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Abstract

In this paper we introduce Context-Sensitive Decision Forests - A new perspective
to exploit contextual information in the popular decision forest framework for the
object detection problem. They are tree-structured classifiers with the ability to
access intermediate prediction (here: classification and regression) information
during training and inference time. This intermediate prediction is available for
each sample and allows us to develop context-based decision criteria, used for
refining the prediction process. In addition, we introduce a novel split criterion
which in combination with a priority based way of constructing the trees, allows
more accurate regression mode selection and hence improves the current context
information. In our experiments, we demonstrate improved results for the task of
pedestrian detection on the challenging TUD data set when compared to state-of-
the-art methods.

1 Introduction and Related Work
In the last years, the random forest framework [1, 6] has become a very popular and powerful tool
for classification and regression problems by exhibiting many appealing properties like inherent
multi-class capability, robustness to label noise and reduced tendencies to overfitting [7]. They
are considered to be close to an ideal learner [13], making them attractive in many areas of com-
puter vision like image classification [5, 17], clustering [19], regression [8] or semantic segmenta-
tion [24, 15, 18]. In this work we show how the decision forest algorithm can be extended to include
contextual information during learning and inference for classification and regression problems.

We focus on applying random forests to object detection, i.e. the problem of localizing multiple
instances of a given object class in a test image. This task has been previously addressed in random
forests [9], where the trees were modified to learn a mapping between the appearance of an image
patch and its relative position to the object category centroid (i.e. center voting information). During
inference, the resulting Hough Forest not only performs classification on test samples but also casts
probabilistic votes in a generalized Hough-voting space [3] that is subsequently used to obtain object
center hypotheses. Ever since, a series of applications such as tracking and action recognition [10],
body-joint position estimation [12] and multi-class object detection [22] have been presented. How-
ever, Hough Forests typically produce non-distinctive object hypotheses in the Hough space and
hence there is the need to perform non-maximum suppression (NMS) for obtaining the final results.
While this has been addressed in [4, 26], another shortcoming is that standard (Hough) forests treat
samples in a completely independent way, i.e. there is no mechanism that encourages the classifier
to perform consistent predictions.

Within this work we are proposing that context information can be used to overcome the aforemen-
tioned problems. For example, training data for visual learning is often represented by images in
form of a (regular) pixel grid topology, i.e. objects appearing in natural images can often be found in
a specific context. The importance of contextual information was already highlighted in the 80’s with
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Figure 1: Top row: Training image, label image, visualization of priority-based growing of tree (the lower,
the earlier the consideration during training.). Bottom row: Inverted Hough image using [9] and breadth-first
training after 6 levels (26 = 64 nodes), Inverted Hough image after growing 64 nodes using our priority queue,
Inverted Hough image using priority queue shows distinctive peaks at the end of training.

a pioneering work on relaxation labelling [14] and a later work with focus on inference tasks [20]
that addressed the issue of learning within the same framework. More recently, contextual infor-
mation has been used in the field of object class segmentation [21], however, mostly for high-level
reasoning in random field models or to resolve contradicting segmentation results. The introduc-
tion of contextual information as additional features in low-level classifiers was initially proposed
in the Auto-context [25] and Semantic Texton Forest [24] models. Auto-context shows a general
approach for classifier boosting by iteratively learning from appearance and context information. In
this line of research [18] augmented the feature space for an Entanglement Random Forest with a
classification feature, that is consequently refined by the class posterior distributions according to
the progress of the trained subtree. The training procedure is allowed to perform tests for specific,
contextual label configurations which was demonstrated to significantly improve the segmentation
results. However, the

