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Abstract—Modern computer systems consist of a large number
of dynamic hardware and software components that interact
according to some specific rules. Quantitative models of such
systems are important for performance engineering because they
allow for an earlier prediction of the quality of service. The
application of stochastic modelling for this purpose is limited by
the problem of the explosion of the state space of the model,
i.e. the number of states that should be considered for an
exact analysis increases exponentially and is thus huge even
when few components are considered. In this paper we resort
to product-form theory to deal with this problem. We define
an iterative algorithm with the following characteristics: a) it
deals with models with infinite state space and block regular
structure (e.g. quasi-birth&death) without the need of truncation;
b) in case of detections of product-form according to RCAT
conditions, it computes the exact solution of the model; c) in
case of non-product-form, it computes an approximate solution.
The very loose assumptions allow us to provide examples of
analysis of heterogeneous product-form models (e.g., consisting
of queues with catastrophes and/or batch removals) as well as
approximating non-product-form models with non-exponential
service time distributions and negative customers.

I. I NTRODUCTION

Stochastic modelling of computer and communication sys-
tems has shown its importance in performance engineering
by defining formalisms and analysis techniques capable of
predicting the quality of service (QoS) and the reliabilityof
hardware and software architectures in their earlier phaseof
design. Many formalisms, such as the Performance evalua-
tion process algebra (PEPA) [1], stochastic Petri nets [2] or
Markovian queueing networks [3], allow for the definition of
models whose underlying stochastic processes are continuous
time Markov chains (CTMC). In particular, process algebraic
formalisms are appreciated for their formal semantics and
compositionality properties that allow one to describe a com-
plex system in a modular and hierarchical way. However,
from the analysis prospective, all these approaches are limited
by the problem of the state space explosion, i.e., in most
of the cases, the state space of the model tends to grow
exponentially with the number of its components. In order
to overcome this problem, exact and approximated techniques
have been proposed in literature. This paper focuses on the
exact and approximate decomposition of stochastic models by

resorting to product-form theory [3], [4], [5]. Consider a model
consisting ofM cooperating componentsS = {1, . . . ,M}
and letm = (m1, . . . ,mM ) be a vector describing its state,
wheremi denotes the state of componenti. Then the model
is in product-form if its stationary state distributionπ(m)
is proportional to the product of the stationary distributions
of each component considered in isolation and opportunely
parametrisedπ(s)(mi), i.e.:

π(m) ∝
M
∏

s=1

π(s)(ms).

Assuming that each component hasn states, and that the joint
model state space is the Cartesian product of the state spaces
of its components, a brute force approach, i.e., the solution
of the global balance equations of the joint process, has a
computational cost ofO(n3M ), while a product-form solution
has a cost ofO(Mn3). Several research efforts have been
devoted to characterising models with product-form solutions
especially in the domain of queueing networks (e.g., [3],
[4]). In [5] the compositional nature of process algebra is
exploited to derive the Reversed Compound Agent Theorem
(RCAT) which gives sufficient conditions for a cooperation
of stochastic models to be in product-form. Similarly to [4]
RCAT relies on the analysis of the reversed process of the
components considered in isolation and this strongly limits
its application from practitioners: reasoning on the reversed
process and giving a physical interpretation to the product-
form conditions may be a hard task. Moreover, from an
algebraic point of view, in many relevant cases (e.g., [6],
[7]) the computation of the stationary probabilities requires
the solution of large systems of non-linear traffic equations.

a) Contributions: In this paper we present the Iterative
Numerical Algorithm for Product-forms (INAP). The algo-
rithm addresses the two problems concerning the analysis
of product-form models, i.e., deciding if the product-form
conditions are satisfied and computing the stationary distri-
butions. As shown in [5], product-form conditions are in
general not just structural but also depends on the transition
rates in the reversed process of an isolated component. As a
consequence, since deciding if a product-form exists requires



the components to be parametrised and isolated, testing RCAT
conditions is not a trivial task. The novel aspects of the
algorithm are the following:

• It can study models withinfinite state spaces with block
regular structure as well as models withfinite number of
states as in [8]1. This allows us to study a wide class of
open models with different behaviours such as: G-queues
with removal of batches of customers or flushing [7], G-
queues with resets [9] and, more generally, queues with
quasi birth&death (QBD) structure, queues with lower
Hessenberg matrix structure. In dealing with unbounded
models, we must also consider the problem of stability.
This topic is considered in [10], however in this paper
we resort to Neuts’ drift condition [11] and Bini et. al
work [12].

• One key point of our iterative algorithm consists in
verifying the RCAT conditions in case of processes
with Lower Hessenberg or QBD matrices as infinitesimal
generator. We contribute to the state-of-the-art of product-
form theory by deriving a closed-form matrix formula
for this check, which avoids the computation of the re-
versed processes. Although these formulas are useful even
outside the definition of INAP, they play an important
role for the algorithm since they strongly increase its
numerical stability and computational cost.

• When the algorithm reaches a fixed point, but the product-
form conditions of RCAT cannot be verified, the com-
puted solution can be interpreted as an approximation
of the model’s steady-state distribution. We will justify
this claim in Section III, once the theoretical notions
underlying the algorithm are introduced.

