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Abstract

We propose a new heuristic for approximating the maximum clique problem based on a
detailed analysis of a class of continuous optimization models which provide a complete charac-
terization of solutions to this NP-hard combinatorial problem. We start from a known continuous
formulation of the maximum clique, and tackle the search for local solutions with replicator dy-
namics, a class of dynamical systems developed in various branches of mathematical biology.
Hereby, we add to the objective used in previous works a regularization term that controls the
global shape of the energy landscape, that is the function actually maximized by the dynamics.
The parameter controlling the regularization is changed during the evolution of the dynamical
system to render ine6cient local solutions (which formerly were stable) unstable, thus conduct-
ing the system to escape from sub-optimal points, and so to improve the 7nal results. The role
of this parameter is thus super7cially similar to that of temperature in simulated annealing in the
sense that its variation allows to 7nd better solutions for the problem at hand. We demonstrate
several theoretical results on the regularization term and we further support the validity of this
approach, reporting on its performances when applied to selected DIMACS benchmark graphs.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The maximum clique problem (MCP) is a well-known problem in combinatorial
optimization which 7nds important applications in many di<erent domains [11]. Since
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the MCP is known to be NP-hard, exact algorithms are guaranteed to return a solution
only in a time which increases exponentially with the number of vertices in the graph.
This makes them inapplicable even to moderately large problem instances. Moreover,
a series of recent theoretical results show that the MCP is, in fact, di6cult to solve
even in terms of approximation. Strong evidence of this fact came in 1991, when
Feige et al. [17] (see also [18]) proved that if there is a polynomial-time algorithm
that approximates the MCP within a factor of 2log

1−� n, then any NP problem can be
solved in “quasi-polynomial” time (i.e., in 2log

O(1) n time). The result was further re7ned
by Arora et al. [1,2] one year later. Speci7cally, they proved that there exists an �¿ 0
such that no polynomial-time algorithm can approximate the size of the maximum
clique within a factor of n�, unless P=NP. More recent developments along these lines
can be found in [3,4,23]. In light of these negative results, much e<ort has recently
been directed towards devising e6cient heuristics for the MCP, for which no formal
guarantee of performance may be provided, but are anyway of interest in practical
applications. We refer to [25] for a collection of promising heuristics for the MCP.
We have recently investigated the e<ectiveness of an approach for approximating

the MCP, centered around a continuous formulation due to Motzkin and Straus [33]
and its regularization [24,10], which exploits the dynamical properties of the so-called
replicator equations, a class of dynamical systems developed and studied in various
branches of mathematical biology. One problem associated with these models, how-
ever, is their inability to escape ine6cient local solutions. In this paper, we introduce
a class of parametrized quadratic programs, which includes both the Motzkin–Straus
program and its regularization as special cases, and investigate the properties of its so-
lutions as a function of its parameter. A detailed analysis of these properties suggests
a new algorithm for approximating the MCP which is based on the idea of properly
varying the parameter during the replicator optimization process, in much the same
spirit as simulated annealing procedures. A related, but di<erent, idea has recently
been proposed by Gee and Prager in the neural network domain [20]. Experimental
results conducted on various DIMACS benchmark graphs demonstrate the validity of
the proposed approach.
The outline of the paper is as follows. In Section 2, we describe the Motzkin–Straus

theorem and its parameterization, and present the replicator dynamical systems. These
dynamics are used to obtain locally optimal solutions to the MCP. Section 3 is de-
voted to a few results that enable us to establish bounds on a regularization parameter
� which governs stability under the replicator dynamics. For illustration, we investigate
in Section 4 a small, but prototypical example in detail. In a more detailed dynamical
analysis exceeding the usual perturbation theory approach, we specify explicit ranges
within which qualitative features of the dynamics are invariant, and also obtain quanti-
tative sensitivity results for the related optimization problems. This analysis is deferred
to an appendix, to promote the Low of the argument. The previously established theo-
retical properties will lead us to develop in Section 5 an algorithm for properly updating
the parameter � with the objective of avoiding poor local solutions. In Section 6 the
results of our experiments are presented, and Section 7 concludes the paper.
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2. Evolution towards the maximum clique

2.1. A parametrized continuous formulation of the MCP

Let G=(V; E) be an undirected graph, where V = {1; : : : ; n} is the set of vertices,
and E ⊆ V ×V is the set of edges. A clique of G is a subset of V in which every pair
of vertices is connected by an edge. A clique is called maximal if no strict superset of
C is a clique, i.e., no vertex external to C is connected with more than |C|−1 vertices
of C (here, and in the sequel, |C| denotes the cardinality of a set C). A maximal
clique C is called strictly maximal if no vertex i external to C has the property that
the enlarged set C ∪ {i} contains a clique of the same size as C. In other words, if

dC(i)= |{j∈C: (i; j)∈E}|
denotes the degree of i w.r.t. C, then a maximal clique C is strictly maximal if and
only if dC(i)¡ |C| − 1 for all i 	∈ C.

A maximum clique is a clique having largest cardinality (note that a maximal clique
is not necessarily a maximum one). Hence, the MCP consists of 7nding a clique of
maximum size in a graph G. For a recent survey see [11]. In the following, given a set
S of vertices in G, we will denote by xS its characteristic vector, de7ned as xSi =1=|S|
if i∈ S and xSi =0 otherwise.
Given a graph G, consider the following quadratic program introduced in [24,10]

(x′ always denotes the transpose of a column vector x):

maximize x′(AG + 1
2 I)x

subject to x∈ Sn;
(1)

where AG =(aij) is the adjacency matrix of G (i.e., aij =1 if (i; j)∈E, and aij =0 if
(i; j) 	∈ E), Sn is the standard simplex of Rn, that is

Sn =

{
x∈Rn: xi¿ 0 for all i=1; : : : ; n and

n∑
i=1

xi =1

}

and I is the n × n identity matrix. This turns out to be a variant of the so-called
Motzkin–Straus program [33], which is obtained from (1) by simply dropping the 1

2 I
term. For completeness, we summarize here the original Motzkin–Straus theorem and
some recent related results. 1

Theorem 1. Let C be a subset of vertices of a graph G; and let xC be its characteristic
vector. Then (xC)′AG(xC)= 1− 1=|C| if and only if C is a clique. Moreover:

(a) xC is a strict local maximizer of x′AGx over Sn if and only if C is a strictly
maximal clique.
(b) xC is a global maximizer of x′AGx over Sn if and only if C is a maximum

clique.

