REPLICATOR DYNAMICS IN
COMBINATORIAL OPTIMIZATION

Replicator equations are a class of dynamical
systems developed and studied in the context of
evolutionary game theory, a discipline pioneered
by J. Maynard Smith [36] which aims to model
the evolution of animal behavior using the prin-
ciples and tools of game theory. Because of their
dynamical properties, they have been recently
applied with significant success to a number of
combinatorial optimization problems. It is the
purpose of this article to provide a summary and
an up-to-date bibliography of these applications.
The model and its properties. In this section
we discuss the basic intuition behind replicator
equations and present a few theoretical proper-
ties that are instrumental for their application
to optimization problems. For a more systematic
treatment see [23, 55].

Consider a large, ideally infinite population of
individuals belonging to the same species which
compete for a particular limited resource, such
as food, territory, etc. This kind of conflict is
modeled as a game, the players being pairs of
randomly selected population members. In con-
trast to traditional application fields of game
theory, such as economics or sociology [33], play-
ers here do not behave “rationally,” but act in-
stead according to a pre-programmed behavior
pattern, or pure strategy. Reproduction is as-
sumed to be asexual, which means that, apart
from mutation, offspring will inherit the same
genetic material, and hence behavioral pheno-
type, as its parent. Let J = {1,--- ,n} be the
set of pure strategies and, for all i € J, let z;(t)
be the relative frequency of population mem-
bers playing strategy i, at time t. The state
of the system at time % is simply the vector
x(t) = (z1(t),--- ,zn(t))T. Clearly, the states
are constrained to lie in the standard simplex of
the n—dimensional Euclidean space IR":

Sn:{xE]R": x; > 0Vi€eJ, eTx:l}.

Here and in the sequel, the letter e is reserved
for a vector of appropriate length, consisting of
unit entries (hence e’x =Y, z;).

One advantage of applying game theory to bi-
ology is that the notion of “utility” is much sim-
pler and clearer than in human contexts. Here, a
player’s utility can simply be measured in terms
of Darwinian fitness or reproductive success, i.e.,
the player’s expected number of offspring. Let
W = (w;j) be the n x n “payoff” (or fitness)
matrix. Specifically, for each pair of strategies
i, € J, w;j represents the payoff of an indi-
vidual playing strategy ¢ against an opponent
playing strategy j. Without loss of generality,
we shall assume that the payoff matrix is non-
negative, i.e., w;; > 0 for all 4,5 € J. At time ,
the average payoff of strategy ¢ is given by:

mi(t) = Y wijzi(t) (1)
j=1

while the mean payoff over the entire population
is Z?:l .T,'(t)ﬂ'i(t).

In evolutionary game theory the assumption
is made that the game is played over and over,
generation after generation, and that the action
of natural selection will result in the evolution
of the fittest strategies. If successive generations
blend into each other, the evolution of behav-
ioral phenotypes can be described by the follow-
ing set of differential equations [53]:

for ¢ = 1...n, where a dot signifies derivative
with respect to time. The basic idea behind
this model is that the average rate of increase
%;(t)/z;(t) equals the difference between the av-
erage fitness of strategy ¢+ and the mean fitness
over the entire population. It is straightforward
to show that the simplex S, is invariant under
equation (2) or, in other words, any trajectory
starting in S,, will remain in S,,. To see this, sim-
ply note that % Yo wi(t) = >, &i(t) = 0, which
means that the (relative) interior of S, (i.e., the
set defined by z; > 0, for alli = 1...n) is invari-
ant. The additional observation that the bound-
ary too is invariant, completes the proof.
Similar arguments provide a rationale for the
following discrete-time version of the replica-
tor dynamics, assuming non-overlapping genera-
tions, which can be obtained from (2) by setting



/At =375 () (2):
xi(t)mi(t)
z;(t + At) = k (3)
' 21 @i (t)m;(t)
for © = 1...n. Because of the non-negativity

of the fitness matrix W and the normalization
factor, this system too makes the simplex S, in-
variant as its continuous counterpart.

A point x = x(¢) is said to be a stationary
(or equilibrium) point for our dynamical sys-
tems, if £;(f) = 0 in the continuous-time case,
and z;(t + At) = z;(t) in the discrete-time case
(1 =1...
said to be asymptotically stable if any trajec-

n). Moreover, a stationary point is

tory starting in its vicinity will converge to it as
t — oo. It turns out that both the continuous-
time and discrete-time replicator dynamics have
the same set of stationary points, namely all the

points in S, satisfying, for all ¢ = 1...n, the
condition

xi( Zx] )75 ( )
or, equivalently, m(t) = j(t)m;(t) when-

ever x; > 0.

