

On the Informativeness of Asymmetric Dissimilarities

Yenisel Plasencia Calaña, <u>Veronika Cheplygina</u>, Robert P.W. Duin, Edel B. García Reyes, Mauricio Orozco Alzate, David M.J. Tax, Marco Loog

Asymmetric dissimilarities

• Live example!

Asymmetric dissimilarities

• Live example!

Asymmetric dissimilarities

"Dutch is similar to German"

11,000 hits

"German is similar to Dutch"

1,000 hits

Contents

- Causes of asymmetry
- What people do about it
- How we can do it better

Experts

	German	Dutch
German		1000
Dutch	11000	

Matching

- Shapes = Strings of angles
- Incorporating invariance
- Inexact procedures
- Different search path

{90, 90, 0, 135, 135...} starting at top left

{225, 225, 0, 270, 270...} starting at arrow tip

Multiple Instance Learning

- Bags are sets of feature vectors
- Instance labels are not given
- Concept instances important for bag label

Multiple Instance Learning

(Modified) Hausdorff distance

$$d(B_i, B_j) = \max_{\mathbf{x}_k \in B_i} \min_{\mathbf{x}_l \in B_j} d(\mathbf{x}_k, \mathbf{x}_l)$$

$$d_H(B_i, B_j) = \max(d(B_i, B_j), d(B_j, B_i))$$

Concept instance?

Asymmetry

What is usually done

 Nearest neighbor, clustering, SVM, embedding ...

Symmetrize dissimilarity

What if this throws away information?

$$D_1 = d(A, B)$$

$$D_2 = d(B, A)$$

$$\max(D_1, D_2)$$

$$\min(D_1, D_2)$$

$$\frac{1}{2}(D_1+D_2)$$

Asymmetry

Alternative

- Dissimilarity space
- Distances as features
- Any (even non-square) matrix
- Any supervised classifier

$$R = \{r_1, \dots, r_k\}$$
$$D_i \in \mathbb{R}^k, i = 1, 2$$

Asymmetry

Our idea

- Extended Asymmetric Dissimilarity
 Space
- All information available

$$[D_1 D_2] \in \mathbb{R}^{k \times 2}$$

Datasets

Chicken Pieces

- 5 classes
- Edge segments of 35 pixels
- String of angles
- Edit distance

Ajax Orange

- 25 objects, 10x6 backgrounds
- 1 against all
- Segments + simple features
- Modified Hausdorff

Results

Chicken pieces

- D1 and D2 comparable
- EADS best, Averaging good
- Gap EADS & average smaller with more prototypes

Results

AjaxOrange

- D2 much better than D1 (Concept instances!)
- Averaging worse than best!
- EADS still good

Conclusions

- Asymmetric dissimilarities occur in many applications
- Asymmetry can be informative
- Dissimilarity space suitable for using asymmetry information
- Preserve most information with
 Extended Asymmetric Dissimilarity Space

Do you also have asymmetric dissimilarities?

