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Abstract—Modern computer systems consist of a large number resorting to product-form theory [3], [4], [5]. Consider adel
of dynamic hardware and software components that interact consisting of M cooperating component§ = {1,..., M}
according to some specific rules. Quantitative models of such and letm = (my,...,my) be a vector describing its state,

systems are important for performance engineering because tige .
allow for an earlier prediction of the quality of service. The wherem; denotes the state of componentThen the model

application of stochastic modelling for this purpose is limited by IS in product-form if its stationary state distribution(m)
the problem of the explosion of the state space of the model, is proportional to the product of the stationary distribug

i.e. the number of states that should be considered for an of each component considered in isolation and opportunely
exact analysis increases exponentially and is thus huge e"e”parametrisedr(s) (my), i.e.:

when few components are considered. In this paper we resort A

to product-form theory to deal with this problem. We define M

an iterative algorithm with the following characteristics: a) it (s)

deals with models with infinite state space and block regular m(m) o HW (ms).

structure (e.g. quasi-birth&death) without the need of truncation; s=1

b) in case of detections of product-form according to RCAT Assuming that each component hastates, and that the joint

conditions, it computes the exact solution of the model; c) in . .
case of non-product-form, it computes an approximate solution. model state space is the Cartesian product of the statespace

The very loose assumptions allow us to provide examples of Of itS components, a brute force approach, i.e., the solutio
analysis of heterogeneous product-form models (e.g., consiggin Of the global balance equations of the joint process, has a
of queues with catastrophes and/or batch removals) as well as computational cost o@(n3M), while a product-form solution
approximating non-product-form models with non-exponential has a cost of(Mn?3). Several research efforts have been
service time distributions and negative customers. devoted to characterising models with product-form sohai
especially in the domain of queueing networks (e.g., [3],
[4]). In [5] the compositional nature of process algebra is
Stochastic modelling of computer and communication sysxploited to derive the Reversed Compound Agent Theorem
tems has shown its importance in performance engineeri(/CAT) which gives sufficient conditions for a cooperation
by defining formalisms and analysis techniques capable @ff stochastic models to be in product-form. Similarly to [4]
predicting the quality of service (QoS) and the reliabildfy RCAT relies on the analysis of the reversed process of the
hardware and software architectures in their earlier plfisecomponents considered in isolation and this strongly $mit
design. Many formalisms, such as the Performance evalits- application from practitioners: reasoning on the rsedr
tion process algebra (PEPA) [1], stochastic Petri nets [2] process and giving a physical interpretation to the product
Markovian queueing networks [3], allow for the definition oform conditions may be a hard task. Moreover, from an
models whose underlying stochastic processes are consnualgebraic point of view, in many relevant cases (e.g., [6],
time Markov chains (CTMC). In particular, process algebrai7]) the computation of the stationary probabilities regai
formalisms are appreciated for their formal semantics aitie solution of large systems of non-linear traffic equation
compositionality properties that allow one to describe m-co a) Contributions: In this paper we present the lIterative
plex system in a modular and hierarchical way. HoweveXumerical Algorithm for Product-forms (INAP). The algo-
from the analysis prospective, all these approaches aredm rithm addresses the two problems concerning the analysis
by the problem of the state space explosion, i.e., in mast product-form models, i.e., deciding if the product-form
of the cases, the state space of the model tends to groenditions are satisfied and computing the stationary idistr
exponentially with the number of its components. In orddutions. As shown in [5], product-form conditions are in
to overcome this problem, exact and approximated techriqugeneral not just structural but also depends on the transiti
have been proposed in literature. This paper focuses on the&es in the reversed process of an isolated component. As a
exact and approximate decomposition of stochastic modelsdonsequence, since deciding if a product-form exists regui

I. INTRODUCTION



the components to be parametrised and isolated, testing RG#ly models with a finite humber of states can be studied,
conditions is not a trivial task. The novel aspects of thehile many well-known classes of product-form models have
algorithm are the following: an unbounded state-space (the topic is addressed also in

« It can study models witiinfinite state spaces with block [17], [18] for non-product-form models). In [19] a trunaai
regular structure as well as models withite number of Mechanism is proposed, however this approach may reduce
states as in [8] This allows us to study a wide class ofthe solution accuracy and asks the modeller to decide how to
open models with different behaviours such as: G-queulgncate the components’ state spaces. As concerns deeompo
with removal of batches of customers or flushing [7], GSition algorithms based on product-form approximationsye
queues with resets [9] and, more generally, queues wiitethods have been defined for the analysis of complex models
quasi birth&death (QBD) structure, queues with Ioweiln_ orde_r to overcome the limitation due to the state space
Hessenberg matrix structure. In dealing with unboundétimension, both for large product-form models and for non
models, we must also consider the problem of stabilitproduct-form models that can be approximated by a product-