Equations (2) and (3) arise independently in
different branches of theoretical biology [23].
In population ecology, for example, the fa-
mous Lotka-Volterra equations for predator-
prey systems turn out to be equivalent to the
continuous-time dynamics (2), under a simple
barycentric transformation and a change in ve-
locity. In population genetics they are known
as selection equations [17]. In this case, each
x; represents the frequency of the i-th allele
A; and the payoff w;; is the fitness of geno-
type A;A;. Here the fitness matrix W is always
symmetric. The discrete-time dynamical equa-
tions turn out to be a special case of a gen-
eral class of dynamical systems introduced by
Baum and Eagon [2] and studied by Baum and
Sell [3] in the context of Markov chain theory.
They also represent an instance of the so-called
relazation labeling processes, a class of parallel,
distributed algorithms developed in computer
vision to solve (continuous) constraint satisfac-
tion problems [50, 25, 44]. An independent con-
nection between relaxation labeling processes

and game theory has recently been described by
Miller and Zucker [37].

The following theorem states that under repli-
cator dynamics the population’s average fitness
always increases, provided that the payoff ma-
trix is symmetric (in game theory terminology,
this situation is referred to as a doubly symmet-
ric game).

Theorem 1 Suppose that the (nonnegative)
payoff matrix W is symmetric. Then, the qua-
dratic polynomial F defined as

F(x) =x"Wx (4)

18 strictly increasing along any non-constant tra-
jectory of both continuous-time (2) and discrete-
time (3) replicator equations. In other words, for
all t > 0 we have £F(x(t)) > 0 for system (2),
and F(x(t+ At)) > F(x(t)) for system (3), un-
less x(t) is a stationary point. Furthermore, any
such trajectory converges to a (unique) station-
ary point.

The previous result is known in mathematical
biology as the fundamental theorem of natural
selection [17, 23, 55] and, in its original form,
traces back to Fisher [18]. As far as the discrete-
time model is concerned, it can be regarded as a
straightforward implication of the Baum-Eagon
theorem [2, 3] which is valid for general polyno-
mial functions over product of simplices. Waugh
and Westervelt [54] also proved a similar result
for a related class of continuous- and discrete-
time dynamical systems. In the discrete-time
case, however, they put bounds on the eigen-
values of W in order to achieve convergence to
fixed points.

The fact that all trajectories of the repli-
cator dynamics converge to a stationary point
has been proved more recently [32, 34]. How-
ever, in general, not all stationary points are
local maximizers of F on S,. The vertices of
Sy, for example, are all stationary points for (2)
and (3) whatever the landscape of F. Moreover,
there may exist trajectories which, starting from
the interior of S,,, eventually approach a saddle
point of F'. However, a result recently proved by
Bomze [5] asserts that all asymptotically stable
stationary points of replicator dynamics corre-
spond to (strict) local maximizers of F' on Sy,



and vice versa (see [10] for additional results re-
lating the fields of optimization theory, evolu-
tionary game theory and the qualitative behav-
ior of dynamical systems).

Under continuous-time replicator dynamics,
the trajectories approach their limits most ef-
ficiently in the sense that (2) is a gradient sys-
tem if one uses the (non-Euclidean) Shahshahani
metric [23] which, for any point u € Sy, is de-
fined as

du(xvy) = Z lm'Lyz .
2:u; >0 ?

This efficiency result is called Kimura’s maxi-
mum principle.

Maximum clique problems. Let G = (V, E)
be an undirected graph, where V = {1,--- ,n}
is the set of vertices and £ C V x V is the
set of edges. The order of G is the number of
its vertices, and its size is the number of edges.
Two vertices 7,7 € V are said to be adjacent
if (i,5) € E. The adjacency matriz of G is the
n x n symmetric matrix Ag = (a;;) defined as

L
ai; = 0

A subset C of vertices in G is called a clique

follows:
if (1,j) e £,
otherwise .

if all its vertices are mutually adjacent, i.e., for
alli,j € C we have (i,7) € E. A clique is said to
be mazimal if it is not contained in any larger
clique, and mazimum if it is the largest clique
in the graph. The clique number, denoted by
w(@), is defined as the cardinality of the maxi-
mum clique. The maximum clique problem is to
find a clique whose cardinality equals the clique
number.

The maximum clique problem is a well-known
example of combinatorial optimization problem,
not only because it was one of the first problems
shown to be N P-complete [19], but also for its
theoretical as well as practical implications. Due
to the inherent computational complexity of the
problem, exact algorithms are guaranteed to re-
turn a solution only in a time which increases
exponentially with the number of vertices in the
graph, and this makes them inapplicable even to
moderately large problem instances. Moreover,
a series of recent theoretical results show that

the problem is in fact difficult to solve even in
terms of approximation. Because of these nega-
tive results, much effort has recently been di-
rected towards devising efficient heuristics for
finding large cliques, for which no formal guar-
antee of performance may be provided, but are
anyway of interest in practical applications. We
refer to [8] for a recent survey of results con-
cerning algorithms, complexity and applications
of this problem.

