
1

Machine Learning for Web Vulnerability Detection:
The Case of Cross-Site Request Forgery

Stefano Calzavara∗, Mauro Conti†, Riccardo Focardi∗, Alvise Rabitti∗, and Gabriele Tolomei‡
∗Università Ca’ Foscari Venezia, Italy

†University of Padua, Italy
‡Sapienza University of Rome, Italy

Abstract—In this article, we propose a methodology to leverage
Machine Learning (ML) for the detection of web application
vulnerabilities. Web applications are particularly challenging to
analyse, due to their diversity and the widespread adoption of
custom programming practices. ML is thus very helpful for web
application security: it can take advantage of manually labeled
data to bring the human understanding of the web application
semantics into automated analysis tools. We use our methodology
in the design of Mitch, the first ML solution for the black-box
detection of Cross-Site Request Forgery (CSRF) vulnerabilities.
Mitch allowed us to identify 35 new CSRFs on 20 major websites
and 3 new CSRFs on production software.

Index Terms—Machine learning, cross-site request forgery,
web security.

I. WEB VULNERABILITY DETECTION

Web applications are the most common interface to security-
sensitive data and functionality available nowadays. They
are routinely used to file tax incomes, access the results of
medical screenings, perform financial transactions, and share
opinions with our circle of friends, just to mention a few
popular use cases. On the downside, this means that web
applications are appealing targets to malicious users (attackers)
who are determined to force economic losses, unduly access
confidential data or create embarrassment to their victims.

Securing web applications is well known to be hard [1].
There are several reasons for this, ranging from the hetero-
geneity and complexity of the web platform to the adoption
of undisciplined scripting languages offering dubious security
guarantees and not amenable for static analysis. In such a
setting, black-box vulnerability detection methods are particu-
larly popular [2], [3], [4]. As opposed to white-box techniques
which require access to the web application source code,
black-box methods operate at the level of HTTP traffic, i.e.,
HTTP requests and responses. Though this limited perspective
might miss important insights, it has the key advantage of
offering a language-agnostic vulnerability detection approach,
which abstracts from the complexity of scripting languages
and offers a uniform interface to the widest possible range of
web applications. This sounds appealing, yet previous work
showed that such an analysis is far from trivial [5], [6]. One
of the main challenges there is how to expose to automated
tools a critical ingredient of effective vulnerability detection,
i.e., an understanding of the web application semantics.

This article was supported by the project “Machine learning for web
security”, funded by the IRIDE program of Università Ca’ Foscari Venezia.

A. Example: Cross-Site Request Forgery (CSRF)

Cross-Site Request Forgery (CSRF) is a well-known web
attack that forces a user into submitting unwanted, attacker-
controlled HTTP requests towards a vulnerable web applica-
tion in which she is currently authenticated. The key concept
of CSRF is that the malicious requests are routed to the web
application through the user’s browser, hence they might be
indistinguishable from intended benign requests which were
actually authorized by the user.

A typical CSRF attack works as follows (Figure 1):
1) Alice logs into an honest yet vulnerable web application,

e.g., her preferred social network. Session authentication
is implemented through a session cookie that is automat-
ically attached by the browser to any subsequent request
towards the web application;

2) Alice opens another tab and visits an unrelated website,
e.g., a newspaper website, which returns a web page
including malicious advertisement;

3) the malicious advertisement sends a cross-site request
to the social network using HTML or JavaScript, e.g.,
asking to “like” a given political party. Since the re-
quest includes Alice’s cookies, it is processed in her
authentication context at the social network. This way,
the malicious advertisement can force Alice into putting
a “like” to the desired political party, which might skew
the result of online surveys.

Notice that CSRF does not require the attacker to intercept
or modify user’s requests and responses: it suffices that the

Fig. 1. Cross-site request forgery (example)

2

victim visits the attacker’s website, from which the attack is
launched. Thus, CSRF vulnerabilities are exploitable by any
malicious website on the Web.