The main assumption required to apply INAP concerns the
semantics of the cooperations among the components that
must be pairwise. In other words, a transition of a component
can trigger a transition in at most one other components
(simultaneous state changes in more than two components are
not considered).

b) Related works:Product-form theory has mainly been
developed for queueing networks such as in [3], [6], [7]
although some results have also been proved for process
algebraic models [13], [5] and stochastic Petri nets [14], [15].
Ad-hoc algorithms for each of these formalisms have been
proposed, however RCAT proved that working at a lower level
of abstraction, i.e., by specifying the component cooperations
as synchronising transitions of the Markov processes, allows
for a heterogeneous model definition in product-form. Queue-
ing Petri nets [16] is an example of such a heterogeneous
modelling approach that may yield product-form stationary
distribution. To the best of our knowledge, the most general
algorithm for the detection and the computation of the solution
of product-form models is that presented in [8]. The dynamics
and convergence properties of the algorithm have experimen-
tally shown to be robust, however its main limitation is that

1In the same paper, unbounded models are studied only if the process
structures underlying the components are birth&death.

only models with a finite number of states can be studied,
while many well-known classes of product-form models have
an unbounded state-space (the topic is addressed also in
[17], [18] for non-product-form models). In [19] a truncation
mechanism is proposed, however this approach may reduce
the solution accuracy and asks the modeller to decide how to
truncate the components’ state spaces. As concerns decompo-
sition algorithms based on product-form approximations, some
methods have been defined for the analysis of complex models
in order to overcome the limitation due to the state space
dimension, both for large product-form models and for non
product-form models that can be approximated by a product-
form solution. As in our case, most of the methods proposed
in literature do not provide bounds on the approximation error.
Some specific algorithms have been defined for the CTMCs
underlying various models expressed in high-level formalisms,
and they often take advantage of decompositions at the higher
level of abstraction (e.g., decomposition and aggregationof
queueing networks or stochastic Petri nets). In this field,
Trivedi et al.’s fixed point iterations based on stochastic Petri
nets have been widely explored (see [20] and the references
therein). Fixed point iterations have shown their accuracyin
practice in several works (see e.g. [21] and the references
therein). With respect to these works, our approach is different
because it is applied at a lower level of abstraction and hence
can work with a wide class of possibly heterogeneous models.
Moreover, its fixed point iterations are purely based on the
analysis of the CTMC without being driven by modeller’s
intuition about the high-level behaviour. Concerning product-
form decompositions for approximating stochastic models,
a recent paper [22] introduces an algorithm that relies on
the idea of minimising a non-convex function to derive the
closest product-form distribution that approximates the correct
distribution. The drawbacks of the approach are that they can
be applied for models with finite state spaces and that the
minimisation may fall into local minima resulting in very bad
approximations.

The balance of the paper is as follows. Section II introduces
the notation and briefly recalls the underlying theoretical
results. Section III describes INAP while in Section IV we
present the theoretical results about product-form form pro-
cesses with block structured infinitesimal generators. Sec-
tion V shows some numerical applications of INAP. Finally,
Section VI concludes the paper with some final remarks.

II. N OTATION, DEFINITIONS, BACKGROUND

In the paper we denotescalar constantsusing uppercase
letters (e.g. N,T ), (row) vectors using boldface lowercase
symbols (e.g.π, e), matricesas uppercase teletype letters (e.g.
Q, A) and setsusing uppercase calligraphic (e.g. S, E). Any
other entity different from the aforementioned ones will be
denoted by lowercase symbols (e.g. i, j, α, β, ℓ). The sets of
real and nonnegative real numbers are denoted byR andR+,
respectively. The set of natural numbers is denoted byN and
the set of natural numbers with the infinity symbol is denoted
by N∞.



We denote bye a row vector of all1s and byI the identity
matrix. We define the operator diag(v), which produces a
diagonal matrix with diagonal entries given by vectorv. Given
a matrix A, we denote byA⊤ the transpose ofA and, if A is
square, we denote byA the matrix defined as

A = A− diag(e A⊤) .

Let S = {1, · · · ,M} be the set ofM ∈ N cooperating
components that are defined as stochastic automata with
possibly labelled transitions, withL a set of labels. A label
ℓ ∈ L is active in componentαℓ ∈ S if all the rates of the
transitions labelledℓ are specified while it is passive inβℓ ∈ S
if there exists a probability assigned to each transition labelled
ℓ. Intuitively, when automatonαℓ performs a transition la-
belled ℓ, then βℓ performs a given synchronising transition
with the probability associated with it. We assume that the
synchronising probability distributions for passive automata
are well defined, and for each state they sum to1, (i.e., a
passive automaton cannot prevent an active to move). All the
transitions are carried out in an exponentially distributed time
(and this justifies the fact that the underlying process is a
CTMC). Transitions labelledℓ ∈ L are carried out only jointly
by αℓ andβℓ and this specifies how the synchronisation works.
Observe that only pairwise synchronisations are allowed.

A cooperation graphis a multi-graphg = (S, E), where the
set of componentsS corresponds to the set of vertices of the
graph, and the setE = {(αℓ, βℓ)}ℓ∈L contains oriented edges
indexed by labels inL. Each label identifies a cooperation
between two components inS.

We denote byAg
s (Pg

s ) the set of labels inℓ ∈ L identifying
a cooperation in graphg wheres ∈ S plays an active (passive)
role:

Ag
s = {ℓ ∈ L |αℓ = s} andPg

s = {ℓ ∈ L |βℓ = s} .

Hereafter, we writeAs (Ps) for Ag
s (Pg

s ) when g can be
inferred from the context without ambiguities.

Each components ∈ S has a (possibly infinite) setVs

of states. LetNs = |Vs| ∈ N∞ be the number of states of
components. Given a cooperation graphg, we have for each
label ℓ ∈ L a Nαℓ

-dimensional matrixT(ℓ) specifying the
rates of the active transitions with labelℓ of componentαℓ,
and aNβℓ

-dimensional stochastic matrixJ(ℓ) indicating the
corresponding passive transitions of componentβℓ. Addition-
ally, each components ∈ S has an associatedNs-dimensional
matrix E(s) encoding rates of non cooperating transitions.

Observe that the matricesT(ℓ) and E(s), for ℓ ∈ L and
s ∈ S have only non negative entries including the diagonal
elements. This is due to the necessity of representing synchro-
nising self-loop transition in states.