In 1965, Motzkin and Straus [38] established
a remarkable connection between the maximum
clique problem and a certain quadratic program-
ming problem. Consider the following quadratic
function, sometimes called the Lagrangian of G:

fa(x) =x" Agx (5)

and let x* be a global maximizer of fg on S,
n being the order of G. In [38] it is proved that
the clique number of G is related to fg(x*) by
the following formula:

1
=—. 6
1 — fe(x*) ©)
Additionally, it is shown that a subset of ver-
tices C' is a maximum clique of G if and only if

w(G)

its characteristic vector x©, which is the vector
of S, defined as

C_{ 1/|C|, ifieC

otherwise

is a global maximizer of fg on Sy,. In [21, 47], the
Motzkin-Straus theorem has been extended by
providing a characterization of mazimal cliques
in terms of local maximizers of fg on S,.

Once that the maximum clique problem is
formulated in terms of maximizing a quadratic
polynomial over the standard simplex, the use
of replicator dynamics naturally suggests it-
self [42]. In fact, consider a replicator system
with payoff matrix defined as:

W=A4¢q .

From the fundamental theorem of natural se-
lection, we know that the replicator dynamical
systems, starting from an arbitrary initial state,
will iteratively maximize the Lagrangian fg in
Sn, and will eventually converge to a local max-
imizer which, by virtue of the Motzkin-Straus



formula provides an estimate of the clique num-
ber of G. Additionally, if the converged solution
happens to be a characteristic vector of some
subset of vertices of G, then we are also able to
extract the vertices comprising the clique from
its nonzero components. Clearly, in theory there
is no formal guarantee that the converged solu-
tion will be a global maximizer of fg. However,
experimental work suggests that the basins of
attraction of global maximizers are quite large,
and frequently the algorithm converges to one
of them.

In [42], Pelillo presents extensive exper-
imental results with the previous approach
over thousands of randomly generated graphs.
The discrete-time dynamics (3) was used,
and the system was started from the vector
(1/n,...,1/n)T which corresponds to simplex
barycenter. Two series of experiments were con-
ducted. In the first one, graphs with a relatively
small number of vertices were considered, i.e.
with up to 500 vertices and densities ranging
from 0.10 to 0.90. The solutions found by the
algorithm were always very close to the optimal
ones, as found by standard exact algorithms. In
the second part of the study, graphs with up to
2000 vertices and about one million edges were
used (in this case all graphs had density 0.50).
Here to gauge the quality of the solutions found
the Matula’s estimate was employed, which ac-
curately predicts the clique number in a random
graph, when the number of vertices is sufficiently
large [35]. Specifically, let

M(n,0) = 2log;;sn— 2logyslogy/s

e
—|—2log1/(5§ +1.

Matula proved that, as n — oo, the order of
the maximum clique in an n-vertex §-density
random graph is either | M (n,d)| or [M(n,d)]
with probability tending to 1, where |z ] denotes
the largest integer less than or equal to x, and
[z] denotes the smallest integer greater than
or equal to z. Interestingly, it was also shown
that the smallest maximal clique is expected
to have M(n,d)/2 vertices [4]. Experimentally,
in [42] it was found that the cardinality of the

cliques found by the replicator dynamical sys-
tem turned out to be significantly larger than
the estimated minimum, thereby contradicting
what is known as the Jerrum conjecture [27],
which states that in a large 0.5-density random
graph it may be hard to find a clique whose or-
der is even a bit larger than that of the smallest
maximal clique. A similar conclusion was also
drawn by Jagota [26]. Overall, the results pre-
sented in [42] were competitive with those ob-
tained using more sophisticated neural network
heuristics, both in terms of quality of solutions
and speed.

One drawback associated with the original
Motzkin-Straus formulation, however, relates to
the existence of spurious solutions, i.e., maxi-
mizers of fg which are not in the form of char-
acteristic vectors. This was first observed by
Pardalos and Phillips [40]. To illustrate, consider
the path P3, i.e. the graph with three vertices
{1,2, 3} and two edges, one between 1 and 2, and
the other between 2 and 3. Clearly C = {1,2}
and D = {2,3} are maximum cliques, and from
the Motzkin-Straus theorem it follows that their
characteristic vectors x¢ and x” are global max-
imizers of the Lagrangian of P? in S3. However,
it can easily be proved that all the points lying
on the segment connecting x“ and x”, which
is a subset of S3 since the simplex is convex,
are also global solutions of the Motzkin-Straus
program. Pelillo and Jagota [47] have recently
provided general characterizations of such spu-
rious solutions. In principle, spurious solutions
represent a problem since, while providing in-
formation about the cardinality of the maximum
clique, they do not allow us to easily extract its
vertices.

The spurious solution problem has recently
been solved by Bomze [5]. Consider the follow-
ing regularized version of function fg:

. 1
fabd) =x"dax+3x"x (1

which is obtained from (5) by substituting the
adjacency matrix Ag of G with

. 1
Ag=Ag + §In

where I, is the n X n identity matrix. Unlike the
Motzkin-Straus formulation, it can be proved



that all maximizers of fG on S, are strict, and
are characteristic vectors of maximal/maximum
cliques in the graph [5].