B. Preventing CSRF

To prevent CSRF, web developers have to implement ex-
plicit protection mechanisms [7]. If adding extra user interac-
tion does not affect usability too much, it is possible to force
re-authentication or use one-time passwords / CAPTCHAs to
prevent cross-site requests going through unnoticed. In many
cases, however, automated prevention is preferred: the recently
introduced SameSite cookie attribute can be used to prevent
cookie attachment on cross-site requests, which solves the
root cause of CSRF and is highly recommended for new web
applications. Unfortunately, this defense is not yet widespread
and existing web applications typically filter out cross-site
request by using any of the following techniques:

1) checking the value of standard HTTP request headers
such as Referrer and Origin, indicating the page
originating the request;

2) checking the presence of custom HTTP request headers
like X-Requested-With, which cannot be set from
a cross-site position;

3) checking the presence of unpredictable anti-CSRF to-
kens, set by the server into sensitive forms.

A recent paper discusses the pros and cons of these different
solutions [3]. However, all three options suffer from the same
limitation: they require a careful and fine-grained placement of
security checks. For example, tokens should be attached to all
and only the security-sensitive HTTP requests, so as to ensure
complete protection without harming the user experience.
Using a token to protect a “like” button is useful to prevent
the attack discussed above, yet having a token on the social
network homepage is undesirable, because it might lead to
rejecting legitimate cross-site requests, e.g., from clicks on
the results of a search engine indexing the social network.

In the end, finding the “optimal” placement of anti-CSRF
defenses is typically a daunting task for web developers.
Modern web application development frameworks provide
automated support for this, yet CSRF vulnerabilities are still
routinely found even in top-ranked websites [2]. This moti-
vates the need for effective CSRF detection tools. But how
can we provide automated tool support for CSRF detection if
we have no mechanized way to detect which HTTP requests
are actually security-sensitive?

II. MACHINE LEARNING TO THE RESCUE

The CSRF example in the previous section shows that it
is useful to enrich vulnerability detection tools with semantic
information so as to minimize their amount of false positives
and false negatives. At the very least, one would desire a
method to automatically classify HTTP requests as security-
sensitive or not to restrict the analysis to the former. However,
this is particularly challenging to do on the Web, since HTTP
requests have a relatively weak syntactic structure and custom
programming practices abound. For example, there are many

different plausible ways to implement a “like” button for some
content identified by the unique string 3aa5bf, including:

1) a GET request to the page like.php with a single
parameter id = 3aa5bf;

2) a GET request to the page manage.php with a param-
eter id = 3aa5bf and a parameter action = like;

3) a POST request to the page manage.php including a
JSON object {id: 3aa5bf, action: upvote}.

All these requests look semantically similar to experienced
security testers, yet they are syntactically different and it might
be hard to identify all the most common ways to encode the
same information in the wild.

A. Supervised Learning

Luckily, Machine Learning (ML) provides effective tools
to automate classification tasks. A classifier can be seen
as a function f : X → Y mapping any object from the
feature space X into a corresponding class from Y . The sub-
field of supervised learning studies effective techniques to
automatically generate classifiers starting from a set of labelled
data [8]. To fruitfully use supervised learning, one thus has to:

1) collect a set of objects of interest O, for example HTTP
requests sent to representative web applications;

2) define the set of classes Y . For example, one could
set Y = {+1,−1} to discriminate the security-sensitive
requests (+1) from all the other ones (-1);

3) define the feature space X by manually identifying the
salient aspects which look useful to assign the objects
in O to their correct class in Y . For example, one could
leverage the request length, the request method or the
presence of selected keywords in the request body;

4) build a training set D of pairs (~x, y), where each ~x is
the encoding in X of an object o ∈ O and y is its class.

Once this is done, supervised learning can automatically
extract the best-performing classifier from a set of possible
hypotheses H by estimating its performance on the training
set D. As long as one has enough manually curated data in
D, the performance of supervised learning can compete with
or even outclass that of human experts [9], [10], [11].

B. Web Vulnerability Detection

At the end of the day, the methodology we put forward can
be summarized as follows:

1) use supervised learning to automatically train a classifier
which partitions selected web objects of interest, e.g.,
HTTP requests, HTTP responses or cookies, based on
the web application semantics. For example, in the case
of CSRF detection, the classifier would be used to
identify security-sensitive HTTP requests;

2) for each possible class returned by the classifier, de-
fine a heuristic for vulnerability detection. Even trivial
heuristics marking every object in a given class as
non-vulnerable are plausible. For example, insensitive
requests cannot be exploited for CSRF, hence they can
be immediately marked as non-vulnerable;

3

3) use the classifier to choose the appropriate vulnerability
detection heuristic to run on each web object of interest,
e.g., as part of a browser extension.