This topic is considered in [10], however in this papeform solution. As in our case, most of the methods proposed
we resort to Neuts’ drift condition [11] and Bini et. alin literature do not provide bounds on the approximatioorerr

work [12]. Some specific algorithms have been defined for the CTMCs

« One key point of our iterative algorithm consists iHnderlying various models expressed in high-level forsmas,
verifying the RCAT conditions in case of processe§”d they often take advantage of decompositions at the highe
with Lower Hessenberg or QBD matrices as infinitesimagvel of abstraction (e.g., decomposition and aggregatibn
generator. We contribute to the state-of-the-art of produélueueing networks or stochastic Petri nets). In this field,
form theory by deriving a closed-form matrix formulaTtivedi et als fixed point iterations based on stochast¢riP
for this check, which avoids the computation of the relets have been widely explored (see [20] and the references
versed processes. Although these formulas are useful et@@rein). Fixed point iterations have shown their accuracy
outside the definition of INAP, they play an importanPractice in several works (see e.g. [21] and the references
role for the algorithm since they strongly increase itd1erein). With respect to these works, our approach is reiffe
numerical stability and computational cost. because it is applied at a lower level of abstraction and éaenc

« When the algorithm reaches a fixed point, but the produ&@n work with a wide class of possibly heterogeneous models.
form conditions of RCAT cannot be verified, the comMoreover, its fixed point iterations are purely based on the
puted solution can be interpreted as an approximati@halysis of the CTMC without being driven by modeller's
of the model's steady-state distribution. We will justifyintuition about the high-level behaviour. Concerning prod

this claim in Section IIl, once the theoretical notiondorm decompositions for approximating stochastic models,
underlying the algorithm are introduced. a recent paper [22] introduces an algorithm that relies on

idea of minimising a non-convex function to derive the
est product-form distribution that approximates theect
LFtribution. The drawbacks of the approach are that they ca
applied for models with finite state spaces and that the
rg}@imigatio'n may fall into local minima resulting in very dba
approximations.
The balance of the paper is as follows. Section Il introduces
e notation and briefly recalls the underlying theoretical
gults. Section 1l describes INAP while in Section IV we

| . dels 13 tochastic Petri net _ present the theoretical results _ab_Ol_Jt product-form form pr
algebraic models [13], [5] and stochastic Petri nets [18]{ gsses with block structured infinitesimal generators.- Sec

Ad-h Igorithms f h of th f li h b ) o .
oc algonithms for €ach of tese formalisms have ean V shows some numerical applications of INAP. Finally,

proposed, however RCAT proved that working at a lower Iev% . X .
of abstraction, i.e., by specifying the component coojiemat ection VI concludes the paper with some final remarks.

as SynChroniSing transitions of the Markov processesw&"o II. NOTATION, DEFINITIONS, BACKGROUND
for a heterogeneous model definition in product-form. Queue .
In the paper we denotscalar constantasing uppercase

ing Petri nets [16] is an example of such a hetemgene(jlé?ters €.9. N,T), (row) vectors using boldface lowercase

modelling approach that may vyield product-form stationa ;
distribution. To the best of our knowledge, the most gener%*mbms €.0.7, e), matricesas uppercase teletype letteesy.

algorithm for the detection and the computation of the $oitut Q, ) and_sets.using uppercase calligraphi_e.g. S, £). An_y
of product-form models is that presented in [8]. The dynesmic,other entity different from the aforementioned ones will be

: . . lowercase symbols.g. i, j, a, 5, ¢). The sets of
and convergence properties of the algorithm have ex engﬁenoted by . 7
g brop 9 P real and nonnegative real numbers are denote®® laydR .,

tally shown to be robust, however its main limitation is that : ;
Y respectively. The set of natural numbers is denotedNgnd
lin the same paper, unbounded models are studied only if theegsoctne Set of natural numbers with the infinity symbol is denoted

structures underlying the components are birth&death. by Ngo.

The main assumption required to apply INAP concerns ﬂttI%e
semantics of the cooperations among the components t
must be pairwise. In other words, a transition of a compone
can trigger a transition in at most one other compone
(simultaneous state changes in more than two components
not considered).

b) Related works:Product-form theory has mainly been
developed for queueing networks such as in [3], [6], [7t
although some results have also been proved for proc



We denote by a row vector of allls and byI the identity Algorithm 1 INAP Algorithm: pseudo-code
matrix. We define the operator diag, which produces a Require: Cooperation graply = (S,€)

diagonal matrix with diagonal entries given by vectorGiven initialize the reverse rate§e,}ic. (seeslll-B)
a matrix A, we denote byA" the transpose of and, if A is while not termination criterion met (seddll-E) do
square, we denote hy the matrix defined as for all s €S do

computeQ®®) according to (1)
update the stationary distributian(*) (see§llI-C)