Theorem 2 Let C be a subset of vertices of a
graph G, and let x© be its characteristic vector.
Then, C is a mazimum (mazimal) clique of G
if and only if x€ is a global (local) mazimizer of
fa in Sy. Moreover, all local (and hence global)
mazximizers of fG over S, are strict.

In an exact sense, therefore, a one-to-one corre-
spondence exists between maximal cliques and
local maximizers of fG in S;,, on the one hand
and maximum cliques and global maximizers on
the other hand.

Preliminary experiments with this regularized
formulation (7) on random graphs are reported
in [5], and a more extensive empirical study on
DIMACS benchmark graphs is presented in [10].
The emerging picture is the following. The so-
lutions produced by the replicator models are
typically very close to the ones obtained using
more sophisticated continuous-based heuristics.
Moreover, the original version of the Motzkin-
Straus problem performs slightly better than its
regularized counterpart, but the former often re-
turns spurious solutions. This may be intuitively
explained by observing that, since all local max-
ima of fG are strict, its landscape is certainly less
smoothed than the one associated to the non-
regularized version. This therefore enhances the
tendency of local optimization procedures to get
stuck into local maxima. This is the price to pay
for the algorithm to return non-spurious, “infor-
mative” solutions.

In order to study the effects of varying the
starting point of clique finding replicator dy-
namics, Bomze and Rendl [12] implemented var-
ious sophisticated heuristics and compared them
with the usual (less expensive) strategy of start-
ing from the simplex barycenter. Surprisingly,
they concluded that the amount of sophisti-
cation seems to have no significant impact on
the quality of the solutions obtained. Addi-
tionally, they showed that using (Runge-Kutta
discretizations of) the continuous-time dynam-
ics (2) instead of (3) does not improve efficiency.

This analysis indicates that to improve the per-
formance of replicator dynamics on the maxi-
mum clique problem one has necessarily to re-
sort to some escape strategies. Various attempts
along this direction can be found in [5, 6, 9, 13].

Recently, the Motzkin-Straus theorem has
been generalized to the weighted case [21]. Let
G = (V,E,w) be a weighted graph, where
V ={1,--- ,n} is the vertex set, E C V xV
is the edge set and w € IR" is the weight vector,
the ¢-th component of which corresponds to the
weight assigned to vertex 4. It is assumed that
w; > 0 for all 7 € V. Given a subset of vertices
C, the weight assigned to C is defined as

W(C ) = Z w; .

1€C
A maximal weight clique C is one that is not
contained in any other clique having weight
larger than W (C'). Since we are assuming that
all weights are positive, it is clear that the con-
cepts of maximal clique and maximal weight
clique coincide. A maximum weight clique is one
having largest total weight, and the weighted
cligue number of G, denoted w(G,w), is its
weight. The maximum weight clique problem is
to find a clique C such that W(C) = w(G,w)
(see [8] for a recent review). The classical (un-
weighted) version of the maximum clique prob-
lem arises as a special case when all vertices have
the same weight. For this reason the maximum
weight clique problem has at least the same com-
putational complexity as its unweighted coun-
terpart.

Note that the original Motzkin-Straus pro-
gram for unweighted graphs can be reformulated
as a minimization problem by considering the
function

g(x) = x" (I + Ag)x (8)

where Ag is the adjacency matrix of the com-
plement graph G, which is the graph having
the same vertex set as G and E = {(i,j) €
VxV i # jand (i,j) ¢ E} as its edge
set. It is straightforward to see that if x* is
a global minimizer of g in S, then w(G) =
1/g(x*). This is simply a different formulation
of the Motzkin-Straus formula (6). Now, con-
sider a weighted graph G = (V, E,w), and let



M(G,w) be the class of symmetric n X n matri-
ces M = (mj); jev defined as 2m;; > my; +mj;
if (i,j) ¢ E and m;; = 0 otherwise, and m;; =
w%, for all 4 € V. Given a global solution x* of the
following quadratic program, which is in general

indefinite,
minimize  g(x) = xI Mx )
subject to x€ .5,
we have [21]:
1
w(G,w) = 10
(Gw) = (10)

for any matrix M € M(G, w). Furthermore, de-
note by x%(w) the weighted characteristic vector
of C, which is the vector in S,, with coordinates

@i (w) = { 0 otherwise .

It turns out that a subset C' of vertices is a
maximum weight clique if and only if its char-
acteristic vector x¢(w) is a global minimizer
of (9). Notice that the matrix I 4 Az belongs to
M(G,e). In other words, the original Motzkin-
Straus theorem turns out to be a special case of
the preceding result.

As in the unweighted case, this formulation
suffers from the existence of spurious solutions,
and this entails the lack of a one-to-one cor-
respondence between the solutions of the con-
tinuous optimization problem and those of the
original, discrete one. In [11] these spurious so-
lutions are characterized and a regularized ver-
sion which avoids this kind of problems is in-
troduced (see also [7]). Specifically, let N'(G,w)
be the the class of n X n symmetric matrices
M = (mij)i,jEV defined as M5 > mg; + mjj; if
(¢,j) ¢ E and m;; = 0 otherwise, and m;; = 2—5)1
for all 7 € V. The following theorem is the
weighted counterpart of Theorem 2.