We successfully leveraged this methodology in a number of
research papers [12], [13], [14]. We report in the following on
our most up-to-date study on CSRF detection [14].

III. MITCH: ML-BASED DETECTION OF CSRF

Mitch is the first tool for the black-box detection of CSRF
vulnerabilities. Its design is based on the methodology pre-
sented in the previous section. Mitch is available online1 as a
browser extension for Mozilla Firefox. We refer to our recent
research paper for full details [14].

A. Overview

Mitch assumes the possession of two test accounts (say,
Alice and Bob) at the website where the security testing is
to be performed. This is used to simulate a scenario where
the attacker (Alice) inspects sensitive HTTP requests in her
session to force the forgery of such requests in the browser of
the victim (Bob). Having two test accounts is crucial for the
precision of the tool because if the forged requests contain
some information which is bound to Alice’s session, then
CSRF against Bob may not be possible. For example, if a
website defends against CSRF through the use of anti-CSRF
tokens, then Alice’s requests will be rejected in Bob’s session.
The use of two test accounts for CSRF detection has already
been advocated in previous work [2] and is part of traditional
manual testing strategies.2

The architecture of Mitch is shown in Figure 2. After in-
stalling Mitch in her browser, the security tester first navigates
the website as Alice: for every HTTP request detected as
sensitive by the classifier, Mitch stores the content of the cor-
responding HTTP response. After completing the navigation,
Mitch uses the collected sensitive HTTP requests to generate
new HTML elements in the extension origin which allow for
replaying them. The security tester then authenticates to the
website as Bob and Mitch exploits the generated HTML to
automatically replay the detected sensitive requests from a
cross-site position, which simulates a CSRF attack. Finally,
the responses collected for Alice and Bob are compared: if
a response received by Bob “matches” the one received by
Alice, it means that Alice was able to forge a valid request
for Bob’s session, hence the attack is considered successful
and Mitch reports a potential CSRF vulnerability.

B. Challenges

The proposed CSRF detection heuristic is intuitive, yet there
are several challenges to solve to make it work in practice. We
provide a high-level view of such challenges and our proposed
solutions below.

1https://github.com/alviser/mitch
2https://support.portswigger.net/customer/portal/articles/

1965674-using-burp-to-test-for-cross-site-request-forgery-csrf-

Fig. 2. Architecture of Mitch

1) Changes in HTTP Responses: Defining a suitable notion
of “matching” HTTP responses for Alice’s and Bob’s sessions
is generally hard, because HTTP responses may include dy-
namically generated elements, which might realistically differ
even when the same idempotent operation is performed mul-
tiple times. Mitch thus builds on a notion of dissimilar HTTP
responses. In general, the dissimilarity of HTTP responses is
much easier to check than their similarity, e.g., due to the use
of different status codes or content types to denote failures (for
example, status codes 401 Unauthorized and 403 Forbidden
are typical ways to denote unauthorized access). When Bob’s
response is dissimilar from Alice’s response, it is likely that
Alice’s request failed in Bob’s session, which might indicate
the use of a CSRF protection mechanism.

2) Changes in Session State: Since the state of Alice and
Bob at the website might be different, matching the response
received by Bob against the one received by Alice might be
an improper way to detect a CSRF vulnerability. For instance,
Bob might not be able to perform a sensitive operation because
it does not have access to the file foo, yet a CSRF attack
would work if it targeted the file bar. When comparing the
response received by Bob against the one received by Alice,
Mitch does not immediately consider their dissimilarity as
a definite evidence that the request of Bob had a different
outcome than the one of Alice due to the use of a CSRF
protection mechanism. Rather, since different outcomes might
come from a difference in the state of Alice’s and Bob’s
sessions, Mitch also replays the original request of Alice in a
fresh Alice’s session: if the new response received by Alice is
dissimilar to the original one, it is likely that session-dependent
information is required to process the request, which might
indicate the adoption of an anti-CSRF token.