III. A LGORITHM DEFINITION

The algorithm we introduce in this section is based on a
set of results pertaining to the study of stochastic models in
product-form. Specifically, we consider the Reversed Com-
pound Agent Theorem (RCAT) presented in [5], which states

Algorithm 1 INAP Algorithm: pseudo-code

Require: Cooperation graphg = (S, E)
initialize the reverse rates{xℓ}ℓ∈L (see§III-B)
while not termination criterion met (see§III-E) do

for all s ∈ S do
computeQ(s) according to (1)
update the stationary distributionπ(s) (see§III-C)

end for
update the reverse rates{xℓ}ℓ∈L (see§III-A)

end while
check convergence and product-form conditions (see§III-E)
return{π(s)}s∈S and{xℓ}ℓ∈L

sufficient conditions for having a product-form solution inthe
joint state space of cooperating Markov processes.

Henceforth, we assume that the cooperating components
forming a model have an underlying irreducible state space.
Since we are considering also models with infinite state spaces,
this condition is necessary but not sufficient for the ergodicity.
Another important aspect to take into account is the structure
of the joint process. Whenever the joint process’ state space
is the Cartesian product of the components’ state spaces, then
the probability obtained by INAP are normalised. In the other
case (e.g., in case of closed queueing networks), this condition
is not satisfied and the probability distributions computed
by INAP can be interpreted as the un-normalised stationary
probability for the ergodic states. According to RCAT, the
steady-state distribution of the model is in product-form with
respect to its component if there exists a set{xℓ}ℓ∈L such that

the infinitesimal generatorQ
(s)

of each isolated component
s ∈ S is determined by:

Q
(s) = E

(s) +
∑

ℓ∈As

T
(ℓ) +

∑

ℓ∈Ps

J
(ℓ)xℓ (1)

and the following relation holds:

xℓ e = π
(αℓ)T

(ℓ)diag(π(αℓ))−1 , (2)

whereπ(s) are obtained for alls ∈ S as the unique solution
of:

πsQ
(s)

= 0 and eπ
⊤
s = 1 . (3)

We refer to xℓ as the reverse rateassociated with the
cooperation labelℓ ∈ L [4], [5]. The basic idea of our
INAP algorithm is to start with an initial set of reversed rates
{xℓ}ℓ∈L, which are required to set up the system (3) for all
s ∈ S and find the steady-state probabilities{π(s)}s∈S . These
probabilities, in turn, are then used to update the reverse rates
{xℓ}ℓ∈L. This is more formally depicted by Algorithm 1. We
keep updating the steady-state probabilities and the reverse
rates until convergence (see [8] for more details). In what
follows, we discuss in detail each step of the algorithm and
the optimisations that have been implemented.



A. Computation of the reversed ratesxℓ

The first problem we address is how to compute the reversed
rates in the isolated components because most of the algorithm
definition relies on this aspect. The effective computationof
the reversed rates according to Equation (2) is a non-trivial
task and usually causes numerical stability problems due to
some state stationary probabilities that may tend to0. Indeed,
Equation (2) involves a non-linear relation between the steady-
state probabilities (which are, in general, unknown). Moreover,
Equation (2) does not hold in case of models which are not in
product-form. For these reasons, we computexℓ as a weighted
mean of the right-hand-side of (2), where the weights are
given by the steady-state probabilityπ(αℓ). This is achieved
by right-multiplying both sides of (2) byπ(αℓ)

⊤
, which yields

the following simplified formula

xℓ = π
(αℓ)T

(ℓ)
e
⊤ . (4)

The rationale of this choice is that states with higher stationary
probabilities affect the behaviour of the cooperations more
than those with a lower one. Moreover, in case of product-
form the expected reversed rate obviously corresponds to the
constant reversed rate incoming to each state.

B. Initialising the reversed ratesxℓ

The definition of the infinitesimal generators underlying
the components relies on the knowledge of the synchronising
transition reversed rates as shown by Equation (1). Therefore,
the first step of Algorithm 1 is the initialisation of the reversed
rates. The initialisation is done randomly within the set of
feasible reversed rateswhose definition follows.

Definition 1 (Feasible reverse rates). A set {xℓ}ℓ∈L of re-
versed rates is feasible if the following conditions are satisfied:

1) For eachℓ ∈ L,

min
(

T
(ℓ)

e
⊤
)

≤ xℓ ≤ max
(

T
(ℓ)

e
⊤
)

, (5)

wheremin and max assume the value of the minimum
and maximum components of the argument vectors.

2) For each models ∈ S, the infinitesimal generatorQ
(s)

corresponds to an ergodic chain.

Note that for an ergodic models the expected reversed
rate xℓ, ℓ ∈ As, as defined by Equation (4) must satisfy
Inequality (5). Indeed, it suffices to observe that Equation(4)
defines a convex linear combination of the entries ofT(ℓ)e

⊤

.
The same inequality trivially holds if the model satisfies RCAT
product-form conditions sinceT(ℓ)e

⊤

would be a constant
vector.

Although it is easy to sample the initial set of reversed rates
according to the interval given by Condition (5), satisfying
Condition 2 of Definition 1 is harder. We solve this issue in
Section III-D in terms of a constrained minimisation problem.

C. Solution of the components in isolation

Once the infinitesimal generatorQs of components ∈ S is
determined at a given iteration using Equation (1), its steady
state solution can be computed. Recall that since the set of
reversed rates is feasible, then the model is surely ergodic.
The solution of the model can be carried out in different ways,
for instance exploiting theoretical results about symbolic solu-
tions [23]. Otherwise, the system of global balance equations
can be directly solved. Finally, if the infinitesimal generator
has a block regular structure, a matrix geometric solution can
be computed as proposed in Section IV.