Theorem 3 Let C be a subset of vertices of a
weighted graph G = (V,E,w), and let x¢(w)
be its characteristic vector. Then, for any ma-
tric M € N(G,w), C is a mazimum (mazimal)
weight clique of G if and only if x© (w) is a global
(local) solution of program (9). Moreover, all lo-
cal (and hence global) solutions of (9) are strict.

Note that N (G, w) is isomorphic to the posi-
tive orthant in (}) —|E| dimensions. This class is

a polyhedral pointed cone with its apex given by
the matrix M(w) = (m;;(w)); jev with entries

mij (W) = ;T oy 177 (1) ¢,
0 ifi #3, (1,j) € E .

Observe that in the unweighted case, M(e) =
eel — Ag = A@ the regularized adjacency ma-
trix of the complement graph G. This reflects the
elementary property that an independent set of
G, i.e. a subset of pairwise non-adjacent vertices,
is a clique of G. Hence, while the local maximiz-
ers of xTAGx over S, correspond to maximal
cliques of G, the local minimizers of x©' Agx over
Sy, correspond to maximal independent sets.

Theorem 3 suggests using replicator equations
to approximately solve the maximum weight
clique problem. Indeed, note that replicator
equations are maximization procedures, while
ours is a minimization problem. However, it is a
straightforward exercise to see that the problem
of minimizing a quadratic form x” Mx on S, is
equivalent to maximizing yee! — M, where 7 is
an arbitrary constant. Therefore, the payoff ma-
trix for replicator dynamics to be used in this
case is:

W =~eel — M
where M = (m;;) is any matrix in N'(G, w), and
¥ = mam;

Experiments with this approach on both ran-
dom graphs and DIMACS benchmark graphs
are reported in [11]. Weights were generated
randomly in both cases. The results obtained
with replicator dynamics (3) were compared
with those produced by a very efficient max-
imum weight clique algorithm of the branch-
and-bound variety. The algorithm performed re-
markably well especially on large and dense
graphs, and it was typically an order of mag-
nitude more efficient than its competitor.
Graph isomorphism. Given two graphs G' =
(V!,E') and G" = (V",E"), an isomorphism
between them is any bijection ¢ : V' — V”
such that (7,7) € E' < (¢(3),¢(j)) € E", for all
i,7 € V'. Two graphs are said to be isomorphic
if there exists an isomorphism between them.



The graph isomorphism problem is therefore to
decide whether two graphs are isomorphic and,
in the affirmative, to find an isomorphism.

The graph isomorphism problem is one of
those few combinatorial optimization problems
which still resist any computational complexity
characterization [19, 28]. Despite decades of ac-
tive research, no polynomial-time algorithm for
it has yet been found. At the same time, while
clearly belonging to N P, no proof has been pro-
vided that it is NP-complete. Indeed, there is
strong evidence that this cannot be the case,
for otherwise the polynomial hierarchy would
collapse [14, 52]. The current belief is that the
problem lies strictly between the P and NP-
complete classes.

The subgraph isomorphism problem is more
general and in fact more difficult, being N P-
complete [19]. Given two graphs, it is the prob-
lem of determining whether one is isomorphic to
a subgraph of the other. At the highest level of
generality we find the maximum common sub-
graph problem, which consists of finding the
largest isomorphic subgraphs of two graphs. A
simpler version of this problem is to find a maxi-
mal common subgraph, i.e., an isomorphism be-
tween subgraphs which is not included in any
larger subgraph isomorphism.

Barrow and Burstall [1], and also Kozen [30],
introduced the notion of an association graph
as a useful auxiliary graph structure for solving
general graph/subgraph isomorphism problems.
Specifically, the association graph derived from
graphs G' = (V',E') and G" = (V",E") is the
undirected graph G = (V, E) where

V=vV'xVv"
and

E = {(Gh),(GLE) €V XV : itj htk

and (i,j) € E' & (h,k) € E"}.

The following straightforward result estab-
lishes an equivalence between the graph isomor-
phism problem and the maximum clique prob-
lem [46].

Theorem 4 Let G' = (V',E') and G" =
(V" E") be two graphs of order m, and let G be
the corresponding association graph. Then, G’

and G" are isomorphic if and only if w(G) = n.
In this case, any mazimum clique of G induces
an isomorphism between G' and G", and wvice
versa. In general, mazimum (mazimal) cliques
in G are in one-to-one correspondence with
mazimum (mazimal) common subgraph isomor-
phisms between G' and G".