In this paper we are presenting Context-Sensitve Decision Forests - A novel and unified interpreta-
tion of Hough Forests in light of contextual sensitivity. Our work is inspired by Auto-Context and
Entanglement Forests, but instead of providing only posterior classification results from an earlier
level of the classifier construction during learning and testing, we additionally provide regression
(voting) information as it is used in Hough Forests. The second core contribution of our work is
related to how we grow the trees: Instead of training them in a depth- or breadth-first way, we pro-
pose a priority-based construction (which could actually consider depth- or breadth-first as particular
cases). The priority is determined by the current training error, i.e. we first grow the parts of the tree
where we experience higher error. To this end, we introduce a unified splitting criterion that esti-
mates the joint error of classification and regression. The consequence of using our priority-based
training are illustrated in Figure 1: Given the training image with corresponding label image (top
row, images 1 and 2), the tree first tries to learn the foreground samples as shown in the color-coded
plot (top row, image 3, colors correspond to index number of nodes in the tree). The effects on the
intermediate prediction quality are shown in the bottom row for the regression case: The first image
shows the regression quality after training a tree with 6 levels (26 = 64 nodes) in a breadth-first way
while the second image shows the progress after growing 64 nodes according to the priority based
training. Clearly, the modes for the center hypotheses are more distinctive which in turn yields to
more accurate intermediate regression information that can be used for further tree construction.
Our third contribution is a new family of split functions that allows to learn from training images
containing multiple training instances as shown for the pedestrians in the example. We introduce a
test that checks the centroid compatibility for pairs of training samples taken from the context, based
on the intermediate classification and regression derived as described before. To assess our contribu-
tions, we performed several experiments on the challenging TUD pedestrian data set [2], yielding a
significant improvement of 9% in the recall at 90% precision rate in comparison to standard Hough
Forests, when learning from crowded pedestrian images.
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2 Context-Sensitive Decision Trees
This section introduces the general idea behind the context-sensitive decision forest without refer-
ences to specific applications. Only in Section 3 we show a particular application to the problem
of object detection. After showing some basic notational conventions that are used in the paper, we
provide a section that revisits the random forest framework for classification and regression tasks
from a joint perspective, i.e. a theory allowing to consider e.g. [1, 11] and [9] in a unified way.
Starting from this general view we finally introduce the context-sensitive forests in 2.2.

Notations. In the paper we denote vectors using boldface lowercase (e.g. d, u, v) and sets by
using uppercase calligraphic (e.g. X , Y) symbols. The sets of real, natural and integer numbers are
denoted with R, N and Z as usually. We denote by 2X the power set of X and by 1 [P ] the indicator
function returning 1 or 0 according to whether the proposition P is true or false. Moreover, with
P(Y) we denote the set of probability distributions having Y as sample space and we implicitly
assume that some σ-algebra is defined on Y . We denote by δ(x) the Dirac delta function. Finally,
Ex∼Q [f(x)] denotes the expectation of f(x) with respect to x sampled according to distribution Q.

2.1 Random Decision Forests for joint classification and regression
A (binary) decision tree is a tree-structured predictor1 where, starting from the root, a sample is
routed until it reaches a leaf where the prediction takes place. At each internal node of the tree the
decision is taken whether the sample should be forwarded to the left or right child, according to a
binary-valued function. In formal terms, let X denote the input space, let Y denote the output space
and let T dt be the set of decision trees. In its simplest form a decision tree consists of a single node
(a leaf ) and is parametrized by a probability distribution Q ∈ P(Y) which represents the posterior
probability of elements in Y given any data sample reaching the leaf. We denote this (admittedly
rudimentary) tree as LF (Q) ∈ T td. Otherwise, a decision tree consists of a node with a left and
a right sub-tree. This node is parametrized by a split function φ : X → {0, 1}, which determines
whether to route a data sample x ∈ X reaching it to the left decision sub-tree tl ∈ T dt (if φ(x) = 0)
or to the right one tr ∈ T dt (if φ(x) = 1). We denote such a tree as ND (φ, tl, tr) ∈ T td. Finally,
a decision forest is an ensemble F ⊆ T td of decision trees which makes a prediction about a data
sample by averaging over the single predictions gathered from all trees.

