs nodes having “similar” attributes.
To this end, let σ be any similarity measure on the attribute space, i.e., any
(symmetric) function which assigns a positive number to any pair of attribute
vectors. If φ : H1 → H2 is a subgraph isomorphism between two attributed
trees T1 = (V1, E1, α1) and T2 = (V2, E2, α2), the overall similarity between the
induced subtrees T1[H1] and T2[H2] can be defined as follows:

Wσ(φ) =
∑

u∈H1

σ(u, φ(u)) . (1)

where, for simplicity, we define σ(u, φ(u)) ≡ σ(α1(u), α2(φ(u))). The isomor-
phism φ is called a maximum similarity subtree isomorphism if Wσ(φ) is largest
among all subtree isomorphisms between T1 and T2. For the rest of the paper we
will omit the subscript σ when the node-similarity used is clear from the con-
text. Two isomorphic attributed trees T1 = (V1, E1, α1) and T2 = (V2, E2, α2),
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with isomorphism φ, are said to be attribute-isomorphic if for all u ∈ V1 we have
α1(u) = α2(φ(u)). In this case we shall write T1 ∼=a T2. Attribute-isomorphism
is clearly an equivalence relation.

Note that the problem of determining a maximum similarity subtree iso-
morphism is a direct extension of the standard problem of finding a maximum
(cardinality) common subtree, in fact the two problems are equivalent when the
similarity σ is degenerate, i.e., σ(u, v) = 1.

Now, given a set S, a function d : S ×S → R is a metric on S if the following
properties hold for any x, y, z ∈ S.

1. d(x, x) ≥ 0 (non-negativity)
2. d(x, y) = 0 ⇔ x = y (identity and uniqueness)
3. d(x, y) = d(y, x) (symmetry)
4. d(x, y) + d(y, z) ≥ d(x, z) (triangular inequality).
Furthermore, if the function satisfies d(x, y) ≤ 1 it is said to be a normalized

metric.
If d : S × S → R+ is a normalized metric, then the similarity function

derived from δ, defined as σ(x, y) = 1 − d(x, y) fulfills the identity, uniqueness
and similarity properties. Furthermore, it fulfills the following variant of the
triangular inequality: σ(x, y) + σ(y, z) − σ(x, z) ≤ 1 . In the rest of the paper,
we shall assume that all similarity functions are indeed derived from normalized
metrics.

It is straightforward to show that, with this assumption, we have

T1 ∼=a T2 ⇔ |T1| = |T2| = W (φ) (2)

where φ is a maximum similarity isomorphism between T1 and T2.

3 Distance Metric

In this section, we define our measure for comparing attributed trees and prove
that it fulfills the metric properties. First, we prove a lemma that turns out to
be instrumental to prove our results, then, we introduce our measure and prove
the metric properties.

Lemma 1. Let T1, T2 and T3 be three trees, and φ12 φ23, and φ13 be maximum
similarity subtrees isomorphisms between T1 and T2, T2 and T3, and T1 and T3,
respectively. Then, we have: |T2| ≥ W (φ12) + W (φ23) − W (φ13).

Proof. Let V 1
2 = Im(φ12) ⊆ V2, V 3

2 = Dom(φ23) ⊆ V2 be the sets of nodes in V2
mapped by the isomorphisms φ12 and φ23, respectively. Furthermore, let V̂2 =
V 1

2 ∩ V 3
2 , be the set of vertices in V2 that are mapped by both isomorphisms. It

is clear that the subtrees T̂1 = T1[φ−1
12 (V̂2)] and T̂3 = T3[φ23(V̂2)] are isomorphic

to each-other, with isomorphism φ̂13 = φ12 ◦ φ23, where ◦ denotes the standard
function composition operator, restricted to the nodes of T̂1. The similarity of
this isomorphism is

W (φ̂13) =
∑

v∈V̂2

σ(φ−1
12 (v), φ23(v)) .
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Since φ13 is a maximum similarity subtree isomorphism between T1 and T3, we
have W (φ13) ≥ W (φ̂13). Hence

