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Abstract

The recursive computation of the interlace polynomial introduced by Arratia, Bollobás and Sorkin is defined in terms of a new
pivoting operation on undirected simple graphs. In this paper, we interpret the new pivoting operation on graphs in terms of standard
pivoting (on matrices). Specifically, we show that, up to swapping vertex labels, Arratia et al.’s pivoting operation on a graph is
equivalent to a principal pivot transform on the graph’s adjacency matrix, provided that all computations are performed in the Galois
field F2. Principal pivoting on adjacency matrices over F2 has a natural counterpart on isotropic systems. Thus, our view of the
interlace polynomial is closely related to the one by Aigner and van der Holst.

The observations that adjacency matrices of undirected simple graphs are skew-symmetric in F2 and that principal pivoting
preserves skew-symmetry in all fields suggest to extend Arratia et al.’s pivoting operation to fields other than F2. Thus, the interlace
polynomial extends to polynomials on gain graphs, namely bidirected edge-weighted graphs whereby reversed edges carry non-zero
weights that differ only by their sign. Extending a proof by Aigner and van der Holst, we show that the extended interlace polynomial
can be represented in a non-recursive form analogous to the non-recursive form of the original interlace polynomial, i.e., the Martin
polynomial.

For infinite fields it is shown that the extended interlace polynomial does not depend on the (non-zero) gains, as long as they obey
a non-singularity condition. These gain graphs are all supported by a single undirected simple graph. Thus, a new graph polynomial
is defined for undirected simple graphs. The recursive computation of the new polynomial can be done such that all ends of the
recursion correspond to independent sets. Moreover, its degree equals the independence number. However, the new graph polynomial
is different from the independence polynomial.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Motivated by a problem arising from DNA sequencing by hybridization [2], Arratia, Bollobás and Sorkin introduced
the interlace polynomial, a graph polynomial defined on undirected graphs (see also [3]). The interlace polynomial
can be computed recursively using a new pivoting operation on graphs. The new pivoting operation takes an edge and
toggles others (from a non-edge to an edge or vice versa) and, as the authors put it, the situation after just two pivoting
operations is already “obscure”.
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Our motivation for studying pivoting operations on graphs originates from work on graph matching in computer
vision and pattern recognition, where the graphs are typically large. The problem of matching two graphs is equivalent
to finding large independent sets in an auxiliary graph. The latter problem can be formulated as a linear complementarity
problem (LCP), the solution of which involves sequences of pivoting operations on the adjacency matrix of the auxiliary
graph [9,8].

The recursive computation of the interlace polynomial in [2] stops whenever an edge-less graph arises, yielding a
term xn in the polynomial, where n is number of vertices in the edge-less graph. One contribution of our paper is a
variant of interlace polynomial which can be computed such that any edge of the original graph is preserved. Hence,
the edge-less graphs arising from the new polynomial all correspond to independent sets of the original graph. The
links between pivoting on graphs and pivoting on adjacency matrices thus establish a new connection between graph
matching and graph polynomials. Therefore, an earlier version of this paper has appeared in a volume of the Lecture
Notes in Computer Science dedicated to graph-based representations in pattern recognition [7].

The three main contributions of the paper are as follows. Firstly, we interpret Arratia et al.’s pivoting operations
on graphs in terms of standard pivoting operations on matrices. In particular, we show that pivoting with respect to
an edge e = {u, v} of an undirected graph G, as defined in [2], is equivalent to a sequence of two classical pivoting
steps on an adjacency matrix of G, provided that the computations are performed in the Galois field F2. If a and b
denote the row and column numbers of u and v in an adjacency matrix A of G, respectively, then pivoting w.r.t. e
turns out to be equivalent to classical matrix pivoting w.r.t. A(a, b), followed by classical matrix pivoting w.r.t. A(b, a)

(here, and in the sequel, A(a, b) denotes the entry of matrix A in row a and column b). This sequence of pivoting
operations, in turn, is equivalent to a principal pivot transform on A with respect to the non-singular 2 × 2 principal
submatrix A[{a, b}], followed by swapping row a with row b and column a with column b. Here, A[{a, b}] denotes
the principal submatrix of A given by the rows and columns a, b. Thus, any iteration of pivoting operations on graphs
is equivalent to a single principal pivoting step on the graph’s adjacency matrix, followed by some permutation of the
rows and the corresponding columns. Principal pivoting on adjacency matrices over F2 has a natural counterpart on
isotropic systems. Thus, our view of the interlace polynomial is closely related to the one by Aigner and van der Holst.
In particular, we will see that the interlace polynomial can be computed in terms of ‘principal pivoting’ on isotropic
systems.