D. Stability issues

So far, we ignored the possibility that some of the sys-
tems (3) might have no solution even if the underlying process
is irreducible. This can happen in case of components with
infinitely many states, which are unstable due to bad choices
of the reverse rates. If this situation arises while the algorithm
is iterating we cannot conclude that the model is unstable, but
only that the temporary choice of the reversed rates causes
one or more component to be unstable. However, in these
cases Equation (4) cannot be applied to compute the reversed
rates for the following iterations. To overcome this issue,we
introduce a procedure aimed at adjusting the reversed rates
X = {xℓ}ℓ∈L to X ′ = {x′

ℓ}ℓ∈L in such a way as to be feasible
according to Definition 1 and be as close as possible toX .
More formally, we should solve the minimisation problem

X ′ ∈ arg min
Y

∑

ℓ∈L

(xℓ − yℓ)
2 (6)

with the constraint thatY = {yℓ}ℓ∈L must be feasible accord-
ing to Definition 1. In components with infinite state spaces
and underlying block regular structure of Lower Hessenberg
Matrix type, or QBD, the stability check can be done by means
of the so calleddrift condition. Roughly speaking, the drift
condition states that the (positive) drift to higher numbered
levels must be less than the (negative) drift to lower numbered
ones. More details are given in Section IV. For many practical
instances of infinite state models, a passive labelℓ either
contributes to the positive drift or to the negative drift. We call
these modelsmonotonic with respect to the passive labels. For
this class of models, the solution of optimisation problem (6)
is simple, and can always be found if the feasible space for
the reversed rates is non-empty.

E. Convergence and stopping criteria

The algorithm terminates because one of the following three
conditions is satisfied:

(S1) A set of feasible rates cannot be found.
(S2) For each components ∈ S, given a toleranceε > 0:

∥

∥

∥

∥

(

π
(s)
)[k]

−
(

π
(s)
)[k−1]

∥

∥

∥

∥

< ε ,

where
(

π
(s)
)[k]

is the stationary distribution at it-
eration k > 1. In Section IV we discuss how to
implement this test for models with infinite states.



(S3) The maximum number of iterations has been
reached.

If the algorithm terminates due to (S1), then:

• if the components are monotonic with respect to the
passive labels, then the model does not admit an exact
product-form solution. If the model is stable but not in
product-form, then the INAP approximation is unstable
and no solution can be found. Intuitively, this could
happen if the model is really close to instability.

• if the components are not monotonic with respect to the
passive labels, then the algorithm used to solve (6) could
have failed to find a feasible solution. However, observe
that often intuition can drive the modeller to define a non
empty set of feasible reversed rates in order to prevent
the occurrence of such a behaviour.

When the algorithm terminates due to (S2), then one of the
following cases arises:

• In the last interaction some reversed rates have been
changed according to problem (6). In this case, the
proposed result is not meaningful since some of the
components in isolation are unstable.

• Otherwise if RCAT condition (2) holds, then the algo-
rithm computed the correct solution of the model. If it
does not hold, then the solution should be considered as
an approximation. The check of RCAT condition (2) for
model with infinite states is addressed in Section IV.

Condition (S3) is needed since INAP shares with most of
the other fixed point algorithms for approximate analysis
of stochastic models the lack of a proof of convergence.
Therefore, although we could never observe in practice cyclic
behaviours, we have to consider this possibility.

Observe that the space of feasible reversed rates is compact.
Hence, by Brouwer’s fixed point theorem, if the space of
feasible reversed rates is non-empty, there exists at leastone
fixed point. However, this is not sufficient to guarantee that,
given the initialization, a fixed point will be reached.

IV. M ATRIX GEOMETRICS METHODS AND

PRODUCT-FORMS

This section reviews the fundamental notions about matrix
analytic methods. Matrix Geometric methods [11], [24] exploit
the regular block-structure of the CTMC underlying a class
of Markovian queues to efficiently compute their steady-state
distribution.

A. Block Lower Hessenberg Markov Chains

In this section we consider Markov chains whose infinites-
imal generatorQ exhibits a block lower Hessenberg structure:

Q =





















B00 B01 0 0 0 0 0 · · ·
B10 B11 A0 0 0 0 0 · · ·
B20 B21 A1 A0 0 0 0 · · ·
B30 B31 A2 A1 A0 0 0 · · ·

.. .
.. .

. ..
. . . · · ·

...
...

...
...

...
...

...
...





















, (7)

where

• A0, A1, A2 are square matrices with the same dimension
K,

• B00 is a square matrix with dimensionH,
• Bi0, i > 0 areK ×H matrices,
• B01 is aH ×K matrix,
• Bi1, i > 0 are square matrices with dimensionK.

As a special case, we derive later the results for quasi
birth&death processes. We aim at finding a stationary distribu-
tion π from the systemπQ = 0. Consider a decomposition of
the stationary distribution asπ = (π0,π1,π2, . . . ), Neuts has
shown that a matrix geometric solution exists to this problem,
i.e. there exists a positive matrixR such that:

πn = πn−1R (8)

for all n > 1, whereasπ0 and π1 are determined as the
solution of the following linear system of equalities:

(π0,π1)

(

B00 B01
∑∞

i=1 R
i−1Bi0

∑∞
i=1 R

i−1Bi1

)

= (0,0), (9)

under the normalizing constraint:

π0e
⊤ + π1

(

∞
∑

i=1

R
i−1

)

e
⊤ = 1 . (10)

In [11] the author proves that matrixR must satisfy the
following relation:

A0 + RA1 +

∞
∑

i=2

R
i
Ai = 0 .

Starting from this relation, the following iterative scheme for
the computation ofR can be derived:

R
[k+1] = −A0A

−1
1 −

∞
∑

i=2

(

R
[k]
)i

AiA
−1
1 ,

for k ≥ 0 and R[0] = 0. Neuts has shown that the iterative
scheme is nondecreasing and converges to matrixR.