Inference. Given a decision tree t ∈ T dt, the associated posterior probability of each element in
Y given a sample x ∈ X is determined by finding the probability distribution Q parametrizing the
leaf that is reached by x when routed along the tree. This is compactly presented with the following
definition of P (y|x, t), which is inductive in the structure of t:

P (y |x, t ) =


Q(y) if t = LF (Q)

P (y |x, tl) if t = ND (φ, tl, tr) and φ(x) = 0

P (y |x, tr) if t = ND (φ, tl, tr) and φ(x) = 1 .

(1)

Finally, the combination of the posterior probabilities derived from the trees in a forest F ⊆ T dt can
be done by an averaging operation [6], yielding a single posterior probability for the whole forest:

P (y|x,F) =
1

|F|
∑
t∈F

P (y|x, t) . (2)

Randomized training.

A random forest is created by training a set of random decision trees independently on random
subsets of the training dataD ⊆ X×Y . The training procedure for a single decision tree heuristically
optimizes a set of parameters like the tree structure, the split functions at the internal nodes and the
density estimates at the leaves in order to reduce the prediction error on the training data. In order
to prevent overfitting problems, the search space of possible split functions is limited to a random
set and a minimum number of training samples is required to grow a leaf node. During the training
procedure, each new node is fed with a set of training samples Z ⊆ D. If some stopping condition
holds, depending on Z , the node becomes a leaf and a density on Y is estimated based on Z .
Otherwise, an internal node is grown and a split function is selected from a pool of random ones in
a way to minimize some sort of training error on Z . The selected split function induces a partition

1we use the term predictor because we will jointly consider classification and regression.

3



of Z into two sets, which are in turn becoming the left and right childs of the current node where
the training procedure is continued, respectively.

We will now write this training procedure in more formal terms. To this end we introduce a function
π(Z) ∈ P(Y) providing a density on Y estimated from the training data Z ⊆ D and a loss function
L(Z |Q) ∈ R penalizing wrong predictions on the training samples inZ , when predictions are given
according to a distribution Q ∈ P(Y). The loss function L can be further decomposed in terms of a
loss function `(·|Q) : Y → R acting on each sample of the training set:

L(Z |Q) =
∑

(x,y)∈Z

`(y |Q) . (3)

Also, let Φ(Z) be a set of split functions randomly generated for a training set Z and given a split
function φ ∈ Φ(Z), we denote by Zφl and Zφr the sets identified by splitting Z according to φ, i.e.

Zφl = {(x, y) ∈ Z : φ(x) = 0} and Zφr = {(x, y) ∈ Z : φ(x) = 1} .

We can now summarize the training procedure in terms of a recursive function g : 2X×Y → T ,
which generates a random decision tree from a training set given as argument:

g(Z) =

{
LF (π(Z)) if some stopping condition holds

ND
(
φ, g(Zφl ), g(Zφr )

)
otherwise .

(4)

Here, we determine the optimal split function φ in the pool Φ(Z) as the one minimizing the loss we
incur as a result of the node split:

φ ∈ arg min
{
L(Zφ

′

l ) + L(Zφ
′

r ) : φ′ ∈ Φ(Z)
}

(5)

where we compactly write L(Z) for L(Z|π(Z)), i.e. the loss on Z obtained with predictions driven
by π(Z). A typical split function selection criterion commonly adopted for classification and re-
gression is information gain. The equivalent counterpart in terms of loss can be obtained by using
a log-loss, i.e. `(y|Q) = − log(Q(y)). A further widely used criterion is based on Gini impurity,
which can be expressed in this setting by using `(y|Q) = 1−Q(y).

Finally, the stopping condition that is used in (4) to determine whether to create a leaf or to continue
branching the tree typically consists in checking |Z|, i.e. the number of training samples at the node,
or the loss L(Z) are below some given thresholds, or if a maximum depth is reached.