Let S = {1,---,M} be the set ofM € N cooperating end for
components that are defined as stochastic automata with updat'e the reverse ratgs: }cc. (seeflll-A)
possibly labelled transitions, witli a set of labels. A label end while .
¢ € L is active in component; € S if all the rates of the ~ ¢Neck co?\gergence and product-form conditions (i)
transitions labelled are specified while it is passive fh € S return {7 %'}, and {we}eec
if there exists a probability assigned to each transitibelled
£. Intuitively, when automatony, performs a transition la-
belled ¢, then 3, performs a given synchronising transitionsufficient conditions for having a product-form solutiontire
with the probability associated with it. We assume that ﬂ]@int state space of cooperating Markov processes.
synchronising probability distributions for passive antda  Henceforth, we assume that the cooperating components
are well defined, and for each state they sumltdi.e., @ forming a model have an underlying irreducible state space.
passive automaton cannot prevent an active to move). All tBghce we are considering also models with infinite stateespac
transitions are carried out in an exponentially distridutiene this condition is necessary but not sufficient for the ergityli
(and this justifies the fact that the underlying process is ghother important aspect to take into account is the stractu
CTMC). Transitions labelled < £ are carried out only jointly of the joint process. Whenever the joint process’ state space
by o, and g, and this specifies how the synchronisation workss the Cartesian product of the components’ state spaces, th
Observe that only pairwise synchronisations are allowed. the probability obtained by INAP are normalised. In the othe
A cooperation graphs a multi-graphy = (S, &), where the case (e.g., in case of closed queueing networks), this tondi
set of components corresponds to the set of vertices of thgs not satisfied and the probability distributions computed
graph, and the set = {(a, 5¢) }¢c. contains oriented edgespy |NAP can be interpreted as the un-normalised stationary
indexed by labels inC. Each label identifies a cooperationpropability for the ergodic states. According to RCAT, the
between two components . steady-state distribution of the model is in product-forithw
We denote by (P?) the set of labels irf € £ identifying respect to its component if there exists a{et} s such that

a cooperation in grapp wheres € S plays an active (passive) yq infinjtesimal generato@(s) of each isolated component
role:

Al ={leLlayg=s} andPd ={lc L|B¢ = s} .

A=A—diageA’).

s € S is determined by:

Q(S) _ E(S) + Z T =+ Z J(f)xe (1)
Hereafter, we writed, (P;) for A9 (P¢) wheng can be LeA, €EPs
inferred from the context without ambiguities. _ )
Each component € S has a (possibly infinite) sep, and the following relation holds:
of states. LetN, = |V;| € N, be the number of states of (e (O ()11
components. Given a cooperation grapjy we have for each zpe =m T diagw )", )
label £ € £ a N,,-dimensional matrixt*) specifying the ) . . .
rates of the active transitions with labélof componentoy, wherew(*) are obtained for alk € S as the unique solution
and aNj,-dimensional stochastic matrix® indicating the ©f:
corresponding passive transitions of compongntAddition- ﬂ-sﬁ(s) -0 and eﬂ-j =1. (3)
ally, each component € S has an associatedl;-dimensional
matrix E(*) encoding rates of non cooperating transitions. e refer toz, as thereverse rateassociated with the
Observe that the matriceB”) and E(*), for ¢ € £ and cooperation labell € £ [4], [5]. The basic idea of our
s € S have only non negative entries including the diagon@(AP algorithm is to start with an initial set of reversedest
elements. This is due to the necessity of representing sgmch{u}eeb which are required to set up the system (3) for all
nising self-loop transition in states. s € S and find the steady-state probabilitigs(*)},cs. These
probabilities, in turn, are then used to update the revextesr
{z¢}eec. This is more formally depicted by Algorithm 1. We
The algorithm we introduce in this section is based onleep updating the steady-state probabilities and the sever
set of results pertaining to the study of stochastic models riates until convergence (see [8] for more details). In what
product-form. Specifically, we consider the Reversed Corfellows, we discuss in detail each step of the algorithm and
pound Agent Theorem (RCAT) presented in [5], which statébe optimisations that have been implemented.

Ill. ALGORITHM DEFINITION



A. Computation of the reversed rateg C. Solution of the components in isolation

The first problem we address is how to compute the reverseooncef the |nf|n|tg5|me}l ger,‘eram% of compgnents E.S IS
rates in the isolated components because most of the igoritSterMined at a given iteration using Equation (1), itsdytea
definition relies on this aspect. The effective computapen Staté solution can be computed. Recall that since the set of
the reversed rates according to Equation (2) is a non{rivffverseld .ratesf 'ﬁ feas:jblle, thin the _mé)del 1S ds.?frely ergodic
task and usually causes numerical stability problems due-IEBe, solution of the model can be carried out In different ways
some state stationary probabilities that may tend. tmdeed, f_or instance explofung theoretical results about symbeblu- .
Equation (2) involves a non-linear relation between thadye tions [23]_' Otherwise, the_syster_n of gl_ob_al_ ba_Iance equatio
state probabilities (which are, in general, unknown). Mege, Ccan be directly solved. Finally, if the infinitesimal gertera
Equation (2) does not hold in case of models which are not E?S a block(;egular StI’UCt(ljJI‘.e, a matrix geometric solutam c
product-form. For these reasons, we compttas a weighted € computed as proposed in Section IV.
mean of the right-hand-side of (2), where the weights am Stability issues

given by the steady-state probability**). This is achieved g, 3¢ \we ignored the possibility that some of the sys-
by right-multiplying both sides of (2) byr(**) ", which yields  tems (3) might have no solution even if the underlying preces

the following simplified formula is irreducible. This can happen in case of components with
(a0)m(0) T infinitely many states, which are unstable due to bad choices
Ty =T e . (4)  of the reverse rates. If this situation arises while the ratiym

_ _ o o ~isiterating we cannot conclude that the model is unstahie, b
The rationale of this choice is that states with higher stelfy only that the temporary choice of the reversed rates causes
prObabI|ItIeS affect the behaviour of the COOperatIOI’IS enobne or more Component to be unstable. However, in these
than those with a lower one. Moreover, in case of producases Equation (4) cannot be applied to compute the reversed
form the expected reversed rate obviously correspondseto Htes for the following iterations. To overcome this isswe,

constant reversed rate incoming to each state. introduce a procedure aimed at adjusting the reversed rates
X ={z¢}sc t0 X" = {2} }sc in such a way as to be feasible
B. Initialising the reversed rates, according to Definition 1 and be as close as possible’'to