In our context, this kind of process underlies one or more
components in a cooperation. Therefore, we are actually as-
suming that all the matrices characterizing a components ∈ S
have a block regular structure of the type (7). Moreover, recall
that the matricesJ(ℓ), T(ℓ), E(s) defining the components do
not have the diagonal elements defined as the opposite of the
sum of the row elements. Indeed, ifQ defined by Equation (1)
has a lower Hessenber structure, then trivially alsoQ does.
We useB(ℓ)00 to denote the upper left block of matrixT(ℓ) and
similarly for the other blocks. As usual, we assume that for
each components with lower Hessenberg structure there exist
constantsV (s) andW (s) such that for allℓ ∈ As we have:

• i ≥ V (s) =⇒ B
(ℓ)
ih = B

(ℓ)

V (s)h
with h ∈ {0, 1}

• i > W (s) =⇒ A
(ℓ)
i = 0

In the following proposition we assume, without loss of
generality,V (s) > W (s) and write simplyV andW omitting
the component label.



Theorem 1 (Computation of expected reversed rate for Lower
Hessenberg matrices). The expected reversed rate defined by
Equation(4) can be written as follows in case of components
exhibiting an underlying process with block-regular structure
of the type shown in (7):

xℓ = π0

(

B
(ℓ)
00 e

⊤

+ B
(ℓ)
01 e

⊤
)

+
V−1
∑

i=1

π1R
i−1
[(

B
(ℓ)
i0 − B

(ℓ)
V 0

)

e
⊤

+
(

B
(ℓ)
i1 − B

(ℓ)
V 1

)

e
⊤
]

−

W
∑

i=1

π1R
i−1

(

W
∑

z=i

A
(ℓ)
z

)

e
⊤

+ π1 (I− R)
−1
(

B
(ℓ)
V 0e

⊤

+ B
(ℓ)
V 1e

⊤

+ A
(ℓ)

e
⊤
)

(11)

whereA(ℓ) =
∑W

i=0 A
(ℓ)
i .

Proof: Equation (4) for lower Hessenberg matrices be-
comes:

π0

(

B
(ℓ)
00 e

⊤

+ B
(ℓ)
01 e

⊤
)

+ π1

W
∑

i=1

R
i−1

(

B
(ℓ)
i0 e

⊤

+ B
(ℓ)
i1 e

⊤

+

i−1
∑

z=0

A
(ℓ)
z e

⊤

)

+ π1

V−1
∑

i=W+1

R
i−1
(

B
(ℓ)
i0 e

⊤

+ B
(ℓ)
i1 e

⊤

+ A
(ℓ)

e
⊤
)

+ π1

∞
∑

i=V

R
i−1
(

B
(ℓ)
V 0e

⊤

+ B
(ℓ)
V 1e

⊤

+ A
(ℓ)

e
⊤
)

Since the spectral radius ofR is lower than1, the infinite sum
of the expression above can be conveniently rewritten as:

π1(I− R)−1
(

B
(ℓ)
V 0e

⊤

+ B
(ℓ)
V 1e

⊤

+ A
(ℓ)

e
⊤
)

−

V−1
∑

i=1

π1R
i−1
(

B
(ℓ)
V 0e

⊤

+ B
(ℓ)
V 1e

⊤

+ A
(ℓ)

e
⊤
)

After rearranging the terms and some algebraic simplifications,
Equation (11) can be derived.

Corollary 1. If a models ∈ S satisfies RCAT conditions, then
for eachℓ ∈ As, xℓ as defined in (11) is the constant reversed
rate associated with labelℓ.

Proof: The proof follows straightforwardly from the
definition of xℓ given by Equation (4).

Remark 1 (Stopping criterion). The verification of the stop-
ping condition

∥

∥

∥

∥

(

π
(s)
)[k]

−
(

π
(s)
)[k−1]

∥

∥

∥

∥

< ε ,

in case of Block Lower Hessenberg Markov Chains becomes
∥

∥

∥π
[k]
0 − π

[k−1]
0

∥

∥

∥

2

+

∥

∥

∥

∥

π
[k]
1

(

I− R
[k]
)−1

− π
[k−1]
1

(

I− R
[k−1]

)−1
∥

∥

∥

∥

2

< ε ,

whereπ[k]
0 , π[k]

1 are the first two blocks of the decomposition
of π(s) and R[k] is the rate matrix, all at iterationk.

Remark 2 (Checking RCAT condition). In order to verify
that a product-form solution has been found, we have to check
that the RCAT condition(2) is fullfilled for all ℓ ∈ L. To this
end, we compute for eachℓ ∈ L the residual of equation
(2) after post-multiplication of both sides by diag(παℓ

) and
we impose that the maximum of those residuals should not
exceed a tolerance parameterε:

max
ℓ∈L

∥

∥

∥
π

(αℓ)
(

xℓI− T
(ℓ)
)∥

∥

∥
< ε .

The computation of the norm for allℓ ∈ L, needed to check
the RCAT condition, can be achieved in closed-form according
to Theorem 2 assumingZ = xℓI− T(ℓ).

Theorem 2. Let Z be a matrix with block structure and block
names defined as in(7) and letπ = (π0,π1,π2, . . . ) be a
normalized probability distribution satisfyingπi = πi−1R, for
all i > 1. Then

‖πZ‖2

=
∑

j∈{0,1}

∥

∥

∥

∥

∥

π0B0j + π1

V −1
∑

i=1

R
i−1 (Bij − BV j) + π1(I− R)−1

BV j

∥

∥

∥

∥

∥

2

+ π1U

[

(V⊤YY⊤V) ◦ W
]

U
⊤
π

⊤
1

where◦ is the entrywise matrix product operator (Hadamard
product),

R = Udiag(s) V⊤

is the singular value decomposition of matrixR, and Y, W =
(wij) are defined as follows

Y = A0 + RA1 + R
2
A2 and wij = (1− sisj)

−1 .