W (φ12) + W (φ23) − W (φ13) ≤ W (φ12) + W (φ23) − W (φ̂13) =
∑

v∈V 1
2

σ(φ−1
12 (v), v) +

∑

v∈V 3
2

σ(v, φ23(v)) −
∑

v∈V̂2

σ(φ−1
12 (v), φ23(v)) =

∑

v∈V 1
2 \V 3

2

σ(φ−1
12 (v), v) +

∑

v∈V 3
2 \V 1

2

σ(v, φ23(v)) +

∑

v∈V̂2

[
σ(φ−1

12 (v), v) + σ(v, φ23(v)) − σ(φ−1
12 (v), φ23(v))

]
≤

|V 1
2 \ V 3

2 | + |V 3
2 \ V 1

2 | + |V 1
2 ∩ V 3

2 | = |V 1
2 ∪ V 3

2 | ≤ |T2| ,

where the inequality follows from the triangular inequality for metric-derived
similarities. �

Let T be the quotient set of trees modulo attribute-isomorphism, that is the
set of trees on which two trees are considered the same if they are attribute-
isomorphic.1 For any T1, T2 ∈ T we define the following distance function

d(T1, T2) = 1 − W (φ12)
max(|T1|, |T2|)

. (3)

Theorem 1. d is a normalized metric in T .

Proof.

1. d(T1, T2) ≥ 0
We have 0 ≤ W (φ12) ≤ max(|T1|, |T2|). Hence, 0 ≤ d(T1, T2) = 1 − W (φ12)

max(|T1|,|T2|)
≤ 1.

2. d(T1, T2) = 0 ⇐⇒ T1 ∼=a T2

Let us consider the direction of implication ⇐ (identity). From (2), we have
T1 ∼=a T2 ⇒ |T1| = |T2| = W (φ12). Hence d(T1, T2) = max(|T1|,|T2|)−W (φ12)

max(|T1|,|T2|) =
0
For the reverse implication (uniqueness), we have d(T1, T2) = 0 ⇒ W (φ12) =
max(|T1|, |T2|). Since W (φ12) ≤ min(|T1|, |T2|) ≤ max(|T1|, |T2|), we have
W (φ12) = min(|T1|, |T2|) = max(|T1|, |T2|). Hence, (2) yields T1 ∼=a T2.

3. d(T1, T2) = d1(T2, T1)
This follows directly from the symmetry of the maximum similarity graph
and of the function max.

4. d(T1, T2) + d(T2, T3) ≥ d(T1, T3)

1 The quotient set formalizes the intuitive idea that two attributed trees are indistin-
guishable when they are attribute-isomorphic. Furthermore, it is needed in order to
fulfill the uniqueness property of a metric.
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The triangular inequality can be simplified to the inequality

max(|T1|, |T2|) max(|T2|, |T3|) max(|T1|, |T3|) ≥
W (φ12) max(|T2|, |T3|) max(|T1|, |T3|) + W (φ23) max(|T1|, |T2|) max(|T1|, |T3|)−

W (φ13) max(|T1|, |T2|) max(|T2|, |T3|) (4)

To prove this we need to separately analyze each of the six possible cases
1. |T1| ≥ |T2| ≥ |T3| 2. |T1| ≥ |T3| ≥ |T2| 3. |T2| ≥ |T1| ≥ |T3|
4. |T2| ≥ |T3| ≥ |T1| 5. |T3| ≥ |T1| ≥ |T2| 6. |T3| ≥ |T2| ≥ |T1|.
However, the roles of T1 and T3 in our proofs are symmetric, hence we can use
this symmetry to reduce the analysis to three cases: (a) |T2| ≥ |T1| ≥ |T3|,
(b) |T1| ≥ |T2| ≥ |T3|, and (c) |T1| ≥ |T3| ≥ |T2|.
a) |T2| ≥ |T1| ≥ |T3|

The triangular inequality reduces to |T1||T2| ≥ W (φ12)|T1|+W (φ23)|T1|−
W (φ13)|T2|.

|T1||T2| ≥ |T1|
(
W (φ12) + W (φ23) − W (φ13)

)
≥

W (φ12)|T1| + W (φ23)|T1| − W (φ13)|T2|

b) |T1| ≥ |T2| ≥ |T3|
Equation (4) reduces to |T1||T2| ≥ W (φ12)|T2|+W (φ23)|T1|−W (φ13)|T2|.

|T1||T2| = |T2|(|T1| − |T2|) + |T2|2 ≥ W (φ23)(|T1| − |T2|) + |T2|2 ≥
W (φ23)(|T1| − |T2|) + |T2| (W (φ12) + W (φ23) − W (φ13)) =