More formally, we should solve the minimisation problem
The definition of the infinitesimal generators underlying

the components relies on the knowledge of the synchronising X' € arg min » (z, — ye)® (6)
transition reversed rates as shown by Equation (1). Thexefo teL

the first step of Algorithm 1 is the initialisation of the resed with the constraint thal) = {y,}+c. must be feasible accord-
rates. The initialisation is done randomly within the set afg to Definition 1. In components with infinite state spaces
feasible reversed rateshose definition follows. and underlying block regular structure of Lower Hessenberg
Matrix type, or QBD, the stability check can be done by means
of the so calleddrift condition Roughly speaking, the drift
condition states that the (positive) drift to higher nundaer

Definition 1 (Feasible reverse ratesp set{xy}sc. Of re-
versed rates is feasible if the following conditions aresfid:

1) For eachl e L, levels must be less than the (negative) drift to lower numdber
ones. More details are given in Section IV. For many prattica
min (T(f)eT) < 2y < max (T(f)eT)7 (5) instances of infinite state models, a passive labaither

contributes to the positive drift or to the negative drifte\aall
wheremin and max assume the value of the minimunih€se modelsnonotonic with respect to the passive lab&er
and maximum components of the argument vectors. this class of models, the solution of optimisation probley (
2) For each modek € S, the infinitesimal generatoﬁ(s) is simple, and can always be found if the feasible space for

corresponds to an ergodic chain. the reversed rates is non-empty.

Note that for an ergodic model the expected reversedE' Convergence and stopping criteria
rate z;, { € A,, as defined by Equation (4) must satisfy The algorithm terminates because one of the following three
Inequality (5). Indeed, it suffices to observe that Equaién conditions is satisfied:
defines a convex linear combination of the entrieg$fe . (S1) A set of feasible rates cannot be found.
The same inequality trivially holds if the model satisfies®/C  (S2) For each componestc S, given a tolerance > 0:

(ﬂ_(s)) (%] B (ﬂ_(s)> (k—1]

product-form conditions since®e’ would be a constant
vector. H <eg,
Although it is easy to sample the initial set of reversedsate
according to the interval given by Condition (5), satistyin where (ﬂ(s))[k] is the stationary distribution at it-
Condition 2 of Definition 1 is harder. We solve this issue in erationk > 1. In Section IV we discuss how to

Section IlI-D in terms of a constrained minimisation prable implement this test for models with infinite states.



(S3) The maximum number of iterations has beemhere
reached. e Ag, A1, A; are square matrices with the same dimension
If the algorithm terminates due to (S1), then: K,
. if the components are monotonic with respect to the ¢ Boo iS & square matrix with dimensioH,
passive labels, then the model does not admit an exace Bio, # > 0 are K x H matrices,
product-form solution. If the model is stable but not in ¢ Bo1 is @ H x K matrix,
product-form, then the INAP approximation is unstable ¢ Bi1, ¢ > 0 are square matrices with dimensién
and no solution can be found. Intuitively, this couldAs a special case, we derive later the results for quasi
happen if the model is really close to instability. birth&death processes. We aim at finding a stationary istri
« if the components are not monotonic with respect to thesn 7 from the systemrQ = 0. Consider a decomposition of
passive labels, then the algorithm used to solve (6) coutltke stationary distribution ag = (g, 71, 72, ... ), Neuts has
have failed to find a feasible solution. However, obsenshown that a matrix geometric solution exists to this prohle
that often intuition can drive the modeller to define a none. there exists a positive matrix such that:
empty set of feasible reversed rates in order to prevent
the occurrence of such a behaviour.
When the algorithm terminates due to (S2), then one of tifier all n > 1, whereasw, and w; are determined as the
following cases arises: solution of the following linear system of equalities:

« In the last interaction some reversed rates have been
changed according to problem (6). In this case, the Boo Bo:
proposed result is not meaningful since some of the 770’””( S RITIBy I RITIB, ) =(0,0), ()
components in isolation are unstable. under the normalizina constraint:

« Otherwise if RCAT condition (2) holds, then the algo- g '
rithm computed the correct solution of the model. If it - i) T
does not hold, then the solution should be considered as moe + Ty ZR e =1. (10)
an approximation. The check of RCAT condition (2) for =1
model with infinite states is addressed in Section IV. In [11] the author proves that matrik must satisfy the

Condition (S3) is needed since INAP shares with most &llowing relation:

T = Tp-1R (8)

the other fixed point algorithms for approximate analysis o

of stochastic models the lack of a proof of convergence. Ao +RA; +ZRlAi =0.