2.2 Context-sensitive decision forests
A context-sensitive (CS) decision tree is a decision tree in which split functions are enriched with the
ability of testing contextual information of a sample, before taking a decision about where to route
it. We generate contextual information at each node of a decision tree by exploiting a truncated
version of the same tree as a predictor. This idea is shared with [18], however, we introduce some
novelties by tackling both, classification and regression problems in a joint manner and by leaving
a wider flexibility in the tree truncation procedure. We denote the set of CS decision trees as T .
The main differences characterizing a CS decision tree t ∈ T compared with a standard decision
tree are the following: a) every node (leaves and internal nodes) of t has an associated probability
distribution Q ∈ P(Y) representing the posterior probability of an element in Y given any data
sample reaching it; b) internal nodes are indexed with distinct natural numbers n ∈ N in a way to
preserve the property that children nodes have a larger index compared to their parent node; c) the
split function at each internal node, denoted by ϕ(·|t′) : X → {0, 1}, is bound to a CS decision
tree t′ ∈ T , which is a truncated version of t and can be used to compute intermediate, contextual
information.

Similar to Section 2.1 we denote by LF (Q) ∈ T the simplest CS decision tree consisting of a single
leaf node parametrized by the distributionQ, while we denote by ND (n,Q, ϕ, tl, tr) ∈ T , the rest of
the trees consisting of a node having a left and a right sub-tree, denoted by tl, tr ∈ T respectively,
and being parametrized by the index n, a probability distribution Q and the split function ϕ as
described above.

As shown in Figure 2, the truncation of a CS decision tree at each node is obtained by exploiting
the indexing imposed on the internal nodes of the tree. Given a CS decision tree t ∈ T and m ∈ N,
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Figure 2: On the left, we find a CS decision tree t, where only the internal nodes are indexed. On the right, we
see the truncated version t(<5) of t, which is obtained by converting to leaves all nodes having index ≥ 5 (we
marked with colors the corresponding node transformations).

we denote by t(<m) a CS decision tree derived from t in which only the internal nodes having index
< m are kept and the internal nodes with index ≥ m having a parent with index < m, or being the
root node, are converted into leaves. Finally, all nodes left-over are pruned away.

Inference. The inference process, given a CS decision tree t ∈ T , is equivalent to the one intro-
duced for standard decision trees, with the only difference that a split function in a node indexed
by n can use the truncated version of the same decision tree t(<n) to additionally exploit contex-
tual information while taking decisions about where to route samples. In the specific, the posterior
probability of y ∈ Y given a sample x ∈ X is inductively defined as:

P (y |x, t) =


Q(y) if t = LF (Q)

P (y |x, tl) if t = ND (n, ·, ϕ, tl, tr) and ϕ(x | t(<n)) = 0

P (y |x, tr) if t = ND (n, ·, ϕ, tl, tr) and ϕ(x | t(<n)) = 1 .

(6)

The same posterior probabilities with respect to a forest F ⊆ T can be obtained as in (2).

Prioritized node training. The training process for CS decision forests consists in training an
ensemble of CS decision trees independently on random subsets of the training set D ⊆ X × Y .
Each CS decision tree is trained in an iterative way and, similar to the case of standard decision
trees, a decision about whether to branch new nodes or produce a leaf is taken based on a subset
of the training samples Z ⊆ D. However, in contrast to the standard setting, the learning process
depends on the order in which nodes of the tree are grown because split functions depend on t(<m)

which in turn is affected by the node ordering. In other words, we impose an explicit ordering on
the recursive calls of function g described in Equation (4). This ordering is determined by means
of a priority queue, where the priority associated to each function call is determined according to
a cost value. This cost can for instance be the depth at which a new node will be grown by the
recursive call, in which case we enforce a breadth-first ordering, or the negative loss−L(Z) defined
as in (3), Z being the subset of the training data argument of the function call. This second option
is particularly interesting because it forces the tree to split first the nodes where the training error
measured in terms of the loss function is the highest. This indeed allows to reduce the uncertainty
uniformly during the tree growth and in turn results in more reliable contextual information.