Our second contribution comes from the observation that the principal pivot transform with respect to A[{a, b}]
preserves skew-symmetry in all fields. Note also that A is skew-symmetric in F2. Hence, by extending the pivoting
operation from F2 to arbitrary fields, we extend the interlace polynomial to gain graphs with gains from an arbitrary
field, i.e., to bidirected graphs, the edges of which have attributes g such that g(r, s)=−g(s, r) �= 0 for all edges (r, s).
In Arratia et al. [2] the key to prove the existence of the interlace polynomial is a lemma about two consecutive pivoting
operations on undirected simple graphs. This lemma turns out to be a special case, i.e., F = F2, of an equality easily
formulated and proven in terms of principal pivoting on skew-symmetric matrices. Thus, the interlace polynomial readily
extends to gain graphs. The original interlace polynomial of an undirected graph Gu equals the Martin polynomial of
an isotropic system associated with Gu [1]. The Martin polynomial provides a non-recursive definition of the original
interlace polynomial. Extending the work ofAigner et al. to fields other than F2 we will see that there exists an analogous
non-recursive definition for the extended interlace polynomial.

The final part of the paper is devoted to introducing the pivoting polynomial, a variant of the interlace polyno-
mial that is again defined on any undirected simple graph G. The plan is to define it via the extended interlace
polynomial of gain graphs “corresponding” to G. Here, “corresponding” means that the gain graphs have the same
vertices and the same edges (apart from the directions) as G. In addition, the class of gain graphs is restricted by a
non-singularity condition on the gains which ensures that the extended interlace polynomial can be computed such
that none of the edges in the original gain graph is removed by pivoting. Thus, the vertex sets of the empty graphs
arising from selected computations of the extended interlace polynomial are always independent sets of the original
gain graphs. It turns out to be crucial that the gains come from an infinite field. We also show that the degree of the
pivoting polynomial equals the independence number (whereas the degree of the interlace polynomial is merely an
upper bound for it). Finally, we present a new pivoting operation on undirected simple graphs and use it to come up
with a recursive form of the pivoting polynomial that involves only undirected simple graphs, pivoting, and taking
subgraphs.

The plan of the paper is as follows. Section 2 deals with skew-symmetric matrices only. Here, we study principal
and double pivoting on skew-symmetric adjacency matrices over an arbitrary field F. In particular, we express double
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pivoting in terms of principal pivoting and present the key lemma to prove the existence of the extended interlace
polynomial. Here, we also extend pivoting to gain graphs. The first purpose of Section 3 is to show that pivoting on
undirected graphs, as defined in [2], corresponds to double pivoting on gain graphs, provided the gains are from F2.
This leads us to extending the interlace polynomial to fields other than F2 and providing a non-recursive representation
of the extended interlace polynomial analogous to the Martin polynomial. In Section 4 we focus on classes of n × n

adjacency matrices of gain graphs, where the gains are from an infinite field F. In particular, we define classes such
that: (1) for any pair (M1, M2) of matrices from the same class and for any position (i, j), (1� i�n) the entry of
M1 at (i, j) is non-zero, if and only if the entry of M2 at (i, j) is non-zero, (2) the extended interlace polynomial of
two gain graphs is identical whenever they have adjacency matrices in the same class, (3) principal pivoting never
turns a non-zero entry in the Schur complement to zero. In Section 5, the pivoting polynomial of an undirected simple
graph Gu is defined in terms of “corresponding” gain graphs, where “corresponding” is specified via the matrix classes
introduced in Section 4. Using a special scheme for calculating the pivoting polynomial it turns out that the ends of the
recursive computation of the pivoting polynomial all correspond to independent sets. Here, we also present the new
pivoting operation and compare the pivoting polynomial to the original interlace polynomial. Finally, Section 6 deals
with deriving the original interlace polynomial via principal pivoting on isotropic systems.