Therefore, although we could never observe in practiceicycl =2

behaviours, we have to consider this possibility. Starting from this relation, the following iterative scherfor
Observe that the space of feasible reversed rates is compgg computation of can be derived:

Hence, by Brouwer’s fixed point theorem, if the space of o ,

feasible reversed rates is non-empty, there exists at oraest R+ — _poart — Z (R[k])ZAiA;17

fixed point. However, this is not sufficient to guarantee ,that =2

iven the initialization, a fixed point will be reached. . .
g P for &k > 0 andRIY) = 0. Neuts has shown that the iterative

IV. MATRIX GEOMETRICS METHODS AND scheme is nondecreasing and converges to matrix
PRODUCFFORMS In our context, this kind of process underlies one or more

This section reviews the fundamental notions about mat/§@mponents in a cooperation. Therefore, we are actually as-
analytic methods. Matrix Geometric methods [11], [24] eipl Suming that all the matrices characterizing a comporents
the regular block-structure of the CTMC underlying a clad&dve a block regular structure of the type (7). Moreoveraltec
of Markovian queues to efficiently compute their steadyestathat the matricess”), T(), E(*) defining the components do

distribution. not have the diagonal elements defined as the opposite of the
_ sum of the row elements. Indeed Gifdefined by Equation (1)
A. Block Lower Hessenberg Markov Chains has a lower Hessenber structure, then trivially alsdoes.

In this section we consider Markov chains whose infinite$Ve useBéf)) to denote the upper left block of matrix?) and
imal generatoR exhibits a block lower Hessenberg structuresimilarly for the other blocks. As usual, we assume that for
B B O 0 0 o0 o each component with lower Hessenberg structure there exist
BOO BOl A o0 o o constants/ (¥) and W () such that for alll € A, we have:

10 Bir Ao . s 0 _ 5O i
B20 B21 Al AO 0 0 o 1 Z V( ) - Bi =B with h S {0, 1}
0

V(s)h
B3p B31 A2 A Ag

o O O

@ e i>wW® = Y =0
In the following proposition we assume, without loss of
generality,V(®) > W) and write simplyV and W omitting
the component label.

ol
|



Theorem 1 (Computation of expected reversed rate for Lowewhereﬂ-g ], 71'[1 1 are the first two blocks of the decomposition
Hessenberg matricesThe expected reversed rate defined byf (*) andR*! is the rate matrix, all at iteratior¥.
Equation(4) can be written as follows in case of components

exhibiting an underlying process with block-regular sture Remark 2 (Checking RCAT condition) In order to verify

of the type shown in (7): that a product-form sglunoq has k_)een found, we have to_check
that the RCAT conditiof2) is fullfilled for all £ € £. To this
T = T (Bé@eT +Béfl)eT) end, we compute for each € £ the residual of equation
(2) after post-multiplication of both sides by diag,,) and
i—1 © L0 NG ) we impose that the maximum of those residuals should not
+ Z ™R KBZO BVO) e+ ( ~ By ) } exceed a tolerance parameter

w
— Zﬂ'lRi*l (Z Ag)> eT max Hﬂ'(o‘f) (ng — T(€)> H <e€.
i=1 z=i

LeLl
L (g7 OF 0e" .
+ 71 (I-R) (Bvoe +tBye +Ave ) (11)  The computation of the norm for afl ¢ £, needed to check

wherea® = 3 4. the RCAT condition, can be achieved in closed-form accgrdin

i=0 %4 to Theorem 2 assuming= z,I — T,
Proof: Equation (4) for lower Hessenberg matrices be-
comes: . “) g Theorem 2. Let Z be a matrix with block structure and block
names defined as V) and letw = (g, w1, 72,...) be a
(B(/)e +B\)e ) normalized probability distribution satisfying; = ;_1R, for

all : > 1. Then

S DR (CIARTTARS 00 I

z=0 Vo1

ﬂ'QBoj =+ 1 Z R.i_l (Bij — BVJ') =+ 7l'1(I — R.)_IBV]'
i=1

-« O 0T T = >
- , _
YW <Bi0e +BYe" +al >e) =
i=W+1

% + U [(VTYYTV) o w} Ul
. T T
+m Y R (B(”e +8%e +A“>e)

whereo is the entrywise matrix product operator (Hadamard
Since the spectral radius &fis lower thanl, the infinite sum product),
of the expression above can be conveniently rewritten as:
R = Udiag(s) V'
7 (I—R)™ (B%e +BYe" +20e )

-1 is the singular value decomposition of matiixand Y,w =
o i—1 (n0) T 0 7 Oy B defined foll
> mR T (Bije +Bpie +4ale (w;;) are defined as follows
After rearranging the terms and some algebraic simplifeti Y = Ap +RA; +R%Ay and w;; = (1 —s;85) 7"
Equation (11) can be derived. |

Corollary 1. If a models € S satisfies RCAT conditions, then

for each? € A;, x, as defined in (11) is the constant reversed " loit h . h
rate associated with label. Proof: By exploiting the structure of. we expand the

norm on the left-hand-side of the equality as follows
Proof: The proof follows straightforwardly from the
definition of z, given by Equation (4). [ ] Iz
™
Remark 1 (Stopping criterion) The verification of the stop-

ping condition Z

(,T<s>>““] N <W<s>)[’“‘1]

in case of Block Lower Hessenberg Markov Chains becométere, we can get rid of the infinite summation in the first terms
on the right-hand-side by rewriting it as follows

oo
moBo; + w1 Y _R'By;
=1

+>_ [lmRy|
i=0

<e, je{0,1}

[kl _ ,,ge—l]HQ

|

+ Hw[lk] (I - 11[’“])71 — ﬂ[lk_l] (I - R[k*”)il

V-1 2

moBo; + 71 Z R (Bjj —By;) + m1(I —R) 'By;
i=1

2

<e, Y

je{o,1}

)