3) Classification Errors: Even a very accurate classifier
might incorrectly mark an insensitive request as sensitive. In
this case, there is no CSRF vulnerability and the presence of
matching responses for Alice’s and Bob’s sessions should not
raise an alarm. To detect potential false positives produced
by the classifier, Mitch replays the original request of Alice
without first authenticating to the website, i.e., outside any
session: if the received response is dissimilar from the original

4

one, then there is further evidence that the requested operation
required an authenticated context to be performed, which
confirms that there exists potential room for CSRF.

C. Machine Learning Classifier

The ML classifier used by Mitch was trained from a dataset
of around 6, 000 HTTP requests from existing websites, col-
lected and labeled by two human experts. The feature space
X of the classifier has 49 dimensions, each one capturing a
specific property of HTTP requests. Those can be organized
into 3 categories: Structural, Textual, and Functional.

1) Structural: This category of features describes structural
properties of an HTTP request. More precisely, we define the
following set of numerical features:

• numOfParams: the total number of parameters;
• numOfBools: the number of request parameters bound

to a boolean value;
• numOfIds: the number of request parameters bound to

an identifier, i.e., a hexadecimal string, whose usage was
empirically observed to be common in our dataset;

• numOfBlobs: the number of request parameters bound
to a blob, i.e., any string which is not an identifier;

• reqLen: the total number of characters in the request,
including parameter names and values.

While one might devise more sophisticated techniques to
“type” request parameters, HTTP requests have a very weak
structure and it is hard to come up with general yet accurate
typing techniques for them.

2) Textual: This category of features captures textual char-
acteristics of HTTP requests and is based on a small manually-
curated vocabulary of keywords V that may occur in the re-
quest, resulting from a manual inspection of sensitive requests
from a sample of real-world websites considered in our dataset.
More specifically, we only consider binary features of the
following forms:

• wordInPath, where word ∈ V means the presence of
the string word in the request path;

• wordInParams, where word ∈ V means the presence
of the string word in any parameter name of the request.

The vocabulary V includes the following 21 keywords,
which have been selected as possible signals of sensitive
requests, according to common sense and a preliminary inspec-
tion of the part of our dataset which is reserved for training:
create, add, set, delete, update, remove, friend, setting, pass-
word, token, change, action, pay, login, logout, post, comment,
follow, subscribe, sign, and view.

3) Functional: This category of features indicates the
HTTP method associated to the request. We consider just the
following two binary features:

• isGET: the HTTP request method is GET;
• isPOST: the HTTP request method is POST.

There are no additional alternatives, because our dataset
only includes GET and POST requests. All the other requests
can be easily labelled as sensitive or not just based on their
method, e.g., OPTIONS requests are always insensitive.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of Mitch in
detecting CSRF vulnerabilities. In particular, we show that
the number of false positives and false negatives produced by
Mitch is remarkably low and amenable for practical use.

A. False Positives and False Negatives

Mitch produces a false positive when it returns a candidate
CSRF that cannot be actually exploited. This is something
relatively easy to detect by manual testing, though this process
is tedious and time-consuming. In general, it is not possible
to reliably identify when Mitch produces a false negative,
because this would require to know all the CSRF vulnerabili-
ties on the tested websites. To estimate this important aspect,
we keep track of all the sensitive requests returned by the
ML classifier embedded into Mitch and we focus our manual
testing on those cases. This is a reasonable choice to make the
analysis tractable, because we first showed that the classifier
performs well using standard validity measures.

B. Assessment on Existing Websites

To test how effective is Mitch on existing websites, we
sampled 20 websites from the Alexa Top 10k ranking. We only
considered websites with single sign-on access via a major
social network website, so we could leverage just two existing
social accounts to perform our security testing.

Overall, Mitch found 191 sensitive requests and reported 47
potential CSRF vulnerabilities: we were able to immediately
exploit 35 of them, exposing major security issues in a few
cases. We estimated only 7 false negatives in total, which
means that our heuristics are accurate enough to capture most
of the vulnerabilities. The full breakdown of the individual
websites is shown in Table I and commented below.