By virtue of Theorem 2, it is a straightfor-
ward exercise to formulate the graph isomor-
phism problem in terms of a quadratic program-
ming problem. Let G’ and G” be two arbitrary
graphs of order n, and let Ag denote the ad-
jacency matrix of the corresponding association
graph G, whose order is n?. The graph isomor-
phism problem is equivalent to the following pro-
gram:

maximize fg(x) =xT(A+ 11,0)x (1)
subject to x € 5,2
More precisely, G’ and G” are isomorphic if and
only if f(x*) = 1—1/2n. In this case, any global
solution to (11) induces an isomorphism between
G' and G”, and vice versa. In general, local
(global) solutions to (11) are in one-to-one cor-
respondence with maximal (maximum) common
subgraph isomorphisms between G’ and G”.
The previous result allows one to use replica-
tor dynamics with payoff matrix

1
W:AG+ EIRQ

as a heuristic for graph isomorphism problems.
Starting from an arbitrary initial state, the dy-
namical system will converge to a local solution
of (11). This will correspond to a characteris-
tic vector of a maximal clique in the associa-
tion graph G which, in turn, will induce an iso-
morphism between two subgraphs of G’ and G”
which is maximal, in the sense that there is no
other isomorphism between subgraphs of G’ and
G" that includes the one found.

The algorithm outlined above has been tested
over hundreds of random 100-vertex graphs with
expected densities ranging from 1% to 99%. Ex-
cept for very sparse and very dense instances,
the algorithm was always able to obtain a cor-
rect isomorphism very efficiently. In terms of



quality of solutions, the result compare favor-
ably with those obtained using more sophis-
ticated state-of-the-art deterministic annealing
heuristics which, in contrast to replicator dy-
namics, are explicitly designed to escape from
poor local solutions. As far as computational
time is concerned, replicator dynamics turned
out to be significantly faster.

In [46] experiments were also done using the
following exponential version of replicator equa-
tions, which arises as a model of evolution
guided by imitation [22, 23, 24, 55]:

ermi(t)

&i(t) = zi(t) (Z?:1 2, {)erm® 1) » (12)

1 = 1...n, where x is a positive constant. As
k tends to 0, the orbits of this dynamics ap-
proach those of the standard, “first-order” repli-
cator model (2), slowed down by the factor x;
moreover, for large values of x the model approx-

imates the so-called “best-reply” dynamics [24].
As it turns out [22], these models behave essen-
tially in the same way as the standard replicator
equations (2), the only difference being the size
of the basins of attraction around stable equilib-
ria.

A customary way of discretizing equation (12)
is given by the following difference equations [15,
20]:

x;(t)ermi ®)

st = Sy zi(t)esmi®

(13)

i = 1...n. The extensive results reported in [46]
with this dynamics show that exponential repli-
cator dynamics may be considerably faster and
even more accurate than the standard, first-
order model.

The approach just described is general and
can clearly be extended to deal with subgraph
isomorphism or relational structure matching
problems [45]. Preliminary experiments, how-
ever, seem to indicate that local optima may
represent a problem here, especially in matching
sparse and dense graphs. In these cases escape
procedures like those presented in [5, 6, 9, 13]
would be helpful.

Subtree isomorphism. Given a graph G =
(V,E), a path is any sequence of distinct ver-
tices ig%¢1...%, such that for all £k = 1...n,
(ik—1,%k) € E;in this case, the length of the path
is n. If 49 = 4,, the path is called a cycle. A graph
is said to be connected if any pair of vertices is
joined by a path. The distance between two ver-
tices i and j, denoted by d(i,j), is the length of
the shortest path joining them (by convention
d(i,j) = oo, if there is no such path). Given a
subset of vertices C C V, the induced subgraph
G|[C] is the graph having C as its vertex set, and
two vertices are adjacent in G[C] if and only if
they are adjacent in G.

A connected graph with no cycles is called
a tree. A rooted tree is one which has a distin-
guished vertex, called the root. The level of a
vertex i in a rooted tree, denoted by lev(7), is the
length of the path connecting the root to i. Note
that there is an obvious equivalence between
rooted trees and directed trees, where the edges
are assumed to be oriented. We shall therefore
use the same terminology typically used for di-
rected trees to define the relation between two
adjacent vertices. In particular, if (,j) € E and
lev(i) — lev(i) = +1, we say that ¢ is the parent
of j and, conversely, j is a child of i. Trees have
a number of interesting properties. One which
turns out to be very useful for our characteriza-
tion is that in a tree any two vertices are con-
nected by a unique path.

Let Ty = (Vl,El) and Ty = (Vé,EQ) be two
rooted trees. Any bijection ¢ : Hi — Hs, with
H, C Vi and Hy C Vj, is called a subtree isomor-
phism if it preserves the adjacency and hierarchi-
cal relationships between the vertices and, in ad-
dition, the subgraphs obtained when we restrict
ourselves to Hy and Hy, i.e., T1[H1| and T>[Ho],
are trees. The former condition amounts to stat-
ing that, given 4,j € Hy, we have (i,5) € Ey if
and only if (¢(i), #(j)) € Ea, and i is the parent
of j if and only if ¢(i) is the parent of ¢(j).
A subtree isomorphism is mazimal if there is
no other subtree isomorphism ¢' : H] — H)
with H; a strict subset of Hj, and mazimum if
H, has largest cardinality. The maximal (max-
imum) subtree isomorphism problem is to find



a maximal (maximum) subtree isomorphism be-
tween two rooted trees. This is a problem solv-
able in polynomial time [19].