Proof: By exploiting the structure ofZ we expand the
norm on the left-hand-side of the equality as follows

‖πZ‖2

=





∑

j∈{0,1}

∥

∥

∥

∥

∥

π0B0j + π1

∞
∑

i=1

R
i−1

Bij

∥

∥

∥

∥

∥

2


+

∞
∑

i=0

∥

∥

π1R
i
Y
∥

∥

2

Here, we can get rid of the infinite summation in the first terms
on the right-hand-side by rewriting it as follows

∑

j∈{0,1}

∥

∥

∥

∥

∥

π0B0j + π1

V−1
∑

i=1

R
i−1 (Bij − BV j) + π1(I− R)−1

BV j

∥

∥

∥

∥

∥

2

,



whereas we can get rid of the infinite summation of the second
term on the right-hand-side as follows:

∞
∑

i=0

∥

∥

π1R
i
Y
∥

∥

2
= π1

[

∞
∑

i=0

R
i
YY

⊤(Ri)⊤

]

π1

= π1U

[

∞
∑

i=0

diag(s)iV⊤YY⊤Vdiag(s)i
]

U
⊤
π1

π1U

[

(V⊤YY⊤V) ◦

∞
∑

i=0

(si)⊤si

]

U
⊤
π1

wheresi denotes vectors with entries raised to theith power.
Finally, the result derives from the equality

∑∞
i=0(s

i)⊤si = W .

Note that Theorems 1 and 2 give a new procedure to check
RCAT conditions for all the models with Lower Hessenberg
block structured infinitesimal generator. First, the expected
reversed rate must be computed according to the closed matrix
formula of Theorem 1 and then using Theorem 2 one can
check if the reversed rates are constant without the need of a
truncation.

Remark 3 (Stability of the queue). Stability of queues with
Lower Hessenberg structures has been widely studied in
literature and for the sake of brevity we recall here few
notions. For our purposes, the key-point is that according
to the drift conditions presented in [24], [12], deciding if
rate matrixR has spectral radius lower than1 requires only
algebraic operations on the block-matrices of the infinitesimal
generator. Therefore, this can be done efficiently while solving
the optimization problem(6) when required.

B. QBD Processes

We consider QBD processes as special cases of Lower
Hessenberg matrices where:B11 = A1, B21 = A2, Bi0 = 0

for i ≥ 2, Bi1 = 0 for i > 2 and Ai = 0 for i > 2. The
iterative computation of matrixR simplifies to:

R
[k+1] = −A0A

−1
1 −

(

R
[k]
)2

A2A
−1
1 , k ≥ 0, (12)

whereR[k] is the matrix at thekth iteration step, withR[0] = 0.
Faster iterative approaches for the computation ofR in case of
QBD processes have been defined (see, e.g., [25], [12]).

The following Corollary is the formulation of Theorem 1 for
QBD processes. The proof is purely algebraic and is omitted
for the sake of brevity.

Corollary 2 (Computation of expected reversed rate for
QBD). The expected reversed rate defined by Equation(4)
can be written as follows in case of components exhibiting an
underlying QBD process with block-regular structure:

xℓ = π0

(

B00e
⊤

+ B01e
⊤
)

+ π1

(

B10e
⊤

− A2e
⊤
)

+ π1(I− R)−1 (A0 + A1 + A2) e
⊤

. (13)

λ1

λ2

λ3

Q1 Q2

Q3

Q4

µ1 µ2

µ3 µ4

Fig. 1. G-network studied in Section V-A. Different line styles are used
just for readability. Symbol− denotes a batch removal signal, while= a
catastrophe signal.

V. NUMERICAL VALIDATION

A. Network of heterogeneous queues in product-form

We test the INAP algorithm for models with infinite state
spaces in a network of heterogeneous queues that yields a
product-form steady-state distribution.

a) Model description.:The first example deals with the
class of queueing networks introduced by Gelenbe in [6] called
G-networks. We show that, differently from what previously
proposed in [8], the algorithm developed in this paper is able
to solve models consisting of more general nodes as those
presented in [7], [26]. The G-network consists of4 nodes
(Q1, . . . , Q4) with independent exponentially distributed ser-
vice time. The arrival of external customers atQ1, . . . , Q3

are modelled by independent homogeneous Poisson processes
with ratesλ1, . . . , λ3. As usual, we assume independence
between the arrival processes and the service times. Once a
customer departs from a node, it can: a) leave the network; b)
enter another node as a standard customer. In this case, if the
destination node is empty then its service starts immediately,
otherwise it has to wait in the queue according to aFirst
Come First Serveddiscipline; c) enter another queue as a batch
removal signal. In this case, at the customer arrival epocht

the queue length decreases bymin{n
[t]
i , Bi} customers, where

n
[t]
i denotes the number of customers at the destination node

i at epocht andBi is a random variable representing the size
of the batch to remove at nodei; d) enter another queue as a
catastrophe signal and in this case, the node is flushed. The
routing of customers and signals in the network is probabilistic
and state-independent. In Figure 1 we show the model that we
study.

b) Modelling the nodes.:Table I associates a label with
each synchronisation of the network. The4 nodes of the
network can be easily modelled according to aQBD structure
or as a block Lower Hessenberg Matrix. As an instance, let
us considerQ3. It can receive both catastrophe signals (from
Q2) and batch removal signals (fromQ3), whereas positive
customers arrive from the outside with rateλ3, from Q1 and
Q4. Departures are possible to nodesQ2 andQ4 as positive
customers. In Table II we show the matrices that describe
this node assuming that the batch sizeB3 is deterministically



Label Active Passive Type Prob.
0 Q4 Q1 C PC

41
1 Q1 Q2 P P12

2 Q3 Q2 P P32

3 Q4 Q2 B PB
42

4 Q1 Q3 P P13

5 Q4 Q3 P P43

6 Q2 Q3 C PC
23

7 Q4 Q3 B PB
43

8 Q3 Q4 P P34

9 Q2 Q4 B PB
24

TABLE I
SYNCHRONISATIONS IN THE NETWORK OFFIGURE 1. LABELS P,B,C
DENOTE A POSITIVE CUSTOMER ARRIVAL, A BATCH REMOVAL SIGNAL

AND A CATASTROPHE SIGNAL, RESPECTIVELY.

equal to3. Therefore, nodesQ1 andQ3 are modelled as lower

E
(3) =















0 λ3 0 0 0 . . .
0 0 λ3 0 0 . . .
0 0 0 λ3 0 . . .
0 0 0 0 λ3 . . .