Many of the attacks we found targeted the social function-
alities of the websites we tested, like casting votes on public

Website Sensitive Requests Detected CSRFs fp fn
9gag.com 10 3 1 0
ask.fm 16 0 0 0
askubuntu.com 16 0 0 0
bombas.com 2 1 0 1
brilio.net 2 1 0 1
eprice.it 11 3 0 3
flixbus.com 4 1 1 0
funnyjunk.com 17 8 2 2
gsmarena.com 3 3 0 0
imdb.com 10 0 0 0
imgur.com 12 3 3 0
indeed.com 8 4 0 0
instructables.com 11 4 0 0
mocospace.com 7 5 2 0
pornhub.com 13 2 1 0
smokecartel.com 5 2 0 0
starnow.com.au 8 4 0 0
tomshardware.com 13 1 1 0
wish.com 11 0 0 0
yelp.com 12 2 1 0
TOTAL 191 47 12 7

TABLE I
CSRF DETECTION ON EXISTING WEBSITES

5

contents, adding or removing items from favorite lists, and
posting comments under the identity of the victim. Most of
these attacks may thus affect recommender systems, lead to so-
cial embarrassment, and compromise user reputation at scale.
Worse, we were also able to find a number of nasty attacks
which seriously compromised the website functionality; we
responsibly disclosed all the vulnerabilities to the respective
website owners. We discuss a few interesting cases below.

1) Bombas: Bombas is an e-commerce website selling
socks. It provides a functionality to store a list of shipping
addresses to simplify purchases, so that shipping details do
not need to be entered for each transaction. The form used
to store a new shipping address is vulnerable to CSRF, so an
attacker can force any address into the victim’s account to
hijack deliveries. Notice that the latest added address is the
one which is used by default, which makes the attack even
worse in terms of practical impact.

Remarkably, Bombas is a customer of Shopify, which is
a major e-commerce platform, so this attack may also affect
many other websites. We reported the issue to Shopify, which
acknowledged the attack and is working on a fix, but marked
our report as duplicate due to the existence of a previous
independent disclosure.

2) Indeed: Indeed is one of the biggest websites hosting
job offers. Registered users can send their CVs and apply to
different open positions in the world. We found three CSRF
vulnerabilities which give an attacker the ability of fully man-
aging the job offers associated to the account, including the
possibility of storing new offers and archiving existing ones.
Indeed also suffers from a CSRF vulnerability on the form
used to set user preferences, which can be used to severely
affect the visibility of job offers. An attacker can exploit this
vulnerability to hide job offers, for instance by restricting the
search radius and changing the desired publication date for
displayed offers.

We find these vulnerabilities particularly interesting, be-
cause Indeed is making wide use of anti-CSRF tokens and
all the vulnerable forms have their own token. However, it
seems that not all the tokens are correctly checked by the
website, which may suggest a manual, error-prone placement
of the tokens. More generally, this shows that checking the
presence of anti-CSRF tokens is not sufficient to say that a
website is protected against CSRF, and that the actual website
behavior should be tested instead. The security team of Indeed
acknowledged the issue and rewarded us $100 for the finding.

3) Starnow: Starnow is an Australian website designed to
discover new talents, such as singers and actors. Users who
are interested into pursuing an artistic career can register to
the website to get access to a number of auditions and job
interviews. The first two CSRFs we found allow an attacker
to arbitrarily manipulate the watchlists of authenticated users,
thus compromising a functionality offered by the website.

There are however two much worse attacks. A CSRF
vulnerability affects the form used to store the phone number
associated to user profiles: this can be used for scams or to
disrupt the functionality of the website, e.g., by making im-
possible to contact the victim for an audition. It is interesting
that the request used to set the phone number contains an anti-

Web application Sensitive Requests Detected CSRFs fp fn
Oxid e-shop 4.9.8 21 4 1 0
Prestashop 1.6.1.2 12 1 1 0
SM Forums 2.0.12 9 0 0 0
TOTAL 42 5 2 0

TABLE II
CSRF DETECTION ON PRODUCTION SOFTWARE

CSRF token, which however is not checked by the website:
this confirms that this kind of mistakes is not confined to
Indeed, but is apparently more widespread.

The last CSRF vulnerability is definitely the most severe
one, because it affects the form used to set the email address
of user profiles. By exploiting this vulnerability, the attacker
can set the victim’s email address to her own one and then
use the password reset functionality of Starnow to get a fresh
password for the victim in her inbox, thus taking possession
of the victim’s account.