2. Double pivoting on skew-symmetric matrices and gain graphs

Pivoting is a standard method in linear and quadratic optimization [6]. Given a field F and a matrix M ∈ Fn×n, the
simple pivot transform of M w.r.t. an entry M(a, b) �= 0 is the matrix M(a,b) ∈ Fn×n, where

M(a,b)(a, b) = 1

M(a, b)
, (1)

M(a,b)(i, b) = M(i, b)

M(a, b)
, i �= a, (2)

M(a,b)(a, j) = −M(a, j)

M(a, b)
, j �= b, (3)

M(a,b)(i, j) = M(i, j) − (M(i, b))

M(a, b)M(a, j)
, i �= a, j �= b. (4)

To deal with iterations of simple pivoting operations in a convenient way, we will make use of principal pivot transforms
as defined below. In the following, n denotes a positive integer and M is from Fn×n. The next definitions are from [11]:

• 〈n〉 := {1, 2, . . . , n}. For any � ⊆ 〈n〉 the set 〈n〉\� is denoted by �.
• M[�, �] is the submatrix of M whose rows and columns are indexed by � and �, respectively. The submatrix M[�, �]

of M is written as M[�]. The matrix M[�] is a so-called principal submatrix of M.
• The Schur complement M\M[�] of a non-singular principal submatrix M[�] in M is defined by

M\M[�] := M[�] − M[�, �]M[�]−1M[�, �]. (5)

Definition 2.1 (Principal pivot transform ppt(M, �)). Let � ⊆ 〈n〉 be such that M[�] is non-singular. The principal
pivot transform ppt(M, �) of M ∈ Fn×n is obtained from M through replacing

M[�] by M[�]−1,
M[�] by M\M[�],
M[�, �] by − M[�]−1M[�, �], and
M[�, �] by M[�, �]M[�]−1.

The following theorems differ from Theorems 3.1 and 3.2 in [11] only in that they are formulated for arbitrary fields
F and not just for the field of complex numbers. However, the proofs given in [11] depend merely on the axioms for
fields. The two theorems will serve to derive rules for iterating simple pivot operations.
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Theorem 2.2. Let M ∈ Fn×n and � ⊆ 〈n〉 such that M[�] is non-singular. For each x, y ∈ Fn define u = u(x, y),

v = v(x, y) ∈ Fn by ui = yi , vi = xi for all i ∈ �, and uj = xj , vj = yj for all j ∈ �. Then, N = ppt(M, �) is the
unique matrix with the property that

Mx = y ↔ Nu = v. (6)

Theorem 2.3. Let M ∈ Fn×n and let � =⋃k
i=1�i ⊆ 〈n〉 for some k such that �i ∩ �j = ∅ for all i �= j . If the sequence

of matrices

M0 = M, Mi = ppt(Mi−1, �i ), i = 1, . . . , k

is well defined, i.e., if all Mi−1[�i] are non-singular, then ppt(M, �) = Mk .

From now on we require M to be skew-symmetric, i.e., M(i, j) = −M(j, i) and M(i, i) = 0 for all i, j . The former
requirement implies the latter whenever F �= F2. From M(a, b) �= 0 it follows a �= b, and

M(a,b)(b, j) = M(b, j) ∀j , (7)

M(a,b)(i, a) = M(i, a) ∀i. (8)

In particular, M(a,b)(b, a)=M(b, a)=−M(a, b) �= 0 and thus (Ma,b)(b,a) is well defined. By symmetry, (M(b,a))(a,b)

is also well defined. In the following we write M(a,b)(c,d) instead of (M(a,b))(c,d).
To express M(a,b)(b,a) in terms of principal pivoting, we introduce the following notation. Let M ∈ Fn×n and let

1�a, b�n. Then, Mab denotes the matrix obtained from M by swapping the rows indexed by a and by b, followed by
swapping the columns indexed by a and by b.

Proposition 2.4 (Double and principal pivoting). Let M ∈ Fn×n be skew-symmetric and let a �= b ∈ 〈n〉 be such that
the principal submatrix M[{a, b}] is non-singular. Then, M(a,b)(b,a) = (ppt(M, {a, b}))ab.

Proof. Eqs. (1)–(8) and Definition 2.1 yield

• M(a,b)(b,a)(a, a) = 0 = M[{a, b}]−1(b, b),
M(a,b)(b,a)(b, b) = 0 = M[{a, b}]−1(a, a),

• M(a,b)(b,a)(a, b) = 1/M(a, b) = M[{a, b}]−1(b, a),
M(a,b)(b,a)(b, a) = 1/M(b, a) = M[{a, b}]−1(a, b),

• M(a,b)(b,a)(b, j) = −(M(b, j)/M(b, a)) = (−M[{a, b}]−1 M[{a, b}, {a, b}])(a, j) for j �= a, b,
• M(a,b)(b,a)(a, j) = −(M(a, j)/M(a, b)) = (−M[{a, b}]−1M[{a, b}, {a, b}])(b, j) for j �= a, b,
• M(a,b)(b,a)(i, b) = M(i, b)/M(a, b) = (M[{a, b}, {a, b}]M[{a, b}]−1)(i, a) for i �= a, b,
• M(a,b)(b,a)(i, a) = M(i, a)/M(b, a) = (M[{a, b}, {a, b}]M[{a, b}]−1)(i, b) for i �= a, b,
• M(a,b)(b,a)(i, j) = M(i, j) − (M(i, b)M(a, j) − M(i, a)M(b, j))/M(a, b)