1 The original Motzkin–Straus theorem [33] corresponds to the “if” part of Theorem 1(b), while the “only–
if” part has been proven in [39]. Part (a) of the theorem if from [39,22].
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An immediate consequence of the previous result is that any point in Sn provides us
with a bound on the size of the maximum clique in G. 2 In fact, if C is a maximum
clique of G, for any x∈ Sn we have x′AGx6 1 − 1=|C|, from which it follows that
|C|¿ 
1=(1− x′AGx)�.
The Motzkin–Straus theorem has an intriguing computational signi7cance. It suggests

a fundamentally new way of solving the maximum clique problem, by allowing us to
shift from the discrete to the continuous domain. A pointed out in [35], the advantages
of such a reformulation are manifold. It not only allows us to exploit the full arsenal
of continuous optimization techniques, thereby leading to the development of new
e6cient algorithms, but may also reveal unexpected theoretical properties. Additionally,
continuous optimization methods are sometimes described in terms of sets of di<erential
equations, and are therefore potentially implementable in analog circuitry. The Motzkin–
Straus and related theorems have served as the basis of many clique-7nding procedures
[36,37,21,11], and have also been used to determine theoretical bounds on the maximum
clique size [15].
In contrast to the original Motzkin–Straus formulation, however, its regularization

(1) has a further merit: as observed by Pardalos and Phillips [36] and later formalized
by Pelillo and Jagota [39], the Motzkin–Straus program, in its original formulation, is
plagued by the presence of “spurious” solutions, i.e., solutions which are not in the
form of characteristic vectors. Clearly, this represents a problem since it prohibits direct
extraction of the vertices comprising the clique, and provides information only on its
size. Therefore, in order to determine the clique vertices, one has to make recourse to
iterative or recursive procedure, as those described in [34,36].
The signi7cance of the following result, a sharpening of Theorem 1 proved in

[10], is that a local (and hence also a global) maximum of (1) can only be at-
tained at a characteristic vector x∗ = xC for some subset C of vertices which nec-
essarily then forms a maximal clique. This solves the spurious solution problem in
a straightforward and de7nitive manner since it establishes a one-to-one correspon-
dence between local=global solutions to (1) and maximal=maximum cliques of G,
respectively.

Theorem 2. Let G be a graph and consider problem (1). Then the following assertions
are equivalent:
(a) x= xC; where C is a maximal clique of size k = |C|;
(b) x is a strict local solution to (1);
(c) x is a local solution to (1).
If one of the above conditions (and therefore all) is met; the objective is x′(AG +
1
2 I)x=1 − 1=2k. Hence C is a maximum clique of G if and only if xC is a global
solution to (1).

2 We thank Arun Jagota for pointing this out.
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In this paper, we consider the following program, which represents also a regular-
ization of the Motzkin–Straus program and generalizes (1):

maximize f�(x)= x′(AG + �I)x

subject to x∈ Sn:
(2)

This includes both the Motzkin–Straus (�=0) program and its regularization (�= 1
2)

as special cases. We investigate the properties of its solutions as a function of the
parameter �. Speci7cally, we show that when �∈ ]0; 1[ all the properties of program
(1) hold true. For negative �, on the other hand, the landscape of f�(x) changes and
“Lat regions” can merge in an extremum while other extrema can disappear, depending
on the values of the parameter �. A detailed analysis of these e<ects will suggest a
new algorithm for approximating the MCP which is based on the idea of varying the
parameter � during an evolutionary optimization process, in such a way as to avoid
obtaining characteristic vectors of small cliques.
We point out that the proposed parameterization of the Motzkin–Straus program is

completely di<erent, both in content and motivations, from that recently introduced
by Gibbons et al. [21]. Their idea was to substitute the sign constraints x¿ 0 of the
Motzkin–Straus program with one of the form x′x=1=s, s being a parameter in the
interval [1; n], in an attempt to avoid spurious solutions. With this program it may
happen that the solutions have to be projected onto the positive orthant, in order to
maintain feasibility.

2.2. Replicator equations and their application to the MCP

Let M be a non-negative real-valued n × n matrix, and consider the following dy-
namical system:

ẋi(t)= xi(t)[(Mx(t))i − x(t)′Mx(t)]; i=1; : : : ; n; (3)

where a dot signi7es derivative w.r.t. time t, and its discrete-time counterpart

xi(t + 1)= xi(t)
(Mx(t))i
x(t)′Mx(t)

; i=1; : : : ; n: (4)

It is readily seen that the simplex Sn is invariant under these dynamics, which means
that every trajectory starting in Sn will remain in Sn for all future times. Moreover,
it turns out that their stationary points, i.e. the points satisfying ẋi(t)= 0 for (3) or
xi(t + 1)= xi(t) for (4), coincide and are the solutions of the equations

xi[(Mx)i − x′Mx] = 0; i=1; : : : ; n: (5)

A stationary point x is said to be asymptotically stable if every solution to (3) or (4)
which starts close enough to x, will converge to x as t → ∞.
Both (3) and (4) are called replicator equations in theoretical biology, since they

are used to model evolution over time of relative frequencies xi(t) of interacting,
self-replicating entities. Eq. (3) has been introduced in evolutionary game theory by
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Taylor and Jonker [40] to model evolution of behavior in intraspeci7c conLicts un-
der random pairwise mating in a large, ideally in7nite population. It formalizes the
idea that the growth rates ẋi=xi of relative frequency xi of the ith behavior pattern
(i=1; : : : ; n) is equal to the (dis)advantage (Mx)i − x′Mx=

∑
j mijxj −

∑
j; k mkjxjxk ,

measured by incremental 7tness relative to the average performance within the popula-
tion in state x=(x1; : : : ; xn)′. Here mij denotes incremental individual 7tness attributed
to an i-individual when encountering a j-individual, and M =(mij) is the resulting 7t-
ness matrix. The behavior patterns i∈{1; : : : ; n} are often called “pure strategies” and
the interaction matrix M is also termed “payo< matrix”. Similar arguments provide
a rationale for the discrete-time version (4). Surprisingly, these dynamical equations
can also be regarded as a very special case of a general class of dynamical systems
introduced by Baum and Eagon [5] and studied by Baum and Sell [6] in the context
of Markov chain theory. This kind of processes have proven to be useful in the speech
recognition [31] and computer vision [38] domains. Dynamics (3) and (4) also arise
in population genetics under the name selection equations in a model assuming sep-
arate (non-overlapping) generations, large population size, random union of gametes,
and a selection acting only upon one chromosomal locus through di<erent viabilities
(i.e., survival probabilities), given by the the 7tness matrix M of the genotypes, i.e.,
pairs of genes drawn from a set {1; : : : ; n} of alleles for a single chromosomal locus.
Here xi is the gene frequency of the ith allele. The matrix M is in this context always
symmetric, since permuted gene pairs belong to the same genotype. Models (3) and
(4) as selection equations go way back to Fisher [19] and Kimura [29].
From an optimization point of view, the di<erence between symmetric and non-

symmetric matrices M is crucial. Indeed, in the symmetric case the quadratic form
x′(t)Mx(t) is increasing along trajectories of the replicator dynamics; this is the Fun-
damental Theorem of Natural Selection, see, e.g. [16,26,24].