C. Assessment on Production Software

As a second set of experiments, we decided to run Mitch on
the testbed of open-source web applications used to evaluate
Deemon, a state-of-the-art automated detection tool for CSRF
vulnerabilities [15]. Notice that, since Deemon only works on
PHP applications whose source code is available for dynamic
analysis, we could not test it on the closed-source websites
from our first set of experiments. Out of the 10 applications
considered in the original testbed, we were only able to find 3
applications at the same version: Oxid e-shop, Prestashop and
Simple Machine Forums. No CSRF vulnerability was detected
by Deemon on these applications, according to the experimen-
tal evaluation in [15]. The results of the analysis performed
by Mitch on the applications in their default configuration are
shown in Table II.

Mitch was extremely effective on the tested applications,
because it reported only 2 false positives and it was able
to catch 3 CSRF vulnerabilities on Oxid e-shop which were
not reported by Deemon [15]. These vulnerabilities allow an
attacker to corrupt the integrity of the shopping cart, force the
use of vouchers and change the preferred payment method.
Remarkably, all the corresponding functionalities are supposed
to be protected by an anti-CSRF token, which however is
not checked by the Oxid back-end. We reported the issues
to the Oxid security team, who acknowledged the problem
and worked on a fix.

V. FREEWARE AND OPEN-SOURCE SOFTWARE

Penetration testers have been using a range of different
tools to detect CSRF vulnerabilities in web applications. Based
on an extensive research on blogs, forums and resources for
security practitioners, including the OWASP Testing Guide,
we classified existing tools in the following categories:

1) intercepting proxies: these tools allow penetration testers
to intercept and modify arbitrary HTTP traffic, which
can be used for an essentially manual detection of web
vulnerabilities, including CSRF. Popular tools in this
category are Burp, ZAP, and WebScarab;

6

2) exploit generators: these tools simplify the generation
of proof of concepts for attack finding, based on human
guidance on the set of HTTP requests which need to be
tested for CSRF. Examples tools in this category include
CSRFTester and pinata-csrf-tool;

3) web application scanners: these tools automatically de-
tect a range of web application vulnerabilities, including
CSRF, based on different heuristics. Scanners supporting
modules for CSRF are Arachni, Skipfish, and w3af.

Our work improves on 1) and 2) by providing effective
automated techniques for the detection and the exploitation of
sensitive HTTP requests, as opposed to manual investigation
and testing. The most important advances over 3) are instead
the use of machine learning for sensitive request detection, a
more sophisticated CSRF detection algorithm and a systematic
evaluation of the performance of our detection tool, based on
the analysis of false positives and false negatives produced
on real web applications. Remarkably, we noticed important
design limitations in the opensource tools we analyzed, which
significantly downgrade their accuracy.

For example, Arachni only detects CSRF vulnerabilities on
forms requiring an authenticated context, hence it does not
capture CSRF attempts via links or AJAX. The rationale be-
hind this choice is likely the complexity of detecting sensitive
HTTP requests, which forced the developers of Arachni to
limit their tool to HTML elements which are potentially dan-
gerous, yet easy to catch syntactically (forms). It is instructive
that w3af suffers from a somewhat opposite design choice:
since any request which includes cookies and parameters is
deemed as potentially sensitive by w3af, the tool is affected by
a very large number of false positives, which led to the opening
of an issue on GitHub where a major redesign of the tool is
advocated3. Other issues we found are related to the choice
of deeming secure any HTTP request which includes an anti-
CSRF token, while we observed several cases where tokens
are not checked at the web application back-end, and to the
use of just a single authenticated session, which loses precision
when user-dependent secrets happen to thwart CSRF attempts.
In the end, preliminary tests with existing web application
scanners on simple examples returned a high number of false
positives and false negatives, which is in line with the findings
of previous research work which showed the ineffectiveness
of such scanners for CSRF detection [5], [6].

VI. CONCLUSION

Web applications are particularly challenging to analyse,
due to their diversity and the widespread adoption of custom
programming practices. ML is thus very helpful in the web
setting, because it can take advantage of manually labeled
data to expose the human understanding of the web application
semantics to automated analysis tools. We validated this claim
by designing Mitch, the first ML solution for the black-
box detection of CSRF vulnerabilities, and by experimentally
assessing its effectiveness. We hope other researchers might
take advantage of our methodology for the detection of other
classes of web application vulnerabilities.