=(M\M[{a, b}])(i, j) for {i, j} ∩ {a, b} = ∅. �

Using Proposition 2.4 and the fact that principal pivoting with respect 2 × 2-principal submatrices preserves skew-
symmetry, we get Proposition 2.5 which, in turn, justifies Definition 2.6.

Proposition 2.5 (Double pivoting, skew-symmetry). Let M ∈ Fn×n be skew-symmetric with M(a, b) �= 0. Then,
M(a,b)(b,a) = M(b,a)(a,b). Moreover, M(a,b)(b,a) is again skew-symmetric.

Definition 2.6 (Double pivot transform M{a,b}). Let M ∈ Fn×n be skew-symmetric and let M(a, b) �= 0. Then, the
skew-symmetric matrix

M{a,b} := M(a,b)(b,a) (9)

is called the double pivot transform of M w.r.t. {a, b}.

In the following we write M{a,b}{a,c} instead of (M{a,b}){a,c}.
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Lemma 2.7 (Analogue of Lemma 10(ii) in Arratia et al. [2]). Let M ∈ Fn×n be skew-symmetric with M(a, b),

M(a, c) �= 0. Then,

M{a,b}{a,c} = (M{a,c})bc. (10)

Proof. First we prove that ppt(ppt(M, {a, b}), {b, c}) = ppt(M, {a, c}). Applying Theorem 2.2 first to principal
pivoting w.r.t. {a, b} and then to principal pivoting w.r.t. {b, c}, it follows that Mx = y ↔ Nu = v, where N =
ppt(ppt(M, {a, b}), {b, c}) is unique and u, v are defined by

ui =
{

yi if i ∈ {a, c},
xi otherwise,

vi =
{

xi if i ∈ {a, c},
yi otherwise.

(11)

Note that xb and yb have been exchanged twice. Applying Theorem 2.2 to principal pivoting w.r.t. {a, c} only, it follows
that Mx = y ↔ N ′u = v, where N ′ = ppt(M, {a, c}) is unique and u, v are as above. Hence, N = N ′.

Finally, using Proposition 2.4 and the result just proven, we have

M{a,b}{a,c} = (ppt((ppt(M, {a, b}))ab, {a, c}))ac

= (ppt(ppt(M, {a, b}), {b, c})ab)ac = ((ppt(M, {a, c}))ab)ac

= (((M{a,c})ac)ab)ac = (M{a,c})bc. �

In the rest of the paper G = (V , E, g) denotes a gain graph with V = {1, . . . , n} and with non-zero gains. Formally,
the edge set E of G is a subset of (V × V )\{(v, v) | v ∈ V } such that (u, v) ∈ E implies (v, u) ∈ E, and the gains are
given by a mapping g from E to F\{0} such that g(u, v)=−g(v, u) for all (u, v) ∈ E. Thus, the adjacency matrix of G
(with the entries being the gains if the edge exists and 0 otherwise) is a skew-symmetric matrix, and we can interpret
both double and principal pivoting as operations on gain graphs. Specifically, if G has an edge (a, b), and if M is the
adjacency matrix of G, the double pivot transform G{a,b} = (V {a,b}, E{a,b}, g{a,b}) of G is defined by

• V {a,b} := V ,
• E{a,b} := {(i, j) | i, j ∈ V, M{a,b}(i, j) �= 0},
• g{a,b}(i, j) := M{a,b}(i, j) for all (i, j) ∈ E{a,b}.

In particular, Lemma 2.7 extends to

G{a,b}{a,c} = (G{a,c})bc ∀(a, b), (a, c) ∈ E. (12)

In accordance with Proposition 2.4 we may also define the principal pivot transform ppt(G, {a, b}) of G w.r.t. {a, b}
as

ppt(G, {a, b}) := (G{a,b})ab ∀(r, s) ∈ E. (13)

3. Extending the interlace polynomial to fields other than F2

In case of F = F2, the Galois field containing only the numbers 0 and 1, the simple pivot transform M(a,b) of M w.r.t.
M(a, b) �= 0, i.e., w.r.t. M(a, b) = 1, takes the form

M(a,b)(i, j) =
{

1 − M(i, j) if i �= a, j �= b and M(i, b) = M(a, j) = 1,

M(i, j) otherwise.