Theorem 3. If M =M ′ then the function x(t)′Mx(t) is strictly increasing with in-
creasing t along any non-stationary trajectory x(t) under both continuous-time (3)
and discrete-time (4) replicator dynamics. Furthermore; any such trajectory converges
to a stationary point.

Apart from the monotonicity result which provides a Lyapunov function for both dy-
namics, the previous theorem also rules out complicated attractors like cycles, invariant
tori, or even strange attractors.
To formulate the results which relate dynamical properties to optimality, we need

some further notions and notations. First, consider the general quadratic optimization
problem over Sn,

maximize x′Mx

subject to x∈ Sn
(6)

and the generalized Lagrangian

L(x; �; �)= x′Mx + �′x + �(e′x − 1)
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of (6), where the multipliers �i and � may have arbitrary sign. Call a critical point x of
the generalized Lagrangian a generalized Karush–Kuhn–Tucker point if L(x; �; �)= x′Mx
irrespective of the sign of �i.
Finally, we need some notions from game theory (see, e.g., [42]): recall that a point

x∈ Sn is said to be a (symmetric) Nash (equilibrium) strategy if and only if

y′Mx6 x′Mx for all y∈ Sn: (7)

Furthermore, a Nash strategy x is said to be a neutrally stable strategy (NSS) if
and only if

y′Mx= x′Mx implies x′My¿y′My (8)

and an evolutionarily stable strategy (ESS) if and only if the inequality in (8) is strict
for y 	= x.
Now we repeat the characterization results from [12] which link three di<erent 7elds:

optimization theory, evolutionary game theory, and qualitative theory of dynamical
systems.

Theorem 4. Let M =M ′ be an arbitrary symmetric n×n matrix and x∈ Sn. Consider
the following properties:
(a1) x is an ESS; i.e.; satisCes (8) with strict inequality; and (7);
(a2) x is a strict local solution to (6);
(a3) x is an asymptotically stable stationary point of (3) and (4);
(b1) x is a NSS; i.e.; satisCes (7) and (8);
(b2) x is a local solution of (6);
(c1) x is a Nash strategy; i.e.; satisCes (7);
(c2) x is a Karush–Kuhn–Tucker point for (6);
(d1) x is a stationary point under (3) or (4); i.e.; satisCes (5);
(d2) x is a generalized Karush–Kuhn–Tucker point for (6).
Then the following implications and equivalences hold true: (a1) ⇔ (a2) ⇔ (a3) ⇒
(b1) ⇔ (b2) ⇒ (c1) ⇔ (c2) ⇒ (d1) ⇔ (d2).

The previous result naturally suggests the use of replicator equations for approxi-
mating the MCP. In fact, let AG be the (symmetric) adjacency matrix of graph G;
by putting M =AG + 1

2 I , the replicator dynamical system will iteratively maximize
the objective function of (1) and eventually converge (with probability 1) to a local
maximizer, which by virtue of Theorem 2, will then correspond to a characteristic
vector of a maximal clique of G. One can also put M =AG, in which case we ob-
tain the Motzkin–Straus program, but due to the presence of spurious maximizers,
these solutions can only provide an approximation of the size of the maximum clique.
The empirical results obtained in [12] over numerous DIMACS benchmark graphs are
encouraging and prove the e<ectiveness of this algorithm. They also show that the ap-
proach based on the original (non-regularized) version of the Motzkin–Straus problem
performs slightly better than its regularized counterpart (1), in terms of clique size.
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This may be intuitively explained by observing that, since all local maxima are strict,
the landscape of the new objective function (1) is certainly less Lat than the one asso-
ciated to the non-regularized version and thus a dynamics that increases the objective
function at every step will be more prone to end up in a close local maximum.
Finally, let us note that recent empirical investigations [13] indicate that there is no

signi7cant gain in varying the starting point of the replicator dynamics by intricate
preprocessing, or using a discretization of (3) di<erent from (4).

3. Bounds for the annealing parameter

In this section, we establish bounds for the annealing parameter � related to the
stability of xS under the replicator dynamics. The 7rst results hold for general symmetric
matrices; we then specialize these 7ndings to the case of adjacency matrices.

Proposition 5. If x∈ Sn is a (local) maximizer of x′(A+�I)x over Sn and S = {i∈V :
xi ¿ 0}; then necessarily

�¿  (x)=max
{
(Ax)i − x′Ax

x′x
: i 	∈ S

}
: (9)

Proof. Since x is a local maximizer of x′(A+ �I)x on Sn, then Theorem 4 implies the
Nash equilibrium condition (7) which for the case M =A+ �I entails

(Ax)i + �xi =(Mx)i6 x′Mx= x′Ax + �x′x for all i 	∈ S

(note that equality has to hold if i∈ S, for otherwise we would arrive at the contra-
diction x′Mx=

∑
i∈S xi(Mx)i ¡ x′Mx). But i 	∈ S means xi =0 so that �¿  (x) follows

readily.

We move to the following result: a local maximizer x of both x′Ax and x′(A+ �I)x
over Sn necessarily has to be a characteristic vector.

Proposition 6. If x∈ Sn is a (local) maximizer of both x′Ax and x′(A+ �I)x over Sn

for some � 	=0; then necessarily x= xS if S = {i∈V : xi ¿ 0}.