...
...

...
...

...















J
(4) = J

(5) =















0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 1 . . .

...
...

...
...

...















J
(6) =















1 0 0 0 0 . . .
1 0 0 0 0 . . .
1 0 0 0 0 . . .
1 0 0 0 0 . . .

...
...

...
...

...















J
(7) =





















1 0 0 0 0 . . .
1 0 0 0 0 . . .
1 0 0 0 0 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 0 0
...

...
...

...
...





















TABLE II
MATRIX DESCRIPTION OFQ3 CONSIDERED INSECTION V-A.

Hessenberg block matrices, whereasQ2 andQ4 (which do not
accept catastrophe signals) are modelled as QBD processes.

c) Numerical validation.: Table III gives the set of
network’s parameters that we used. INAP reached a fixed

Arrival rates
λ1 3.0
λ2 4.2
λ3 3.8

Service rates
µ1 2.3
µ2 6.2
µ3 3.1
µ4 6.0

Batch sizes
B2 3
B4 3

Routing probabilities
P12 0.3
P13 0.7

PC
23 0.2

PB
24 0.3

P20 0.5
P32 0.4
P34 0.6

PC
41 0.1

PB
42 0.1

P43 0.6
PB
43 0.2

TABLE III
PARAMETRISATION OF THE G-NETWORK OFFIGURE 1.

Load factor Computed value
ρ1 0.8994655
ρ2 0.8866789
ρ3 0.7447235
ρ4 0.1734745

TABLE IV
LOAD FACTORS OF THE QUEUES OFFIGURE 1 COMPUTED BY INAP WITH

THE PARAMETRISATION GIVEN IN TABLE III.

point with a tolerance of10−9 in 12 iterations. The numerical
procedure verifies RCAT’s Condition 2, therefore we can
conclude that the computed result is the product-form steady-
state distribution. In order to evaluate the accuracy of the
numerical approach, we derive the non-linear system of rate
equations characterising the G-network and evaluate the norm
of the vector of residuals once the unknown are replaced by
the values obtained by INAP. In [7], [26] the authors prove
that each node of this type of network must yield a geo-
metric expression for the stationary probability distribution,
πi(ni) = (1 − ρi)ρ

ni

i , whereρi is the load factor of node
Qi andni its number of customers. Therefore, we can reduce
the number of unknowns of the models to the load factors
ρ1, . . . , ρ4. These are the solutions of the following non-linear
system of equations:



































ρ1(λ1 + ρ4µ4P
C
41 + µ1) = λ1 + ρ21µ1

ρ2(λ2 + ρ1µ1P12 + ρ3µ3P32 + ρ4µ4P
B
42 + µ2)

= λ2 + ρ1µ1P12 + ρ3µ3P32 + ρ22µ2 + ρ42ρ4µ4P
B
42

ρ3(λ3 + ρ1µ1P13 + ρ4µ4(P43 + PB
43) + ρ2µ2P

C
23 + µ3)

= λ3 + ρ1µ1P13 + ρ4µ4P43 + ρ23µ3 + ρ43ρ4µ4P
B
43

ρ4(ρ3µ3P34 + ρ2µ2P
B
24 + µ4)

= ρ3µ3P34 + ρ24µ4 + ρ44ρ2µ2P
B
24

The values computed by INAP are shown in Table IV. The
vector of residuals has a norm of6.366 · 10−10.

B. Comparison with algorithms based on the truncation of the
stochastic process

In [19] the authors revise the algorithm proposed in [8]
in order to consider model with infinite state spaces. The
main idea consists in the definition of a special operator
that truncates the state space of a model so that the states
with stationary probability lower than a given threshold are
not considered. The algorithm is then applied to study a G-
network with catastrophe nodes and single customer deletion
nodes (as well as standard exponential nodes). The model is
in product-form and consists of10 nodes whose stationary
distributions has a geometric form:π(i)(ni) = (1 − ρi)ρ

ni

i ,
whereni denotes the number of customers at nodei, π(i)(ni)
its stationary probability andρi is the load factor of nodei.
In [19] the authors state the non-linear system of equations
whose solution giveρi, i = 1, . . . , 10. Although the number
of iterations of the algorithm proposed here are the same
as that proposed in [19], the former is more accurate since
the vector of residuals has a norm of1.8683 · 10−9, while
for the latter it has a norm of9.4891 · 10−5. Moreover, the
truncation mechanism proposed is not efficient for models in
which some components have load factors close to1, because
the number of states that must be considered can be very high.



λ

Q1
Q2

µ11 µ12 µ21 µ22

Fig. 2. Network studied in Section V-C.

Label Active Passive Type Prob.
0 Q1 Q2 P P12

1 Q1 Q2 C PC
12

2 Q2 Q1 N PN
21

3 Q2 Q1 P P21

TABLE V
SYNCHRONISATIONS IN THE NETWORK OFFIGURE 2. LABELS P,N,C

DENOTE A POSITIVE CUSTOMER ARRIVAL, A NEGATIVE CUSTOMER

ARRIVAL AND A CATASTROPHE SIGNAL, RESPECTIVELY.