Whenever a new node is grown, it takes the time at which it was extracted from the priority queue
as index. It is easy to see that the indexing deriving from this procedure never violates the property
that children of a node have an index larger than the parent node. The split function selection is
performed according to (5), the only difference being the type of split functions that are generated,
which can exploit t(<m) to test contextual information.

3 Application to Object Detection
In this section we employ the CS decision trees for the problem of object detection, following a
solution setting similar to [9]. Specifically, we adopt a patch-based abstraction of an image and the
aim of the tree-based predictor is to jointly predict, for each patch, the foreground/background class
it belongs to and a displacement vector pointing to the object’s center. By collecting all the object
position hypotheses from all foreground patches, we can setup a Hough space in which objects can
be detected from the vote modes.

An image I : Z2 → F is a function mapping pixels to elements of a feature space F . The fea-
ture space here may include a variety of image cues, like color information, gradients, filter bank
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responses, etc. . We denote by I(u) ∈ F the feature vector associated to pixel u and by I the set of
images, and by I(u)k the kth element of the feature vector associated to u. The input space X for
our learning problem is a set of patches, each represented as a pair (u, I) ∈ Z2 × I, pixel u being
the center of the patch in image I .

The output space Y is a set of pairs (c,d), where c ∈ {0, 1} is a binary class label indicating the
presence of an object and d ∈ Z2 is the displacement of the object’s center. Hence, if a training
sample (u, I) ∈ X has (c,d) ∈ Y as the ground-truth prediction then we have in image I at location
u either a background pixel (c = 0) or a foreground pixel (c = 1), i.e. belonging to an object and,
if the second case holds, u + d is the center of the object to which the pixel belongs. Note that Y
encodes both the classification and regression part of the object detection task.

The loss function `(c,d|Q) that we employ for the computation of L(Z|Q) in (3) is given by

`(c,d |Q) = E(c′,d′)∼Q [1 [c 6= c′] + 1 [(c, c′) = (1, 1)] (1−Kσ(d− d′))] (7)

where Kσ(x) = exp(−‖x‖2/σ2). This quantity measures the expected loss that we incur by pre-
dicting (c′,d′) in place of (c,d), where (c′,d′) is sampled according to Q. The term under expec-
tation behaves as a 0/1 loss for all combinations of class labels, excepting the case c = c′ = 1
where also the correct prediction of the displacement vector is taken into account. Indeed, even if a
pixel belonging to an object is correctly labelled, we incur a high loss if the object’s center position
estimation is completely wrong. This is taken into account with the second term.

The density estimation function π(Z), which generates the posterior distributions stored in the tree
leaves, is different depending if we are at an internal node or at a leaf of the tree. In both cases
it provides distributions that factorize in two marginal distributions, for the class labels and the
displacement vector, respectively. The marginal over the class labels is always a discrete distribution
providing the probability of drawing a sample of a given class from the set Z . The difference is
with respect to the marginal over the displacement vector. We have a point-wise and uni-modal
distribution at the internal nodes, while we keep track of multiple modes at the leaves.

Let q ∈ P({0, 1}) be the marginal distribution over the class labels defined as q(c) = |Zc|/|Z|,
where Z0 and Z1 are the sets of background and foreground samples in Z , respectively. At the
internal node level π(Z) returns a probability distribution Qn ∈ P(Y) defined as

Qn (c,d) = q(c)δ(d− d∗) .

Here, d∗ represents the single point-wise mode of the marginal distribution with respect to d (i.e. the
second term), which is determined in a way to minimize the loss L(Z|Qn) over the training samples.
A local solution of the minimization problem can be found by iterating the following procedure2

d∗ ←
∑

(x,(c,d))∈Z1

dKσ(d− d∗)
/ ∑

(x,(c,d))∈Z1

Kσ(d− d∗) .