W (φ12)|T2| + W (φ23)|T1| − W (φ13)|T2|

c) |T1| ≥ |T3| ≥ |T2|
We need to prove |T1||T3| ≥ W (φ12)|T3| + W (φ23)|T1| − |T3|W (φ13).

|T1||T3| ≥ |T1||T2|−|T2||T3|+|T2||T3| ≥ W (φ23)(|T1|−|T3|)+|T3||T2| ≥
W (φ23)(|T1| − |T3|) + |T3| (W (φ12) + W (φ23) − W (φ13)) =

W (φ12)|T3| + W (φ23)|T1| − |T3|W (φ13). �

4 Extracting the Maximum Similarity Common Subtree

In this section we give a polynomial-time algorithm for finding a maximum
similarity subtree. The algorithm is based on the subtree identification algorithm
presented by Matula [9], extending it in two ways. First, it generalizes it to deal
with attributed trees and, second, it extends it to solve the more general problem
of extracting the maximum (similarity) subtree and not merely to verify whether
one tree is a subtree of the other. We give an algorithm to find the maximum
similarity common subtree problem for rooted trees, and then we show how the
same algorithm can be used for the unrooted tree case.
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Let T1 = (V1, E1) and T2 = (V2, E2) be two rooted trees, and let u ∈ V1 and
w ∈ V2. We say that a subtree isomorphism between T1 and T2 is anchored at
nodes u and w, if the subtrees of T1 and T2 induced by the isomorphism are
rooted at u and w, respectively. In this case, we shall write φ(u,w) to refer to any
isomorphism anchored at u and w. Clearly, if φ is a maximum similarity subtree
isomorphism, we have

W (φ) = max
(u,w)∈V1×V2

max
φ(u,w)

W (φ(u,w)) .

To determine the maximum similarity subtree isomorphism anchored at nodes
u and w we adopt a divide-and-conquer approach. Let u1, · · · , un be the children
of node u in T1, and w1, · · · , wm the children of node w in T2. Without loss of
generality, we can assume n ≤ m. Moreover, let us assume that we know, for
each i = 1, · · · , n and j = 1, · · · , m, a maximum similarity subtree isomorphism
φ̂(ui,wj) anchored at ui and wj . Let Wij be the similarity of φ̂(ui,wj), then the
computation of a maximum similarity subtree isomorphism anchored at u and
w can be reduced to an assignment problem on the children of u and w, i.e.,

W (φ(u,w)) = σ(u, w) + max
π∈Σm

n

n∑

i=1

Wiπ(i) , (5)

where Σm
n is the space of all possible assignments between a set of cardinality n

and one of cardinality m. As a consequence, if π is the optimal assignment, the
function φ(u,w) defined as:

φ(u,w)(x) =

{
w if x = u

φ̂(ui,wπ(i))(x) if x ∈ Dom(φ̂(ui,wπ(i)))
(6)

turns out to be a maximum similarity subtree isomorphism anchored at u and w.
Figure 1 shows the resulting algorithm for determining a maximum similarity

subtree isomorphism of two rooted attributed trees. Since in the rest of the paper
we only need the maximum similarity induced by an isomorphism, and not the
isomorphism itself, for simplicity the main procedure Similarity accepts as
input a pair of attributed rooted trees and returns only the similarity value. It
makes use of a recursive procedure AnchoredSimilarity that accepts as input
two vertices, one from T1 and the other from T2 and returns the similarity of the
maximum isomorphism anchored at the input vertices, according to (5). To this
end, it needs a procedure for solving an assignment (or, equivalently, a bipartite
matching) problem, of which the algorithms literature abound (see., e.g., [1]).
The calculation of the maximum similarity common subtree of two trees with
N and M nodes respectively, is reduced to at most NM weighted assignments
problems of dimension at most b, where b is the maximum branching factor of the
two trees. The computational complexity of our algorithm heavily depends on the
actual implementation of the assignment procedure. A popular way of solving it,
and the one we actually employed, is the so-called Hungarian algorithm, which
has complexity O(n2m), n and m being the number of children of u and v as used
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Similarity(T1,T2)
maxsim=0
for each node u in T1

sim=AnchoredSimilarity(u,root(T2))
if sim > maxsim

maxsim=sim
for each node w in T2

sim=AnchoredSimilarity(root(T1),w)
if sim > maxsim

maxsim=sim
return maxsim

AnchoredSimilarity(u, w)
Cu=children(u)
Cw=children(w)
for each ui in Cu

for each wj in Cw

wij=AnchoredSimilarity(ui, wj)
return σ(u, w) + Assign({wij})

Fig. 1. A polynomial-time algorithm for computing the similarity between two trees.

in (5), with n ≤ m. It is simple to show that, using the Hungarian algorithm,
our algorithm has overall complexity of O(bNM). Of course, the algorithm can
be sped up by using more sophisticated assignment procedures [1].