Proof. From Theorem 2 of [12] we know that every local maximizer has to be a
stationary point under the respective replicator dynamics. Hence for all i∈ S we have,
due to (5),

[Ax]i = x′Ax and also [Ax]i + �xi = x′(A+ �I)x= x′Ax + �x′x; (10)

so that all positive coordinates of x have to be equal. Since they sum up to one, the
result follows.
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Now we need some additional notation. First, denote by e=(1; : : : ; 1)′ ∈Rn and
denote the (n− 1)-dimensional hyperplane of all vectors the coordinates of which sum
up to zero by

e⊥ = {v∈Rn : e′v=0}:
Given an arbitrary n × n matrix M , the action of its quadratic form on e⊥ can be
fully described with the help of the orthoprojector P= I − (1=n)ee′ onto e⊥: indeed,
for u∈ e⊥ we have Pu= u whence u′Mu= u′(PMP)u results. Now PMP is symmetric
if M is symmetric, and e is an eigenvector to the eigenvalue zero of PMP, due to
Pe=0. Hence we get

u′Mu¿ �min(M |e⊥)u′u for all u∈ e⊥; (11)

where �min(M |e⊥) denotes the smallest eigenvalue of PMP, if the zero eigenvalue is
ignored with multiplicity one, i.e.,

�min(M |e⊥)=min{�∈R : PMPv= �v for some v∈ e⊥ \ {0}}: (12)

We recall Theorem 5 of [10] according to which every local maximizer z of x′Ax is
maximizing this function over the whole face {y∈ Sn : yi =0 if zi =0}, and this face
is contained in the basin of attraction of z under the replicator dynamics. For simplicity
of exposition, we assume in the next result that this face is the whole simplex Sn, in
other words, that zi ¿ 0 for all i. Further, in view of Proposition 6 we may and do
assume that z= b, where b= xV is the barycenter of Sn, i.e., zi =1=n for all i∈V .
This gives us an upper bound for the parameter � as follows:

Proposition 7. If b= xV is a global maximizer of x′Ax on Sn; then b is also a (global)
maximizer of x′(A+ �I)x over Sn provided that

�6 &= �min(−A|e⊥); (13)

where �min(−A|e⊥) is the smallest eigenvalue corresponding to the action of −A on
e⊥; deCned in (12).

Proof. The Nash equilibrium condition (7) for b w.r.t. A implies x′Ab= b′Ab for all
x∈ Sn (again, otherwise we got at least one strict inequality (Ab)i ¡ b′Ab, from which
the absurd b′Ab=

∑
bi(Ab)i ¡ b′Ab would result). But then x′Ax − b′Ab= x′Ax −

2x′Ab + b′Ab=(b − x)′A(b − x)6 − �min(−A|e⊥)(b − x)′(b − x) due to (11). On
the other hand, we also get 06 (b − x)′(b − x)= b′b − 2x′b + x′x=1=n − 2 1=n +
x′x= x′x − 1=n= x′x − b′b, whence

x′(A+ �I)x − b′(A+ �I)b = x′Ax − b′Ab+ �(x′x − b′b)

6 �(x′x − b′b)− �min(−A|e⊥)(b− x)′(b− x) (14)

= (�− &)(x′x − b′b)6 0

results, provided �6 & holds, since the last expression in parentheses is always non-
negative. Hence the result.
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Summarizing, we obtain an admissible range for our parameter:

Theorem 8. Let S ⊆ {1; : : : ; n}; with |S|=m. Let AS =(aij)i; j∈S be the m×m subma-
trix of A corresponding to S; and eS =(1; : : : ; 1)′ ∈Rm. Denote by &S = �min(−AS |e⊥S ).
If x= xS ∈ Sn is a (local) maximizer of x′Ax over Sn and �∈ ] (xS); &S [; then xS is

also a strict local maximizer of x′(A+ �I)x over Sn.
On the other hand; if �¡ (xS); then xS becomes an unstable stationary point

of the replicator dynamics under A + �I; and thus; with probability one; cannot be
approached by an interior path under these dynamics.

Proof. From Theorem 4, the claimed assertion follows if we can establish local asymp-
totic stability of xS under the replicator dynamics with, say, continuous time, and the
matrix M =A+ �I . Now xS lies in the relative interior of the face

F = {x∈ Sn : xi =0 for all i 	∈ S}
of the simplex, which in turn is also time invariant under dynamics (3) and (4).
As a consequence, we can decompose local stability analysis into the question of
“internal” stability (concerning convergence of trajectories starting nearby within F)
and, separately, “external” stability dealing with trajectories starting in Sn but o< F .
External stability is governed by the “external” eigenvalues of the linearization of this
dynamics around xS , which are given by the quantities (see [8, Lemma 21])

[(A+ �I)xS ]i − (xS)′(A+ �I)(xS)= [AxS ]i − (xS)′A(xS)− �(xS)′(xS) for i 	∈ S:

Now if �¿ (xS), then the latter quantity is negative by de7nition (9). On the other
hand, internal stability of xS follows from �6 &S and the optimality of xS w.r.t. x′(A+
�I)x on the face F as in Proposition 7. Recall that optimality on F is guaranteed by
Theorem 5 of [10]. Hence the result for �¿ (xS). The instability result follows by the
same argumentation as in [14, Theorem 6]: all starting points of trajectories converging
to the non-asymptotically stable point xS lie on the center-stable manifold [27,28] which
always is of codimension at least one. Hence, a trajectory with a randomly chosen
starting point will almost surely not converge to xS .

A further result holds when A is the adjacency matrix of a graph G:

Theorem 9. If A=AG is the adjacency matrix of graph G and S is a strictly maximal
clique; then ]−1; 1[ ⊆ ] (xS); &S [. More precisely,  (xS)6−1 that becomes  (xS)6 0
if S is just a maximal clique; on the other side &S =1 for any kind of clique S.

Proof. If A=AG and x= xS is the characteristic vector of a strictly maximal clique of
size k = |S|, we know that  (xS) cannot exceed −1, because of

k([AGxS ]i − (xS)′AG(xS))=dS(i)− (k − 1)6− 1 (15)

for all i 	∈ S due to the de7nition of strict maximality of S (similarly, one can show
that  (xC)6 0 for any maximal clique C). Recall that dS(i)=

∑
j∈S aij denotes the
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degree of vertex i w.r.t. S, i.e., the number of vertices in S connected to i. Moreover,
in the simplifying hypothesis of Proposition 7, if xV = b is a global maximizer of x′Ax,
then G is a complete graph, i.e. AG = ee′ − I , so that −PAGP=P and consequently
&V =1. Returning to the general situation where we have to replace V with S, we see
that by analogy, &S =1 must hold.

Theorem 10. If 0¡�¡ 1; then the only strict local maximizers of x′(AG + �I)x
over Sn (i.e. the only attracting stationary points under the replicator dynamics with
AG + �I) are characteristic vectors xS where S is a maximal clique. Conversely; if S
is a maximal clique; then xS represents a strict local maximizer.