whereas we can get rid of the infinite summation of the second Q1

Q2
term on the right-hand-side as follows: A \
L, H1 K2 s

o0 oo
3 |y = lz RiYYT(Ri)T] ™ =
=0 =0

=mU lz diag(s)'vTYY v diag(s)i] Ul

i=0 A3

UTﬂ’l

m U [(VTYYTV) o i(si)Tsi
=0

K2

wheres’ denotes vectos with entries raised to thith power. Fig- 1. G-network studied in Section V-A. Different line ity are used
Finally, the result derives from the equallfy;-,(s’) "s’ = W. qu;;;?rro;iaed;zgg': Symbol- denotes a batch removal signal, white a
[ |
Note that Theorems 1 and 2 give a new procedure to check
RCAT conditions for all the models with Lower Hessenberg _
block structured infinitesimal generator. First, the expdc A. Network of heterogeneous queues in product-form
reversed rate must be computed according to the closedmatriye test the INAP algorithm for models with infinite state

formula of Theorem 1 and then using Theorem 2 one c@Baces in a network of heterogeneous queues that yields a
check if the reversed rates are constant without the need Oﬁr%duct-form steady-state distribution.

truncation. a) Model description.:The first example deals with the
Remark 3 (Stability of the queue)Stability of queues with class of queueing networks introduced by Gelenbe in [6gdall
Lower Hessenberg structures has been widely studied @Gnetworks. We show that, differently from what previously
literature and for the sake of brevity we recall here feWproposed in [8], the algorithm developed in this paper i abl
notions. For our purposes, the key-point is that according Solve models consisting of more general nodes as those
to the drift conditions presented in [24], [12], deciding ifPresented in [7], [26]. The G-network consists Hfnodes

V. NUMERICAL VALIDATION

rate matrixR has spectral radius lower than requires only (Q1,--., Q1) with independent exponentially distributed ser-
algebraic operations on the block-matrices of the infinited  Vice time. The arrival of external customers @i, ..., Q3
generator. Therefore, this can be done efficiently whilgiagl are modelled by independent homogeneous Poisson processes
the optimization probleng6) when required. with rates A1, ..., A\3. As usual, we assume independence
between the arrival processes and the service times. Once a
B. QBD Processes customer departs from a node, it can: a) leave the network; b)

We consider QBD processes as special cases of Lov@gter another node as a standard customer. In this case, if th
Hessenberg matrices whemj; = A;, By = A,, B;y = 0 destination node is empty then its service starts immegljate

fori > 2,B; = 0fori > 2andA; = 0 for i > 2. The oOtherwise it has to wait in the queue according td-iest
iterative computation of matri® simplifies to: Come First Servediscipline; c) enter another queue as a batch
0 removal signal. In this case, at the customer arrival epoch
RIFFU = _poa7! — (RU"]) AAT', k>0, (12) the queue length decreasesthin{n!”, B;} customers, where
ngt] denotes the number of customers at the destination node
whereR!*! is the matrix at thé:ith iteration step, witlk”) = 0. ; at epocht and B; is a random variable representing the size
Faster iterative approaCheS for the ComputatiOR of case of of the batch to remove at noded) enter another gueue as a
QBD processes have been defined (see, e.g., [25], [12]). catastrophe signal and in this case, the node is flushed. The
The fO”OWing Corollary is the formulation of Theorem 1 fOfrouting of customers and Signa|s in the network is probgm“

QBD processes. The proof is purely algebraic and is omitt@@d state-independent. In Figure 1 we show the model that we
for the sake of brevity. study.

Corollary 2 (Computation of expected reversed rate for D) Modelling the nodes.Table I associates a label with
QBD). The expected reversed rate defined by Equafin each synchronlsatu_)n of the network._ THenodes of the
can be written as follows in case of components exhibiting &§Work can be easily modelled according tQ 8D structure

underlying QBD process with block-regular structure: or as a block Lower Hessenberg Matrix. As an instance, let
us consider)s. It can receive both catastrophe signals (from
T = T (BOOeT +B01eT) (Q)2) and batch removal signals (frof)s), whereas positive
. customers arrive from the outside with ratg, from Q1 and
+ 7 (Bme - AQeT> Q4. Departures are possible to nod@s and ), as positive

. T customers. In Table 1l we show the matrices that describe
+7(I-R)" (Ao + A1+ A)e . (13) this node assuming that the batch sReis deterministically



SYNCHRONISATIONS IN THE NETWORK OFFIGURE 1. LABELS P, B, C
DENOTE A POSITIVE CUSTOMER ARRIVAL A BATCH REMOVAL SIGNAL

Label | Active | Passive| Type | Prob.
0 Qa Q1 c PS
1 Q1 Q2 P Pyo
2 Q3 Q2 P P32
3 Q4 Q2 B P
4 Q1 Qs P P13
5 Q4 Qs P Py3
6 Q2 Qs C P%
7 Q4 QS B P43
8 Q3 Qa P Psy
9 Q2 Q4 B PE

TABLE |

AND A CATASTROPHE SIGNAL, RESPECTIVELY.