Finally, if we have two unrooted trees T1 = (V1, E1) and T2 = (V2, E2),
we can still pick two nodes r1 ∈ V2 and r2 ∈ V2, and consider the trees
T r1

1 = (V1, E1) and T r2
2 = (V2, E2) rooted at r1 and r2, respectively. Note

that if φ is an isomorphism between T r1
1 and T r2

2 with similarity W , then it
is an isomorphism between T1 and T2 with the same similarity. This yields a
straightforward O(bN3M) algorithm for unrooted trees, which consists of iter-
atively calling Similarity(Tu

1 , Tw
2 ) for all u ∈ V1 and w ∈ V2, and taking the

maximum. However, we do not actually need to try all possible pairs of roots
since by simply fixing the root in one tree and let the other vary among all
possible vertices in the other tree, the algorithm is still guaranteed to achieve
the maximum similarity. This yields an O(bN2M) algorithm for unrooted trees.

5 Experimental Results

We evaluated the new metric on three different tree-based shape representations.
The first is the shock tree representation used by Pelillo, Siddiqi and Zucker in
[11], which is based on the differential structure of the boundary of a 2D shape.
It is obtained by extracting the skeleton of the shape, determined as the set of
singularities (shocks) arising from the inward evolution of the shape boundary,
and then examining the differential behavior of the radius of the bitangent circle
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Fig. 2. Distance matrices from the first experiment. Left: Our metric. Right: Edit-
distance.

to the object boundary, as the skeleton is traversed. This yields a classifica-
tion of local differential structure into four different classes [15]. The so-called
shock-classes, distinguish between the cases where the local bitangent circle has
maximum, minimum, constant, or monotonic radius. The labeled shock-groups
are then abstracted using a rooted tree where two vertices are adjacent if the
corresponding shock-groups are adjacent in the skeleton, and the distance from
the root is related to the distance from the shape barycenter. Here, we used the
same attributes and node-distances employed in [11]. Each shock was attributed
with its coordinates, distance from the border, and propagation velocity and
direction. The distance between two nodes, was defined as a convex combina-
tion of the (normalized) Euclidean distances of length, distance to the border,
propagation speed, and curvature.

We compared our distance metric with edit-distance. To approximate the
edit-distance we used the relaxation labeling algorithm presented in [17] with
the following costs: we defined the cost of matching node u to node w to be
equal to the distance between their attributes, while the cost of removing any
node to be equal to 1. Note that, with these costs, edit-distance is not normalized.

Our shape database contained 29 shapes from 8 different classes. Figure 2
shows the distance matrices obtained using our metric and edit-distance. Here,
lighter colors represent lower distances while darker colors represent higher dis-
tances. As can be seen, the same block structure emerges in both matrices.
Essentially, the most significant difference among the two metrics is the dark
bands clearly visible in the edit-distance matrix.

In order to assess the ability of the distances to preserve class structure,
we performed pairwise clustering. In particular, we used two pairwise cluster-
ing algorithms: Shi and Malik’s Normalized Cut [14], and Pavan and Pelillo’s
Dominant Sets [10]. Figure 3 shows the clusters obtained with both algorithms,
displayed in order of extraction. While the performance of the clustering algo-
rithms, on this shape recognition task, varied significantly, the dependency on
the choice of the distance measure was less pronounced. Nonetheless, some dif-
ferences can be observed. In particular, we notice how Normalized Cut exhibits
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Normalized Cut Dominant Sets
Our metric Edit-distance Our metric Edit-distance

Fig. 3. Clusters obtained with Normalized Cut and Dominat Sets in the first experi-
ment.

a well-known tendency to over-segment the data. The clusters obtained with
the Dominant Sets approach are much better, with our metric providing results
almost identical to edit-distance.