Proof. We show that even every local maximizer y∈ Sn (not necessarily strict) is a
characteristic vector, by virtually the same proof as of Theorem 9 in [10]: to this end,
put S = {i : yi ¿ 0}. First we show that the subgraph of G induced by S is complete.
Indeed, suppose that for some i; j∈ S with i 	= j we had (i; j) 	∈ E, i.e. aij =0 would
hold. Then for small (¿ 0, the point x=y+((ei−ej)∈ Sn where ei is the ith standard
basis vector. Straightforward calculations now yield

x′(A+ �I)x=y′(A+ �I)y + �(2 ¿y′(A+ �I)y;

a contradiction to the optimality of y. Hence with AS and eS as de7ned in Theorem
8 we get AS = eSe′S − I . Now the Karush–Kuhn–Tucker conditions necessary for local
optimality yield, in particular, ASyS+�yS+�eS = o for some �∈R, which gives, using
e′SyS =1,

yS =
1 + �
1− �

eS ;

which, again using e′SyS =1, yields y= xS . It remains to show that S is maximal. So
suppose that there is a vertex i 	∈ S such that dS(i)= |S|. But then as in (15),

[(AG + �I)xS ]i − (xS)′(AG + �I)(xS)=
dS(i)− |S|+ 1− �

|S| ¿ 0;

contradicting the Nash equilibrium property (7) of xS w.r.t. M =AG + �I , which is
ensured by local optimality of xS due to Theorem 4. Hence S is a maximal clique.
To show the converse assertion, observe that xS is a local maximizer of x′AGx over
Sn due to Theorem 1. Now �∈ [0; 1[ ⊂ ] (xS); &S [ (by Theorem 9), and Theorem 8
implies that xS is also a strict local maximizer of x′AG + �Ix over Sn.

For the case −1¡�¡ 0 no general result has been proven, but examples can be
provided in which new (spurious) local maxima emerge which are not characteristic
vectors of any subset of vertices, and at the same time local solutions in the form
of characteristic vectors disappear. In the next section (and in an appendix) we study
small examples which illustrate this point.
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Fig. 1. The Motzkin–Straus program f0(x) and x′x when x varies over S3.

Fig. 2. f1=2(x) and f−1=2(x) on S3.

4. A prototypical example

In this section we investigate a small, but nevertheless interesting, example, sketched
in Fig. 1. It is a graph of size 3 with two maximum cliques of size 2 intersecting in
vertex 3. Hence AG has zero entries with the exception of a13 = a31 = a23 = a32 = 1. This
is a frequently considered counterexample exhibiting spurious solutions to the Motzkin–
Straus program [36]. For this simple graph f�(x) is de7ned on the two-dimensional
simplex S3 so that we can actually plot it illustrating graphically the 7ndings of the
previous paragraphs.
More precisely, S3 is a triangle spanned by the vertices [1; 0; 0]′, [0; 1; 0]′ and [0; 0; 1]′

contained in the plane described by the equation x1 + x2 + x3 = 1. Our plots take this
plane as their horizontal plane setting their origin in the vertex [0; 0; 1]′ of S3. To
remind the reader of this situation the plots of Fig. 1 contain the S3 triangle marked
in gray; the third, vertical, axis of the plots report the values of f�(x).
The plots of Fig. 1 contain the basic Motzkin–Straus program and the regularizer

term x′x, respectively; Fig. 2 contain plots of f1=2(x) and of f−1=2(x) seen from a
slightly di<erent viewpoint. One can intuitively grasp what is happening by realizing
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that these two plots are obtained by the 7rst one of Fig. 1 when the regularizing term
is, respectively, added or subtracted.
Let us now examine the 7gures in detail starting from the basic Motzkin–Straus

program in Fig. 1. In this example there are two maximum cliques S = {1; 3} and
T = {2; 3}, and their characteristic vectors xS = [12 ; 0;

1
2 ]

′ and xT = [0; 12 ;
1
2 ]

′ give
f0(xS)=f0(xT )= 1

2 . But more generally, f0(x)= 1
2 for all x= [12 − s; s; 12 ]

′ when
06 s6 1

2 . This example shows explicitly that in the Motzkin–Straus program the
global maximizer of f0(x) are not necessarily characteristic vectors of maximum
cliques, as stated by the following general property (see [39] for a proof and related
results):

Theorem 11. Let G be a graph containing maximum cliques C1; : : : ; Cq (among pos-
sible others). Then every vector belonging to the convex hull of their characteristic
vectors is a global maximizer of x′AGx over Sn if and only if; for all i; j=1; : : : ; q;
the number of edges having one endpoint in Ci \ Cj and the other in Cj \ Ci equals
mij(mij − 1); where mij = |Ci \ Cj|= |Cj \ Ci|.

Fig. 2 contains f1=2(x) and shows that in this case the only maxima correspond to
the characteristic vectors of the maximum cliques while the second plot, containing
f−1=2(x), shows that the isolated maximizer is an interior point not corresponding to
any clique vector. For �¿ 1, e.g. f3=2(x), the situation is essentially (apart from the
vertical scale) that of the regularizer term in Fig. 1. These plots illustrate also the role
of the bounds of � that, for this example, are  =0 and &=1 for both xS and xT as
predicted by Theorem 9. The shapes of f−1=2(x), f1=2(x) and f3=2(x), representing the
three possible cases of � with respect to its bounds, con7rm the results of Theorems
8 and 10.
A more detailed analysis together with that of another simple example is provided

in the appendix.

5. The annealed replication heuristic

As discussed previously, the major drawback of replicator equations is their inherent
inability to escape from local maximizers of the objective function. Theorem 8 provides
us with an immediate strategy to avoid unwanted local solutions, i.e., maximal cliques
which are not maximum. Suppose that S is a maximal clique in G that we want to
avoid. By letting �¡ (xS), its characteristic vector xS becomes an unstable stationary
point of the replicator dynamics under f�, and thus will not be approached by any
interior trajectory. Of course, the problem is to obtain a reasonable estimate for  (xS)
without knowing S in advance. Furthermore, if �6 0, it may well happen that the
process converges to a vector which does not represent a clique (see below).
Since we are concerned with the maximum clique problem,

 (xS)=  S =max
i �∈S

dS(i)− |S|+ 1: (16)
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As already noted in (15),  S 6 − 1 if S is strictly maximal while  S =0 if S is not
strictly maximal. In both cases,  S ¿ 1−|S| with equality attained if S is isolated in G.
So if one wants to avoid cliques with size |S|6m, one could simply run the algorithm
with �¡ 1 − m6 1 − |S|6  S 6 0, and if there is a clique T such that still  T ¡�
holds, there is a (more or less justi7ed) hope to obtain in the limit xT , which yields
automatically a larger maximal clique T .
Unfortunately, two other cases could occur:

(a) no other clique T satis7es  T ¡�, i.e., � has a too large value;
(b) even if there is such a clique, other attractors could emerge which are not char-

acteristic vectors of a clique (note that this is excluded if �¿ 0 by Theorem
10).