At the leaf level, instead, π(Z) returns a probability distribution Ql ∈ P(Y) defined as:

Ql (c,d) = q(c)
∑

(x,(c′,d′))∈Z1

δ(d− d′)/|Z1| .

Here, the second term, i.e. the marginal over d, is uniform over the set of displacement vectors
belonging to foreground samples reaching the leaf.

We define finally a novel type of split function, which performs a test by exploiting the contextual
information. This test is particularly interesting because it allows to check whether two pixels are
expected to belong to the same object instance. The new split function ϕ(cs)(u, I|t,h1,h2, τ) takes
as input a sample (u, I) ∈ X and it is parametrized by a CS decision tree t ∈ T that is used
for generating the contextual information, by two relative displacement vectors h1,h2 ∈ R2 that
identify the position of two pixels relative to u and by a threshold τ . The definition of our context-
sensitive split functions ϕ(cs) is as follows:

ϕ(cs)(u, I|t,h1,h2, τ) = 1
[
E(c,d,c′,d′)∼P1·P2

[1 [(c, c′) = (1, 1)]Kσ(d− d′)] < τ
]

(8)

2In the experiments conducted, we never exceeded 10 iterations for finding a mode.
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where Pj = P (·|(u + hj , I), t), with j = 1, 2, are the posterior probabilities obtained from tree t
given samples at position u+h1 and u+h2 of image I , respectively. Please note that this test should
not be confused with the regression split criterion in [9], which tries to partition the training set in a
way to group examples with similar voting direction and length. Besides the novel context-sensitive
split function we employ also standard split functions performing tests on X as defined in [24].

4 Experiments
To assess our proposed approach, we have conducted several experiments on the task of pedestrian
detection. Detecting pedestrians is very challenging for Hough-voting based methods as they typ-
ically exhibit strong articulations of feet and arms, yielding to non-distinctive hypotheses in the
Hough space. We evaluated our method on the TUD pedestrian data base [2] in two different ways:
First, we show our detection results with training according to the standard protocol using 400
training images (where each image contains a single annotation of a pedestrian) and evaluation on
the Campus and Crossing scenes, respectively (Section 4.1). With this experiment we show the
improvement over state-of-the-art approaches when learning can be performed with simultaneous
knowledge about context information. In a second variation (Section 4.2), we use the images of
the Crossing scene (201 images) as a training set. Most images of this scene contain more than
four persons with strong overlap and mutual occlusions. However, instead of using the original an-
notation which covers only pedestrians with at least 50% overlap (1008 bounding boxes), we use
the more accurate, pixel-wise ground truth annotations of [23] for the entire scene that includes all
persons and consists of 1215 bounding boxes. Please note that this annotation is even more detailed
than the one presented in [4] with 1018 bounding boxes. The purpose of the second experiment is
to show that our context-sensitive forest can exploit the availability of multiple training instances
significantly better than state-of-the-art.

The most related work and therefore also the baseline in our experiments is the Hough Forest [9]. To
guarantee a fair comparison, we use the same training parameters for [9] and our context sensitive
forest: We trained 20 trees and the training data (including horizontally flipped images) was sampled
homogeneously per category per image. The patch size was fixed to 30 × 30 and we performed
1600 node tests for finding the best split function parameters per node. The trees were stopped
growing when < 7 samples were available. As image features, we used the the first 16 feature
channels provided in the publicly available Hough Forest code of [9]. In order to obtain the object
detection hypotheses from the Hough space, we use the same Non-maximum suppression (NMS)
technique in all our experiments as suggested in [9]. To evaluate the obtained hypotheses, we use
the standard PASAL-VOC criterion which requires the mutual overlap between ground truth and
detected bounding boxes to be ≥ 50%. The additional parameter of (7) was fixed to σ = 7.