3https://github.com/andresriancho/w3af/issues/120

REFERENCES

[1] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro
Tempesta. Surviving the web: A journey into web session security.
ACM Comput. Surv., 50(1):13:1–13:34, 2017.

[2] Avinash Sudhodanan, Roberto Carbone, Luca Compagna, Nicolas Dol-
gin, Alessandro Armando, and Umberto Morelli. Large-scale analysis
& detection of authentication cross-site request forgeries. In 2017 IEEE
European Symposium on Security and Privacy, EuroS&P 2017, Paris,
France, April 26-28, 2017, pages 350–365, 2017.

[3] Stefano Calzavara, Alvise Rabitti, Alessio Ragazzo, and Michele
Bugliesi. Testing for integrity flaws in web sessions. In Computer
Security - 24rd European Symposium on Research in Computer Security,
ESORICS 2019, Luxembourg, Luxembourg, September 23-27, 2019,
pages 606–624, 2019.

[4] OWASP. OWASP Testing Guide. https://www.owasp.org/index.php/
OWASP Testing Guide v4 Table of Contents, 2016.

[5] Jason Bau, Elie Bursztein, Divij Gupta, and John C. Mitchell. State of
the art: Automated black-box web application vulnerability testing. In
31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berkeley/Oakland, California, USA, pages 332–345, 2010.

[6] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t
pentest: An analysis of black-box web vulnerability scanners. In
Detection of Intrusions and Malware, and Vulnerability Assessment, 7th
International Conference, DIMVA 2010, Bonn, Germany, July 8-9, 2010.
Proceedings, pages 111–131, 2010.

[7] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for
cross-site request forgery. In Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, pages 75–88, 2008.

[8] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Founda-
tions of Machine Learning. The MIT Press, 2012.

[9] Michael W. Kattan, Dennis A. Adams, and Michael S. Parks. A
comparison of machine learning with human judgment. Journal of
Management Information Systems, 9(4):37–57, March 1993.

[10] D. A. Ferrucci. Introduction to “This is Watson”. IBM Journal of
Research and Development, 56(3):235–249, May 2012.

[11] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, Jan 2016.

[12] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat
Khan. Cookiext: Patching the browser against session hijacking attacks.
Journal of Computer Security, 23(4):509–537, 2015.

[13] Stefano Calzavara, Gabriele Tolomei, Andrea Casini, Michele Bugliesi,
and Salvatore Orlando. A supervised learning approach to protect client
authentication on the web. TWEB, 9(3):15:1–15:30, 2015.

[14] Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti, and
Gabriele Tolomei. Mitch: A machine learning approach to the black-
box detection of CSRF vulnerabilities. In IEEE European Symposium on
Security and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19,
2019, pages 528–543, 2019.

[15] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and
Christian Rossow. Deemon: Detecting CSRF with dynamic analysis and
property graphs. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, pages 1757–1771, 2017.

Stefano Calzavara is a tenure-track assistant professor at Università Ca’
Foscari Venezia, Italy. He received a PhD in Computer Science at Università
Ca’ Foscari Venezia, Italy, in 2013. His main research interests are formal
methods and web security. Contact him at calzavara@dais.unive.it.

Mauro Conti is a full professor at University of Padua, Italy. He received
a PhD in Computer Science at Sapienza University of Rome, Italy, in 2009.
His main research interestes are computer security and privacy. Contact him
at conti@math.unipd.it.

7

Riccardo Focardi is a full professor at Università Ca’ Foscari Venezia, Italy.
He received a PhD in Computer Science at University of Bologna, Italy, in
1999. His main research interests are computer security and formal methods.
Contact him at focardi@unive.it.

Alvise Rabitti is a security officer at Università Ca’ Foscari Venezia, Italy. He
received a bachelor degree in Computer Science from Università Ca’ Foscari
Venezia, Italy, in 2013. His main research interests are web security and
privacy. Contact him at alvise.rabitti@unive.it.

Gabriele Tolomei is an associate professor at Sapienza University of Rome,
Italy. He received a PhD in Computer Science at Università Ca’ Foscari
Venezia, Italy, in 2011. His main research interests are machine learning and
web search. Contact him at tolomei@di.uniroma1.it.