The proper choice of the parameter � is therefore a trade-o< between the desire to
remove unwanted maximal cliques and the emergence of spurious solutions. We present
now the strategy we adopted in this choice stressing that, given the lack of precise
indications, our prescriptions are supported mainly by numerical results obtained in
extensive tests and by the intuitions obtained examining these tests and simple examples
like those of Section 4 and of the appendix.
Instead of keeping the value of � 7xed, our approach is to start with a su6ciently

large negative � and adaptively increase it during the optimization process, in much
the same spirit as the simulated annealing procedure [30]. Of course, in this case the
annealing parameter has no interpretation in terms of a hypothetical temperature, and the
resulting algorithm is completely deterministic. The rationale behind this idea is that for
values of � that are su6ciently negative only the characteristic vectors of large maximal
cliques will be stable attractive points for the replicator dynamics, together with a set
of spurious solutions. As the value of � increases, spurious solutions disappear and
at the same time (characteristic vectors of) smaller maximal cliques become stable.
We expect that at the beginning of the annealing process the dynamics is attracted
toward “promising” regions, and the search is further re7ned as the annealing parameter
increases. In summary, the proposed algorithm is as follows:

1. Start with a sufficiently large negative �.
2. Let b be the barycenter of Sn and set x= b.
3. Run the replicator dynamics starting from x, under A + �I until convergence and

let x be the converged point.
4. Unless a stopping condition is met, increase � and goto 3.
5. Select S� with 0¡ S�¡ 1 (e.g. S�= 1

2), run the replicator dynamics starting from
current x under A + S�I until convergence, and extract a maximal clique from the
converged solution.

The last step in the algorithm is necessary if we want to extract also the vertices
comprising the clique found, as shown in Theorem 10.
Note that when �¡ 0 we are no longer guaranteed that the trajectories of the repli-

cator dynamics in step (3) will remain in the simplex Sn, and hence x′(A+ �I)x will
not necessarily increase at every step. Admittedly, in the numerical simulations we
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carried out and which are reported in the following section, this phenomenon almost
never happened. In a few cases the 7rst iteration yielded negative entries in the iterated
vector, but at the following steps the vector was readily projected onto the simplex. In
any case, a matrix with negative elements is no problem. It is simple to see that, by
adding a su6ciently large constant to the matrix to make it non-negative, the theory
and the optimization process are una<ected.
It is clear that for the algorithm to work, we need to select an appropriate “anneal-

ing” strategy. To this end, one could employ the following heuristics: suppose for the
moment that the underlying graph is a random one in the sense that edges are gener-
ated independently of each other with a certain equal probability q (in applications, q
could be replaced with |E|=( n2 ), the actual density). Suppose S is an unwanted clique
of size m. Take (¿ 0 small, say 0.01, and consider a lower bound which is exceeded
with probability 1− (:

Theorem 12. Under the random graph model consider a clique S of size |S|=m; put
,=1=2(n− m) and denote by S m the following lower bound for  (xS):

S m =1− (1− q)m−
√

mq(1− q)(,: (17)

Then

P( (xS)6 S m)6 (:

Moreover; S m exceeds 1− m for all m¿mq;( where

mq;( =
1− q
q

n
√
(: (18)

Proof. Since  (xS)=maxi �∈S dS(i) − m + 1, and since for di<erent i 	= j, the variates
dS(i) and dS(j) are stochastically independent in the random graph model, we 7rst get
the identity

P( (xS)6 S m)= [P(dS(i)6 S m + m− 1)]n−m:

Next, observe that the expected value and variance of dS(i) is, according to the Bino-
mial Law,

EdS(i)=mq and Var dS(i)=mq(1− q):

Hence TCebyTsev’s inequality gives

P(|dS(i)− mq|¿ �)6mq(1− q)=�2;

which entails, putting �=1− (1− q)m− S m ¿ 0,

P(dS(i)6 S m + m− 1) = P(dS(i)− mq6 S m + (1− q)m− 1)

= P(dS(i)− mq6− �) (19)

6P(|dS(i)− mq|6 �)6mq(1− q)�−2:
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This gives an lower bound S m for  S which is exceeded with a probability of least
1− ( as follows:

P( (xS)6 S m) = [P(dS(i)¡ S m + m− 1)]n−m

6 [mq(1− q)�−2]n−m = ( (20)

provided 1−(1−q)m− S m = �=
√

mq(1− q) 2(n−m)
√
(, which yields (17). Since ,¿ 1=2n

by de7nition, obviously (2,6 (1=n. On the other hand, S m ¿ 1−m if and only if qm−√
mq(1− q)(, ¿ 0, which is equivalent to m¿ [(1−q)=q](2,. Hence m¿mq;(¿ [(1−

q)=q](2, yields S m ¿ 1− m.

Since mq;(6 10 if q¿ 0:1 for all (¿ 0, the previously obtained hard lower bound
1 − m is relaxed by S m in almost all important applications. Moreover the bound S m
decreases with increasing m provided that

1√
m

[
1 +

m
(n− m)2

log (
]
¿− 2

(,

√
1− q
q

holds, and this is true for many important cases in practice: indeed, observe that the
latter inequality necessarily holds if the expression in brackets is positive, which is
true, e.g. for (=0:01, whenever 6m6 (n − m)2. Thus it makes sense to use S m as a
heuristic proxy for the lower bound of  (xS), to avoid being attracted by a clique of
size m.
Furthermore, a well-known result due to Matula [32] accurately predicts the size of

the maximum clique in random graphs with su6ciently many vertices. Let

M (n; q)= 2 log1=q n− 2 log1=q log1=q n+ 2 log1=q
e
2
+ 1: (21)

Matula proved that, as n → ∞, the size of the maximum clique in an n-vertex q-density
random graph is either �M (n; q)� or 
M (n; q)� with probability tending to 1.
The previous results suggest us a sort of “two-level” annealing strategy: the level

of clique size, which in turn induces that of the “actual” annealing parameter. More
precisely, if we do not have any a priori information about the expected size of the
maximum clique, we can use Matula’s formula M (n; q) to have an initial (more or less
accurate) estimate of it. Let m= 
M (n; q)�; by setting the initial value for � (step 1 of
our algorithm) at some intermediate value between S m and S m−1, e.g. �=( S m+ S m−1)=2,
we expect that only the characteristic vectors of maximal cliques having size m will
survive in f�, together with many spurious solutions. After the initial cycle, we decrease
m, recalculate S m and S m−1 and update �=( S m + S m−1)=2 in step 4 as in the previous
step. The whole process is iterated until either m reaches 1 or � becomes greater than
zero.
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6. Experimental results