equal to3. Therefore, node§; and@3; are modelled as lower

g3 —
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TABLE I

Load factor | Computed value
1 0.8994655
P2 0.8866789
p3 0.7447235
P4 0.1734745
TABLE IV

LOAD FACTORS OF THE QUEUES OFIGURE 1 COMPUTED BY INAP WITH
THE PARAMETRISATION GIVEN IN TABLE III.

point with a tolerance of0~? in 12 iterations. The numerical
procedure verifies RCAT’'s Condition 2, therefore we can
conclude that the computed result is the product-form stead
state distribution. In order to evaluate the accuracy of the
numerical approach, we derive the non-linear system of rate
equations characterising the G-network and evaluate tha no
of the vector of residuals once the unknown are replaced by
the values obtained by INAP. In [7], [26] the authors prove
that each node of this type of network must yield a geo-
metric expression for the stationary probability disttibn,
mi(ni) = (1 — pi)p;t, wherep; is the load factor of node
Q; andn; its number of customers. Therefore, we can reduce
the number of unknowns of the models to the load factors
p1,---,pa. These are the solutions of the following non-linear
system of equations:

p1(A\1 + papa PG + p1) = A1 + p3ua
p2(A2 + p1pu1 Pra + p3psPs2 + papa PE + p2)
= X2 + p1p1 Pr2 + p3ps P2 + p3uo + ppapa P
p3(A3 + p1p1 Pis + papa(Paz + PE) + p2p2PSG + p3)
= A3 + p1p1 P13 + papaPas + pius + pipapa PR
pa(p3p3Pas + papaPE + pa)
= p3p3Psyg + pipa + pip2p2 P

The values computed by INAP are shown in Table IV. The
vector of residuals has a norm 61366 - 10~1°.

B. Comparison with algorithms based on the truncation of the
stochastic process

In [19] the authors revise the algorithm proposed in [8]
in order to consider model with infinite state spaces. The
main idea consists in the definition of a special operator
that truncates the state space of a model so that the states

Hessenberg block matrices, wheréasandQ, (which do not with stati_onary probability_lower than a giv_en threshole ar
accept catastrophe signals) are modelled as QBD process89t considered. The algorithm is then applied to study a G-

¢) Numerical validation.: Table Il
network’s parameters that we used.

PARAMETRISATION OF THE G-NETWORK OFFIGURE 1.

Arrival rates Routing probabilities
A1 3.0 P 0.3
A2 4.2 Pig 0.7
A3 3.8 P% 0.2

Service rates PE 0.3
1 2.3 Pso 0.5
2 6.2 Pso 0.4
n3 3.1 Py 0.6
2 6.0 PG 0.1

Batch sizes PE 0.1
Bs 3 Pys3 0.6
B 3 PE 0.2

TABLE Il

gives the set of network with catastrophe nodes and single customer deletio
INAP reached a fix@gdes (as well as standard exponential nodes). The model is

in product-form and consists of0 nodes whose stationary
distributions has a geometric form( (n;) = (1 — p;)p",
wheren; denotes the number of customers at nade”) (n;)

its stationary probability ang; is the load factor of node.

In [19] the authors state the non-linear system of equations
whose solution givep;, i = 1,...,10. Although the number

of iterations of the algorithm proposed here are the same
as that proposed in [19], the former is more accurate since
the vector of residuals has a norm b&683 - 10~9, while

for the latter it has a norm 0§.4891 - 10~°. Moreover, the
truncation mechanism proposed is not efficient for models in
which some components have load factors closk toecause
the number of states that must be considered can be very high.



Service rates Routjtr)]g prob.
12 0.8
M11 13.0 PC 0.2
K12 20.0 Pay 0.4
21 .
H21 7.0 N
H22 18.0 Py 0.2
Pag 0.4
TABLE VI
PARAMETERS USED FOR THE ANALYSIS OF THE NETWORK OFIGURE 2.
Fig. 2. Network studied in Section V-C. P>y DENOTES THE PROBABILITY THAT A CUSTOMER EXITS THE NETWORK
AFTER LEAVING NODE QQ.
Label | Active | Passive| Type | Prob. : o .
) O 0s B P102 N Expected number of customers in the queues
1 Q1 Q2 c Plﬁ 20 | ' ' ' E[J\'J Sim. I i
2 Q2 Q1 N Py s L E[N,] Sim. 7 |
3 Q2 Q1 P Po1 16 | E[Ny] App. freeeees |
1 E[N,] Appy
TABLE V — |
SYNCHRONISATIONS IN THE NETWORK OFFIGURE 2. LABELS P, N, C = 12 1
DENOTE A POSITIVE CUSTOMER ARRIVAL A NEGATIVE CUSTOMER = 10 | ]
ARRIVAL AND A CATASTROPHE SIGNAL, RESPECTIVELY. 2 I )
In the case-study of [19] the number of states of one queue ;‘ [ |
reachesl61 and the matrix corresponding to its infinitesimal 0 ) ) ) . .
generator must be inverted at each algorithm step. Using the 4 4.5 5 5.5 6 6.5 7
results proposed here, the complexity of the matrix op@nati A

depends on the §|ze of the blocks characterlsmg thelrtsm’"C.Fig. 3. Expected number of customers@n and Q2 obtained for different
and hence are in general much lower. Moreover, truncati@ues of the arrival rate.

may cause numerical instability in the process of compurtati . .
y Y P detects that the model is not in product-form, as well-known

of the steady-state distribution of each node even in isviat .