Let 2 and j be two distinct vertices of a
rooted tree T, and let ¢ = zgz1...2, = 7 be
the (unique) path joining them. The path-string
of i and j, denoted by str(i,j), is the string
$182...8n on the alphabet {—1,+1} where, for
allk =1...n, s; = lev(zy) —lev(zg_1). By con-
vention, when i = j we define str(i, j) = €, where
¢ is the null string (i.e., the string having zero
length). The path-string concept has a very in-
tuitive meaning. Because of the orientation in-
duced by the root, only two types of elementary
moves can be done from any given vertex, i.e.,
going down to one of the children (if one ex-
ists) or going up to the parent (if the vertex is
not the root). Assigning to the first move the
label +1, and to the second the label —1, the
path-string of ¢ and j is simply the string of el-
ementary moves required to move from i to 7,
following the unique path joining them.

The tree association graph (TAG) of two
rooted trees 71 = (Vi,E1) and To = (Va, Es)
is the graph G = (V, E) where

V=V1><V'2 (14)

and, for any two vertices (i,h) and (j,k) in V,
we have

((i,h),(4,k)) € E & str(i,j) = str(h, k) . (15)

The following theorem establishes a one-to-one
correspondence between the maximum subtree
isomorphism problem and the maximum clique
problem [48].

Theorem 5 Any mazimal (mazimum) subtree
isomorphism between two rooted trees induces a
mazimal (mazimum) clique in the corresponding
TAG, and vice versa.

In many practical applications the trees be-
ing matched have vertices with an associated
vector of symbolic and/or numeric attributes.
The framework just described can naturally be
extended for solving attributed tree matching
problems [48].

Formally, an attributed tree is a triple T' =
(V,E,«a), where (V,E) is the “underlying”
rooted tree and « is a function which assigns an

attribute vector (i) to each vertex i € V. It is
clear that in matching two attributed trees, the
objective is to find an isomorphism which pairs
vertices having “similar” attributes. To this end,
let o be any similarity measure on the attribute
space, i.e., any (symmetric) function which as-
signs a positive number to any pair of attribute
vectors. If ¢ : Hy — Hs is a subtree isomorphism
between two attributed trees 71 = (Vi, E1,aq)
and Ty = (Vs, B9, o), the overall similarity be-
tween the induced subtrees T7[H;] and Ty[Hy]
can be defined as follows:

S(@) = Y alai(i), a2(4(1))) -

1€EH

The isomorphism ¢ is called a mazimal simi-
larity subtree isomorphism if there is no other
subtree isomorphism ¢' : H] — Hj such that
H; is a strict subset of H| and S(¢) < S(¢')-
It is called a mazimum similarity subtree iso-
morphism if S(¢) is largest among all subtree
isomorphisms between 77 and T5.

The weighted TAG of two attributed trees Ty
and Ty is the weighted graph G = (V,E,w)
where V' and E are defined as in (14) and (15),
and w is a vector which assigns a positive weight
to each vertex (i,h) € V =V; x Vs as follows:

win = o (a1 (i), az(h)) .

The following result is the weighted counter-
part of Theorem 5 [48].

Theorem 6 Any mazimal (mazimum) simi-
larity subtree isomorphism between two attrib-
uted trees induces a mazimal (mazimum) weight
clique in the corresponding weighted TAG, and
vice Versa.

Theorems 5 and 6 provide a formal justifi-
cation for applying replicator dynamics to find
maximal subtree isomorphisms. In [48] this ap-
proach has been applied in computer vision to
the problem of matching articulated and de-
formed visual shapes described by “shock” trees,
an abstract representation of shape based on
the singularities arising during a curve evolution
process. The experiments, conducted on a num-
ber of shapes representing various object classes,
yielded very good results, both in the weighted



and in the unweighted case. The system typi-
cally converged towards the globally optimal so-
lutions in only a few seconds, and compared fa-
vorably with another powerful tree matching al-
gorithm.
A geometric problem. Let G = {x1, - ,xmn}
be a finite set of points in IR™. The convex
hull of G, denoted by conv(G), is defined as
the smallest convex set containing G. A basic
problem in computational geometry is to deter-
mine whether a given query point y is inside
or outside conv(G) [49]. This task can easily
be accomplished by a replicator dynamical sys-
tem [43]. Such an algorithm can be used as a
sub-routine for solving more general geometric
problems, such as the polygon inclusion and the
convex hull problems.

Consider the n x m real matrix defined as
X = [x1 x2 -+ Xpp). It is well known that
conv(@) can be written as

conv(G) ={uelR" : u=Xv, ve S,} .