To assess the e<ectiveness of the proposed heuristic, extensive simulations were
carried out over a selection of DIMACS graphs [25], which represent a standard
benchmark for clique 7nding algorithms. 3 The experiments were conducted using the
discrete-time version (4) of the replicator equations. The code was written in the C
programming language and run on a Digital AlphaStation Series 200 (no attempt was
made to optimize the code). For each graph considered, the proposed algorithm was
run by using the two-level annealing schedule described at the end of the previous
section. For each internal cycle (step 3), the replicator algorithm was iterated until the
(squared) distance between two successive states became smaller than 10−10. At the
7nal cycle (i.e., step 5), the parameter � was set to 1

2 , and the replicator dynamics
was stopped when either a maximal clique (i.e., a local maximizer of f1=2 on Sn) was
found or the distance between two successive points was smaller than a 7xed thresh-
old, which was set to n10−15 (n being the number of vertices of the graph at hand).
In the latter case the converged vector was randomly perturbed, and the algorithm
restarted from the perturbed point. Because of the one-to-one correspondence between
local maximizers and maximal cliques (see Theorem 10) this situation corresponds to
convergence to a saddle point.
In order to assess the relative merits of the proposed heuristic we compared our

algorithm with plain replicator dynamics with 7xed �, i.e., with no annealing strat-
egy. Speci7cally, two cases were considered: �= 1

2 , which corresponds to the original
spurious-free quadratic program proposed by [24] and recently studied by Bomze et
al. [10,12], and �=0 which is the original Motzkin–Straus formulation [33] as studied
by Pelillo [37]. In both cases, the replicator process was started from the barycenter
of the simplex, and iterated until the squared distance between two successive states
became smaller than 10−20. In addition, our results were compared with those re-
ported by Gibbons et al. [21] who proposed a continuous-based heuristic (CBH) also
based on a parameterization (completely di<erent from ours) of the Motzkin–Straus
program.
The results of our experiments are summarized in Tables 1 and 2, which contain

a row for each DIMACS graphs considered. The columns labeled graph, vertices, and
dens. represent the name of the corresponding graph, the number of its vertices and
its density, respectively. The column Max Clique, contains the size of the maximum
clique when known, or a lower bound for it (this information is already available in
the 7le containing the graph). The columns ARH, PRD(12 ), PRD(0) and CBH contain
the size of the clique found using the proposed annealed replication heuristic (ARH),
the plain replicator dynamics (PRD) applied to (2) with �= 1

2 , the plain replicator
dynamics (PRD) applied to (2) with �=0—these results are taken from [11]—and

3 We did not consider graphs where the plain algorithm applied to (1) already yields the maximum
clique, e.g., the “c-fat” family [11]. Also, a few very large and dense graphs were excluded because of the
excessively high computational cost required.
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Table 1
Results on DIMACS benchmark graphs (part I)

Max Clique size obtained Time
Graph Vertices Dens. clique ARH PRD( 12 ) PRD(0) CBH (s)

brock200 1 200 0.745 21 19 17 18 20 167.79
brock200 2 200 0.496 12 10 8 8 12 97.33
brock200 3 200 0.605 15 13 9 10 14 124.44
brock200 4 200 0.658 17 14 12 13 16 150.74
brock400 1 400 0.748 27 20 21 21 23 906.26
brock400 2 400 0.749 29 23 20 22 24 752.69
brock400 3 400 0.748 31 23 18 20 23 554.45
brock400 4 400 0.749 33 23 19 21 24 937.84
brock800 1 800 0.649 23 18 16 17 20 3323.31
brock800 2 800 0.651 24 18 15 17 19 3175.44
brock800 3 800 0.649 25 19 16 18 20 2697.56
brock800 4 800 0.650 26 19 15 17 19 3181.74

san1000 1000 0.501 15 8 8 8 8 1824.60
san200 0.7 1 200 0.700 30 15 15 15 15 39.66
san200 0.7 2 200 0.700 18 12 12 12 12 40.11
san200 0.9 1 200 0.900 70 45 45 45 46 106.29
san200 0.9 2 200 0.900 60 39 36 35 36 56.03
san200 0.9 3 200 0.900 44 31 32 33 30 98.76
san400 0.5 1 400 0.500 13 7 7 7 8 156.77
san400 0.7 1 400 0.700 40 20 20 20 20 232.39
san400 0.7 2 400 0.700 30 15 15 15 15 230.72
san400 0.7 3 400 0.700 22 12 12 12 14 194.12
san400 0.9 1 400 0.900 100 50 40 55 50 425.88

sanr200 0.7 200 0.700 18 16 14 16 18 131.12
sanr200 0.9 200 0.900 ¿ 42 41 37 40 41 158.41
sanr400 0.5 400 0.900 13 13 11 11 12 269.64
sanr400 0.7 400 0.700 ¿ 21 21 18 18 20 838.30

the Gibbons et al. CBH algorithm [21], respectively. Finally, the column labeled time
contain the CPU time required by the process to provide the 7nal solution.
As can be seen, the results are very encouraging. In fact, in almost all cases we

obtained larger cliques with ARH than PRD(12 ) did (the exceptions being brock400 1,
san200 0.9 3 and p hat700-2). In many cases, we obtained the same results as CBH
and in a few examples we returned better solutions, e.g., p hat1500-2, san200 0.9 2,
sanr400 0.5. ARH also performed better than PRD(0). Only in six out of 46 cases
PRD(0) returned a larger clique size, that is: brock400 1, san 200 0.9 3,
san 400 0.9 1, p hat500-3, p hat700-2, and p hat1000-3. However, as discussed
in previous sections, due to the presence of spurious solutions in the original Motzkin–
Straus program, PRD(0) is not able to always return the nodes comprising the clique
found: it only provides information about its size. It is worth noting that the San-
chis graphs (the “san” family) turned out to be very hard for Motzkin–Straus-based
optimization algorithms since neither of the three heuristics found good results.
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Table 2
Results on DIMACS benchmark graphs (part II)

Max Clique size obtained Time
Graph Vertices Dens. clique ARH PRD( 12 ) PRD(0) CBH (s)