4.1 Evaluation using standard protocol training set
The standard training set contains 400 images where each image comes with a single pedestrian
annotation. For our experiments, we rescaled the images by a factor of 0.5 and doubled the train-
ing image set by including also the horizontally flipped images. We randomly chose 125 training
samples per image for foreground and background, resulting in 2 · 400 · 2 · 125 = 200k training
samples per tree. For additional comparisons, we provide the results presented in the recent work
on joint object detection and segmentation of [23], from which we also provide evaluation results
of the Implicit Shape Model (ISM) [16]. However, please note that the results of [23] are based on
a different baseline implementation. Moreover, we show the results of [4] when using the provided
code and configuration files from the first authors homepage. Unfortunately, we could not reproduce
the results of the original paper.

First, we discuss the results obtained on the Campus scene. This data set consists of 71 images
showing walking pedestrians at severe scale differences and partial occlusions. The ground truth
we use has been released with [4] and contains a total number of 314 pedestrians. Figure 3, first
row, plot 1 shows the precision-recall curves when using 3 scales (factors 0.3, 0.4, 0.55) for our
baseline [9] (blue), results from re-evaluating [4] (cyan, 5 scales), [23] (green) and our Context-
Sensitive Forest without and with using the priority queue based tree construction (red/magenta). In
case of not using the priority queue, we trained the trees according to a breadth-first way. We obtain
a performance boost of ≈ 6% in recall at a precision of 90% when using both, context information
and the priority based construction of our forest. The second plot in the first row of Figure 3 shows
the results when the same forests are tested on the Crossing scene, using the more detailed ground
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Figure 3: Precision-Recall Curves for detections, Top row: Standard training (400 images), evaluation on
Campus and Crossing (3 scales). Bottom row: Training on Crossing annotations of [23], evaluation on Campus,
3 and 5 scales. Right images: Qualitative examples for Campus (top 2) and Crossing (bottom 2) scenes. (green)
correctly found by our method (blue) ground truth (red) wrong association (cyan) missed detection.

truth annotations. The data set shows walking pedestrians (Figure 3, right side, last 2 images) with
a smaller variation in scale compared to the Campus scene but with strong mutual occlusions and
overlaps. The improvement with respect to the baseline is lower (≈ 2% gain at a precision of 90%)
and we find similar developments of the curves. However, this comes somewhat expectedly as the
training data does not properly reflect the occlusions we actually want to model.

4.2 Evaluation on Campus scene using Crossing scene as training set
In our next experiment we trained the forests (same parameters) on the novel annotations of [23]
for the Crossing scene. Please note that this reduces the training set to only 201 images (we did not
include the flipped images). Qualitative detection results are shown in Figure 3, right side, images
1 and 2. From the first precison-recall curve in the second row of Figure 3 we can see, that the
margin between the baseline and our proposed method could be clearly improved (gain of ≈ 9%
recall at precision 90%) when evaluating on the same 3 scales. With evaluation on 5 scales (factors
0.34, 0.42, 0.51, 0.65, 0.76) we found a strong increase in the recall, however, at the cost of loosing
2 − 3% of precision below a recall of 60%, as illustrated in the second plot of row 2 in Figure 3.
While our method is able to maintain a precision above 90% up to a recall of ≈ 83%, the baseline
implementation drops already at a recall of ≈ 20%.

5 Conclusions
In this work we have presented Context-Sensitive Decision Forests with application to the object de-
tection problem. Our new forest has the ability to access intermediate prediction (classification and
regression) information about all samples of the training set and can therefore learn from contextual
information throughout the growing process. This is in contrast to existing random forest methods
used for object detection which typically treat training samples in an independent manner. More-
over, we have introduced a novel splitting criterion together with a mode isolation technique, which
allows us to (a) perform a priority-driven way of tree growing and (b) install novel context-based
test functions to check for mutual object centroid agreements. In our experimental results on pedes-
trian detection we demonstrated superior performance with respect to state-of-the-art methods and
additionally found that our new algorithm can significantly better exploit training data containing
multiple training objects.
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