In the case-study of [19] the number of states of one queue
reaches161 and the matrix corresponding to its infinitesimal
generator must be inverted at each algorithm step. Using the
results proposed here, the complexity of the matrix operations
depends on the size of the blocks characterising their structure
and hence are in general much lower. Moreover, truncation
may cause numerical instability in the process of computation
of the steady-state distribution of each node even in isolation.
With respect to these problems for the Lower Hessenberg case,
the algorithm we propose in this paper is more accurate, more
efficient and does not require to specify how the state space
should be truncated. Finally, the algorithm proposed here is
able to provide approximate solutions in case of non-product-
form model specifications.

C. Product-form approximation of ./Hypo/1 queues with neg-
ative customers and catastrophes

a) Model description: In this section we consider a
network with feedback consisting of two nodes (Q1, Q2) with
independent hypoexponential service time distributions.We
assume for both the queues two stages of service with ratesµi1

andµi2 for nodei = 1, 2. Customers arrive atQ1 according to
an independent, homogeneous Poisson process with rateλ. If a
negative customer arrives atQ1 when the first stage of service
is busy, then the queue length is decreased by1, whereas if it
arrives whenQ1 is empty or with the second stage of service
busy, then the negative customer vanishes.Q2 has a similar
behaviour, but at a signal arrival epoch, if the first stage of
service is busy, then the queue is flushed. Figure 2 illustrates
the network topology.

b) Modelling the nodes:Table V gives the synchronising
labels with the associated probabilities. NodesQ1 has a QBD
underlying structure where the size ofAi matrices is2, while
node Q2 accepts catastrophe signals and hence exhibits an
underlying block regular structure that resembles a Lower
Hessenberg matrix.

c) Numerical analysis:We apply INAP for the analysis
of the model of Figure 2 parametrised as specified in Table VI.
We study the model under different arrival ratesλ. INAP

Service rates
µ11 13.0
µ12 20.0
µ21 7.0
µ22 18.0

Routing prob.
P12 0.8
PC
12 0.2

P21 0.4
PN
21 0.2

P20 0.4

TABLE VI
PARAMETERS USED FOR THE ANALYSIS OF THE NETWORK OFFIGURE 2.
P20 DENOTES THE PROBABILITY THAT A CUSTOMER EXITS THE NETWORK

AFTER LEAVING NODEQ2 .

✵

✷

✹
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✶

Fig. 3. Expected number of customers inQ1 andQ2 obtained for different
values of the arrival rateλ.

detects that the model is not in product-form, as well-known
in queueing theory. However, it still provides an approximated
result based on a decomposition of the network. In Figure 3
we compare the expected number of customers inQ1 and
Q2 under different arrival rates obtained by INAP and by a
simulation tool. Simulations are run in Timenet [27] on a Gen-
eralised Stochastic Petri net model of the queueing networkof
Figure 2. The simulation parameters are: confidence interval
of 95% with a maximum width of5% of the estimated value.
As we can note, INAP approximations and Timenet estimates
differ in the worst case for less than10% of the estimated
mean.

VI. CONCLUSION

Decomposition of general stochastic models into product-
form approximating models has been an important topic
of research for the community of performance evaluation.
Specifically, the applicability of fixed point iterations has been
investigated in many works (see, e.g., [20], [21] and the
references therein). With respect to the state-of-the-art, we
contribute to this line of research by exploiting RCAT product-
forms to provide exact model decompositions, when a set of
conditions is satisfied, or approximate ones, otherwise. Inprac-
tice, testing RCAT conditions for general and heterogeneous
models is a difficult task that requires a theoretical analysis of
the model’s components. Specifically, the computation of the
transition rates in the reversed processes of the components
is computationally expensive and numerically unstable for
models with infinite state spaces. The first contribution of
the paper is the definition of a novel strategy to derive the
reversed rates of the components’ synchronising transitions
that is very efficient both for models with finite and infinite



block structured state spaces. Basically, the method develops in
two phases: in the former we compute an “expected reversed
rate” and in the latter we test RCAT condition by checking
if all the reversed rates associated to the same synchronising
active label are equal to the expected value. We showed how to
apply this result for models with infinite state spaces but with
block regular structure of the type Lower Hessenber or QBD
and proved that both the reversed rates and RCAT test can be
computed through a closed matrix formula. These approaches
make INAP computationally efficient and numerically stable.
The class of components with this types of block-regular
structures includes a large variety of well-known queueing
models such as those studied in [24], [6], [7] and many other
that could be or not in product-form. From the applicability
point of view, the paper gives a contribution to the exact
or approximate analysis of heterogeneous models. Indeed,
since models are specified at a very low level, different types
of components can be integrated. Moreover, differently from
what proposed in [20], INAP uses very loose assumption on
the model synchronisations (the pairwise cooperation is the
strictest one). We believe that INAP should be applied for
studying product-form models with pairwise synchronisations
thanks to its capability of automatic detection (within the
numerical precision) of product-forms - therefore automatising
the proof -, to its ability of performing an automatic analysis of
the model stability and finally to the computational efficiency
required to solve the possibly non-liner systems of rate equa-
tions that are needed for deriving the stationary distributions.

INAP convergence is very fast and in all our experiments the
number of iterations have been lower than20 with a tolerance
of ε = 10−6. INAP is currently implemented in Java, and
the tool exploits the polymorphism and class abstractions to
allow the extension to new model classes possibly defined
by the users. With this implementation we showed some case-
studies in which we consider heterogeneous queueing network
models. The product-form solution is automatically derived
when it exists. Otherwise, we showed that INAP derives a
good approximation of non-product-form models. However,
the quality of such an approximation strongly depends on how
“far” is the model to be in in product-form as spotted also
in [22]. We think that an important improvement could be the
implementation of INAP within existing tools for stochastic
modelling such as the PEPA Eclipse Plug-in [28].

Future efforts will be devoted to relax the hypothesis on the
pairwise synchronisations in order to encompass trigger-based
component cooperations [29] and to improve the accuracy of
the approximation when the matrices describing the passive
transitions are not stochastic.
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