MANN a9 45 0.927 16 16 12 12 16 0.833
MANN a27 378 0.990 126 117 117 117 121 6807.81

p hat300-1 300 0.244 8 8 6 6 8 107.63
p hat300-2 300 0.489 25 25 22 24 25 301.69
p hat300-3 300 0.744 36 35 32 33 36 3221.27
p hat500-1 500 0.253 9 9 8 8 9 335.83
p hat500-2 500 0.505 36 36 33 35 35 893.21
p hat500-3 500 0.752 ¿ 49 47 47 48 49 1729.50
p hat700-1 700 0.249 11 9 7 9 11 739.92
p hat700-2 700 0.498 44 41 43 43 44 1893.96
p hat700-3 700 0.748 ¿ 62 59 57 59 60 2582.18
p hat1000-1 1000 0.245 10 10 8 8 10 1965.47
p hat1000-2 1000 0.490 ¿ 46 44 42 44 46 3010.43
p hat1000-3 1000 0.744 ¿ 65 62 61 63 65 7288.22
p hat1500-1 1500 0.253 12 10 9 9 11 4100.54
p hat1500-2 1500 0.506 ¿ 65 64 62 62 63 8598.91
p hat1500-3 1500 0.754 ¿ 94 91 89 90 94 16251.77

keller4 171 0.649 11 8 7 7 10 34.85
keller5 776 0.751 27 16 15 15 21 610.16

As far as the CPU time is concerned, it is clear that our algorithm turns out to be
computationally more expensive than plain replicator dynamics on 7xed � (see [12] for
comparison) because the latter is simply a single step of our heuristic. Moreover, ARH
is slower than CBH [21] which in turn may have serious memory allocation problems.
However, we note that the continuous-time version (3) of replicator equations can
naturally be mapped onto hardware circuitry [41], thereby making the whole algorithm
particularly amenable to parallel, distributed implementations.
From the results obtained, it can be concluded that the proposed annealed replication

heuristic does a good job at 7nding large cliques, and clearly beats the plain replicator
dynamics approach, where no annealing strategy is used. Moreover, it should be pointed
out that the annealing schedule adopted is entirely based on the assumption that the
graphs at hand are random; clearly, DIMACS graphs can hardly said to be “random,”
but nevertheless the heuristic worked remarkably well. Of course, better annealing
strategies could be devised if we knew something about the underlying structure of the
graphs, but in absence of this kind of information the random graph assumption seems
to be su6ciently robust.

7. Conclusions

We have presented a new heuristic for approximating the maximum clique problem.
The approach is centered around an attractive characterization of the problem due to
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Motzkin and Straus, which allows us to formulate it as a linearly constrained quadratic
maximization program. Speci7cally, we have introduced a control parameter � and
studied the properties of the objective function as � varies. We have shown that when
� is positive all the properties enjoyed by the standard regularization approach [10]
hold true; speci7cally, in this case a one-to-one correspondence between local=global
maximizers in the continuous space and local=global solutions in the discrete space ex-
ists. For negative �’s an interesting picture emerges: as the absolute value of � grows
larger, local maximizers corresponding to maximal cliques disappear. We have derived
bounds on the parameter � which a<ect the stability of these solutions. These results
have suggested the annealed replication heuristic, which consists of starting from a
large negative � and then properly reducing it during the optimization process. For
each value of � standard replicator equations are run in order to obtain local solu-
tions of the corresponding objective function. The rationale behind this idea is that
for values of � with a proper large absolute value only local solutions corresponding
to large maximal cliques will survive, together with various spurious maximizers. As
the value of � is reduced, spurious solutions disappear and smaller maximal cliques
become stable. An annealing schedule is proposed which is based on the assumption
that the graphs being considered are random. Experiments conducted over several DI-
MACS benchmark graphs con7rm the e<ectiveness of the proposed approach and the
robustness of the annealing strategy. The overall conclusion is that the annealing pro-
cedure does help to avoid ine6cient local solutions, by initially driving the dynamics
towards promising regions in state space, and then re7ning the search as the annealing
parameter is increased.
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Appendix Full dynamic analysis of two examples

Here we investigate the dynamic behavior of the replicator dynamics of AG + �I
as � varies over the entire real line, for the graph of size 3 considered in Section
4. Since for the replicator dynamics on S3 a complete classi7cation of the replicator
Low is available [7,9], we refrain from repeating the phase portraits in pictures here,
but rather refer to the numbers in the system used in the cited articles (see Fig. 6
in [7] and Fig. 1 in [9]). A pre7xed minus sign (−) symbolizes time reversal of the
respective phase portrait (PP). In some cases, the PPs have to be rotated accordingly.
There are three bifurcations at �=0; 1; 2: for �¡ 0 the situation is essentially that

of the second plot of Fig. 2 and there is only the interior attractor

y� =
[
1− �
4− 3�

;
1− �
4− 3�

;
2− �
4− 3�

]′
:
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The Low is depicted as PP 7 in Fig. 6 of [7]. As � increases reaching the 7rst bifur-
cation at �=0 the situation changes from that of the second plot of Fig. 2 to that of
the Motzkin–Straus program of Fig. 1. The Low stops not only at the edge connecting
vertices 1 and 2, but also along the trajectories joining y� with the (former) saddle
points xS and xT , so that we arrive at PP 1. If �∈ ]0; 1[ the situation is essentially
that of the 7rst plot of Fig. 2, and we have the picture of PP 8, which renders both
xS and xT as (local) attractors, and y� as a saddle point wandering towards x{3} as
� ↗ 1. This completely breaks down if �=1 where, again, the Low is stopped at two
edges: PP 20 emerges. If � is increased further, only the vertices are attracting with the
occurrence of y� as an interior repellor if � exceeds 2: we get PP −35 for �∈ ]1; 2]
and PP −7 if �¿ 2. The regularizing term of Fig. 1 substantially depicts the situation
after the last bifurcation at �=2.
In another example, G consists of three vertices with only two of them connected,

so AG has only zero entries with the exception of a12 = a21 = 1. Hence S = {1; 2}
is the unique maximum clique. In this case, replicator dynamics undergoes a simple
exchange-of-stability bifurcation as � passes through �= − 1, and a more dramatic,
but similar phenomenon occurs as �=0 where the Low on two edges is reversed
simultaneously: indeed, for �¡ − 1 we obtain, again, PP No. 7 with interior global
attractor of the form

x� =
[

�
3�+ 1

;
�

3�+ 1
;
�+ 1
3�+ 1

]′
(observe that x� approaches [ 13 ;

1
3 ;

1
3 ]

′ as � ↘ −∞ while x� → xS = [12 ;
1
2 ; 0]

′ as � ↗
−1). If � now increases, this stable stationary point remains at xS . Indeed, the PP is
for �∈ [−1; 0[ qualitatively the same as PP 35 while for �=0 we obtain the PP −20.
Still xS is the global attractor. If � is further increased to positive numbers (e.g. �= 1

2),
then local stability of xS is retained, but there emerges a second local attractor x{3}

(corresponding to the maximal clique {3}) together with an interior saddle point, again
at x� as above, and the PP −8 results. If �=1, stability of x{3} is retained, but the
Low at the edge containing xS stops: PP −1 depicts the situation, which in some sense
corresponds to the occurrence of spurious solutions in the previous example (emerging
at �=0 there). Finally, if �¿ 1, we arrive again at PP −7 where x� is now a
repellor and all vertices become attractors. This is in accordance with the theory as in
Theorem 8.
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