With respect to these problems for the Lower Hessenberg cafedueueing theory. However, it still provides an approiea

the algorithm we propose in this paper is more accurate, mcg?éu“ based on a decomposition of the network. In Figure 3

efficient and does not require to specify how the state spa & co;npa(;t_a-ﬁ the teXp(?CtTd ?umbgtr .Of gustomfg) in an
should be truncated. Finally, the algorithm proposed hsre > under dierent arrival rates obtained by and by a

able to provide approximate solutions in case of non—pmduéimmaﬂon tool. Simulations are run in Timenet [27] on a Gen
form model specifications eralised Stochastic Petri net model of the queueing netabrk

Figure 2. The simulation parameters are: confidence interva

C. Product-form approximation of ./Hypo/1l queues with ne@f 95% with a maximum width of5% of the estimated value.

ative customers and catastrophes As we can note, INAP approximations and Timenet estimates
a) Model description: In this section we consider adiffer in the worst case for less tharo’% of the estimated

network with feedback consisting of two node&3;( (),) with mean.
independent hypoexponential service time distributioive
assume for both the queues two stages of service with giates
andy;» for nodei = 1, 2. Customers arrive &); according to Decomposition of general stochastic models into product-
an independent, homogeneous Poisson process with.rite form approximating models has been an important topic
negative customer arrives @; when the first stage of serviceof research for the community of performance evaluation.
is busy, then the queue length is decreased,byhereas if it Specifically, the applicability of fixed point iterationsshbeen
arrives when(; is empty or with the second stage of servicinvestigated in many works (see, e.g., [20], [21] and the
busy, then the negative customer vanish@s.has a similar references therein). With respect to the state-of-thevaet
behaviour, but at a signal arrival epoch, if the first stage ebntribute to this line of research by exploiting RCAT protu
service is busy, then the queue is flushed. Figure 2 illestraforms to provide exact model decompositions, when a set of
the network topology. conditions is satisfied, or approximate ones, otherwispréw-

b) Modelling the nodesTable V gives the synchronisingtice, testing RCAT conditions for general and heterogeseou
labels with the associated probabilities. Nodgshas a QBD models is a difficult task that re&uires a theoretical anslgs
underlying structure where the size 4f matrices is2, while the model's components. Specifically, the computation ef th
node ; accepts catastrophe signals and hence exhibits taansition rates in the reversed processes of the component
underlying block regular structure that resembles a Lower computationally expensive and numerically unstable for
Hessenberg matrix. models with infinite state spaces. The first contribution of

¢) Numerical analysisWe apply INAP for the analysis the paper is the definition of a novel strategy to derive the
of the model of Figure 2 parametrised as specified in Table \feversed rates of the components’ synchronising tramsitio
We study the model under different arrival ratds INAP that is very efficient both for models with finite and infinite

VI. CONCLUSION



block structured state spaces. Basically, the method oeséh

(4]

two phases: in the former we compute an “expected reverséd
rate” and in the latter we test RCAT condition by checkingg
if all the reversed rates associated to the same synchmgnisi

active label are equal to the expected value. We showed how @ —— “G-Networks with signals and batch removaRtob. in the Eng.
apply this result for models with infinite state spaces buhwi 8]
block regular structure of the type Lower Hessenber or QBD

and proved that both the reversed rates and RCAT test can
computed through a closed matrix formula. These approach

make INAP computationally efficient and numerically stablg10]
The class of components with this types of block-regular

structures includes a large variety of well-known queueiqgl]
models such as those studied in [24], [6], [7] and many other
that could be or not in product-form. From the applicability2]
point of view, the paper gives a contribution to the exagj,
or approximate analysis of heterogeneous models. Indeed,

since models are specified at a very low level, different syp
of components can be integrated. Moreover, differentlynfro

fia)

what proposed in [20], INAP uses very loose assumption on
the model synchronisations (the pairwise cooperation és tA®]
strictest one). We believe that INAP should be applied for

studying product-form models with pairwise synchronisasi

(16]

thanks to its capability of automatic detection (within the

numerical precision) of product-forms - therefore autasiiad
the proof -, to its ability of performing an automatic anaysf

the model stability and finally to the computational efficgn

(17]

required to solve the possibly non-liner systems of rateaeqdls]

tions that are needed for deriving the stationary distidmnst

INAP convergence is very fast and in all our experiments th&]

number of iterations have been lower th#nhwith a tolerance

of ¢ = 107°. INAP is currently implemented in Java, and

the tool exploits the polymorphism and class abstractions [20]
allow the extension to new model classes possibly defined
by the users. With this implementation we showed some casey
studies in which we consider heterogeneous queueing retwor
models. The product-form solution is automatically dedive

when it exists. Otherwise, we showed that INAP derives a
good approximation of non-product-form models. Howevel2?]
the quality of such an approximation strongly depends on how
“far” is the model to be in in product-form as spotted als3]
in [22]. We think that an important improvement could be the

implementation of INAP within existing tools for stochasti

modelling such as the PEPA Eclipse Plug-in [28].

(24]

Future efforts will be devoted to relax the hypothesis on the

pairwise synchronisations in order to encompass triggee
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