As for the running times, on a Pentium 4 2.5GHz PC, the maximum simi-
larity algorithm presented in Section 4, took around 8 seconds to compute our
metric, while the relaxation labeling algorithm computed edit-distance in over
30 minutes.

Our second set of experiments used a larger database of shapes abstracted
again in terms of shock-trees. Here, however, we used a different set of attributes
recently analyzed in [16], i.e., the proportion of the shape boundary generating
the corresponding shock-group. The database consisted of 150 shapes divided
into 10 classes of 15 shapes each, and presented a higher structural noise than the
previous one. Here the node distance and node-matching cost for edit-distance
was defined as the absolute difference between the attributes, while the node
removal cost was the value of the attribute itself. With this edit costs edit-
distance is a normalized metric.

Figure 4 shows the distance matrices obtained using our metric and edit-
distance. Note that, as before, both matrices exhibit the same block structure.
We applied the same clustering algorithms used in the previous series of exper-
iments. In order to assess the quality of the groupings, we used two well-known
cluster-validation measures [8]. The first is the standard misclassification rate.
We assigned to each cluster the class that has most members in the cluster. The
members of the cluster that belong to a different class are considered misclassi-
fied. The misclassification rate is the percentage of misclassified shapes over the
total number of shapes. To avoid the bias towards higher segmentation that this
measure exhibits, we also used a second validation measure, i.e., the Rand index.
We count the number of pairs of shapes that belong to the same class and that
are clustered together and the number of pairs of shapes belonging to different
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Fig. 4. Distance matrices from the second experiment. Left: Our metric. Right: Edit-
distance

classes that are in different clusters. The sum of these two figures divided by the
total number of pairs gives us the Rand index. Here, the higher the value, the
better the classification.

Table 1 summarizes the results obtained using Normalized Cut and Dominant
Sets. Here the two metrics generate clusters with comparable validation measures
regardless of the clustering algorithm used.

Table 1. Validation measures of clusters obtained in the second experiment.

Misclassification rate Rand index
Normalized Cut Dominant Sets Normalized Cut Dominant Sets

Our metric 23.3% 21.3% 90.3% 90.8%
Edit-distance 22.7% 24.0% 90.4% 90.8%

The last set of experiments was performed on a tree representation of North-
ern Lights [12]. As in the previous experiments, the representation used is derived
from the morphological skeleton, but the choice of structural representation was
different from the one adopted for shock-graphs, and the extracted trees tend to
be larger. The database consisted of 1440 shapes. Using our metric we were able
to extract the full distance matrix within a few hours, but it was unfeasible to
compute edit-distance on the entire database. For this reason, in order to be able
to compare the results with edit-distance, we also performed experiments using
a smaller database consisting of 50 shapes. The calculation of edit-distance, even
on this reduced database, took a full weekend.

In this case, we did not have the ground truth for the class memberships,
so we needed a different cluster-validation measure. We opted for a standard
measure that favors compact and well-separated clusters: the Davies-Bouldin
index [8]. Let ei be the average distance between elements in class i, and dij

the average distance between elements in cluster i and elements in cluster j The
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Fig. 5. Distance matrices from the second experiment. Left: Our metric. Right: Edit-
distance.

Davies-Bouldin index is

DB =
1
c

c∑

i=1

max
j

Rij (7)

where c is the number of clusters and Rij = ei+ej

dij
is the cluster separation

measure. Clearly, lower values correspond to better separated and more compact
clusters.

Table 2 provides the values of the Davies-Bouldin index on the clusters ex-
tracted using Normalized Cut and the Dominant Sets algorithm. As was the case
with the previous experiments, both metrics produced comparable results.

Table 2. Davies-Bouldin index of clusters obtained in the third experiment.

Normalized Cut Dominant Sets
Our metric 0.0486 0.0723

Edit-distance 0.0232 0.0635

6 Conclusions

In this paper we have presented a novel distance measure for attributed trees
based on the notion of a maximum similarity subtree isomorphism, and provided
a polynomial-time algorithm to calculate it. We have proven that this measure
satisfies the metric properties and have experimentally validated its usefulness by
comparing it with edit-distance on three different shape recognition tasks. Our
experimental results show that, in terms of quality, the proposed metric compares
well with edit-distance, its computation being, however, orders of magnitude
faster.
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