Given an arbitrary point y € IR"™ the following
measure

E(y,G) = min [Xv —y|2, (16)
VESM
sometimes called the exteriority of y to conv(G),
is just the Euclidean distance between y and its
closest point in conv(G). The exteriority mea-
sure can provide useful information about the
ability of neural networks to generalize well [16].
Clearly, y € conv(G) if and only if E(y,G) =0,
in which case the closest point to y is y itself.
For convenience, the problem of evaluating
E(y,G) is translated into the equivalent (but
more manageable) quadratic program:
minimize C(v) = || Xv — y]3

1
subject to v €S, . (17)

It is a well-known fact that C is convex (strictly
convex indeed if the vectors xi,---,x,, hap-
pen to be linearly independent), and this implies
that all local minima of C are also global min-
ima. Any descent procedure is therefore guar-
anteed to approach the global optimal solution
in this case, without the risk of getting trapped

into poor local minima.

It is interesting to note that a similar op-
timization problem, known as the problem of
“optimal stability,” also arises in the context of
learning in perceptron neural networks, where
the goal is to derive the network’s parameters so
as to ensure larger basins of attraction [31, 51].
Moreover, our problem turns out to be closely
related to that of determining whether a given
set of prototype vectors can be stored in a neural
network associative memory [29].

Note that the quadratic objective function
in (17) is explicitly written as follows:

C(v) = %VTXTXV —yI'Xv+ %yTy
which is a non-homogeneous quadratic polyno-
mial. In order for replicator equations to find a
solution of problem (17), we need to construct
the payoff matrix as

w=XxTx

and to replace the 7 function defined in (1) with:
n
mi(t) = Zwijwj(t) + 4
j=1

where s; equals the i-th component of —X7y.
After a proper rescaling of W and the s;’s, it is
readily seen that C' is a Liapunov function for
both continuous-time (2) and discrete-time (3)
dynamics. The algorithms will converge to a lo-
cal solution of (17), say vx, starting from any
interior point. Owing to the convexity of C, v*
will be also a global minimizer of C, so that the
exteriority can be calculated as:

E(y,G) = /2C(v*) .

In [43], experiments with a simple toy problem
demonstrate the validity of the approach.

Multi-population models. The
population replicator equations discussed so
far can easily be generalized to the case where
interactions take place among n > 2 individ-

single-

uals randomly drawn from n distinct popula-
tions [23, 55]. In this case, the continuous-time
dynamics (2) becomes

(1) = 2 (1) (wf‘(t) - Zx;’(t)w;’(t)) . (8)



and its discrete-time counterpart is

B k(¢
2t + At = T D)
IEAVLAD
The 7 function can either be linear, as in (1),
or can take a more general form. If there exists

(19)

a polynomial F' such that
oF

ozt
then it can be proved that F' strictly increases
along any trajectory of both dynamics [23, 2, 3.
Note that these dynamics work in a product of

standard simplices.

u
™

Miihlenbein et al. [39] used multi-population
replicator equations to approximately solve
the graph partitioning problem, which is NP-
complete [19]. Given a graph G = (V, E) with
edge weights w;;, their goal was to partition the
vertices of G into a predefined number of clus-
ters in such a way as to maximize the overall
intra-partition traffic

F=]]&",
w

(20)

where

Kt = Z Z wijxé‘:v;-‘ (21)
i

is the intra-partition traffic for cluster y. Here,

z¥ can be interpreted as the probability that

vertex ¢ belongs to cluster yu.

2
By putting

-
o 2F ), wijz}

3 Ku
the replicator equations seen above will indeed
converge toward a maximizer of F'. However, in
so doing the system typically converges towards
an interior attractor, thereby giving an infeasi-
ble solution. To avoid this problem, Muhlenbein
et al. [39] put a “selection pressure” parameter S
on the main diagonal of the weight matrix, and
altered it during the evolution of the process. In-
tuitively, S = 0 has no influence on the system.
Negative values of S prevent the vertices to de-
cide for a partition, whereas positive values force
the vertices to take a decision. The proposed al-
gorithm starts with a negative value of S, and
makes the discrete-time dynamics (19) evolve.
After convergence, if an infeasible solution has

been found, S is increased and the algorithm is
started again. The entire procedure is iterated
until convergence to a feasible solution. A sim-
ilar, but more principled, strategy for the max-
imum clique problem can be found in [9]. The
results presented in [39] on a particular prob-
lem instance are fairly encouraging. However,
more experiments on larger and diverse graphs
are needed to fully assess the potential of the
approach.

Multi-population replicator models have also

been used in [39, 41] to solve the traveling sales-
man problem, which asks for the shortest closed
tour connecting a given set of cities, subject
to the constraint that each city be visited only
once. The results presented on small problem in-
stances, i.e., up to 30 cities, are encouraging but
it seems that the results do not scale well with
the size of the problem.
Conclusions. Despite their simplicity and in-
herent inability to escape from local solutions,
replicator dynamics have proved to be a use-
ful heuristic for attacking a variety of combi-
natorial optimization problems. They are com-
pletely devoid of operational parameters, which
typically require a lengthy, problem-dependent
tuning phase, and are especially suited for par-
allel hardware implementation.
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