In Fig. 1 the matrix M(a,b) is interpreted as a directed graph with self-loops. Double pivoting w.r.t. the non-zero entry
at {a, b} (see again Fig. 1) yields

M{a,b}(i, j) = M(a,b)(b,a)(i, j)

=
{

1 − M(a,b)(i, j) if i �= b, j �= a and M(a,b)(i, a) = M(a,b)(b, j) = 1,

M(a,b)(i, j) otherwise,

=
{

1 − M(a,b)(i, j) if i �= b, j �= a and M(i, a) = M(b, j) = 1,

M(a,b)(i, j) otherwise.



3258 R. Glantz, M. Pelillo / Discrete Mathematics 306 (2006) 3253 –3266

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Adjacency matrix M. The pivoting element (1, 2) is circled. Changes will take place in the rectangle. (b) M(1,2). The new pivoting element
is (2, 1). (c) M{1,2}. (d), (e), (f) Graphs defined by (a), (b), and (c), respectively.

Table 1
Eq. (14) depending on the classes of the nodes i, j

j ∈ C
a,b
1 j ∈ C

a,b
2 j ∈ C

a,b
3 j ∈ C

a,b
4

i ∈ C
a,b
1 0 Xor 0 0 Xor 1 0 Xor 1 0 Xor 0

i ∈ C
a,b
2 1 Xor 0 0 Xor 0 1 Xor 0 0 Xor 0

i ∈ C
a,b
3 1 Xor 0 0 Xor 1 1 Xor 1 0 Xor 0

i ∈ C
a,b
4 0 Xor 0 0 Xor 0 0 Xor 0 0 Xor 0

Comparing M with M{a,b}, the entry at (i, j) changes if and only if the following boolean expression is true:

(i �= a, j �= b, M(i, b) = M(a, j) = 1)

Xor

(i �= b, j �= a, M(i, a) = M(b, j) = 1). (14)

Let Gu = (V , Eu) be an undirected simple graph, i.e., Eu is a collection of two-element subsets of V. Gu corresponds
to a bidirected graph G = (V , E, g) with gains in F2, where E = {(i, j) | {i, j} ∈ Eu} and g(e) = 1 for all e ∈ E.
Let (a, b) be an edge of G and let M be the (skew-symmetric) adjacency matrix of G. Partitioning V \{a, b} into the
classes:

(1) C
r,s
1 := {t ∈ V \{r, s} | (t, r) ∈ E, (t, s) /∈ E},

(2) C
r,s
2 := {t ∈ V \{r, s} | (t, s) ∈ E, (t, r) /∈ E},

(3) C
r,s
3 := {t ∈ V \{r, s} | (t, r), (t, s) ∈ E},

(4) C
r,s
4 := {t ∈ V \{r, s} | (t, r), (t, s) /∈ E},

and evaluating the boolean expression (14) according to the membership of i and j to the classes C
a,b
1 to C

a,b
4 yields

Table 1. Note that G{a,b} corresponds to another undirected simple graph. Thus, double pivoting on gain graphs with
non-zero gains in F2 induces an operation on the corresponding undirected simple graphs which may be characterized
as follows (see Table 1). An edge {i, j} of Gu is toggled (between a non-edge and an edge), if and only if i and j belong
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to different classes other than class C
a,b
4 . This is precisely how the pivoting operation in [2] is described. Hence we

have proven the following.

Proposition 3.1 (Pivoting operation by Arratia et al.). The pivoting operation on undirected graphs used to define the
interlace polynomial in [2] amounts to double pivoting on the corresponding gain graphs over F2.

At this point the question arises as to whether the interlace polynomial defined by Arratia et al. [2] extends to fields
other than F2. The answer will be “yes” (see Theorem 15). Let G denote the class of gain graphs with V = {1, . . . , n}
over a given field, let G ∈ G, let G − a denote the graph obtained from G by deleting vertex a, and let the order of G
be written as |G|. Furthermore, the ring of polynomials in a variable x with integer coefficients is denoted by Z[x]. The
following is analogous to [2] (an undirected edge in [2] corresponds to a pair of reversed edges in the gain graph).

Theorem 3.2 (Extended interlace polynomial). There is a unique map q : G → Z[x], G 
→ q(G), such that

q(G) =
{

q(G − a) + q(G{a,b} − b) for any edge (a, b) of G,

x|G| if G has no edges.
(15)

Proof. Using Eq. (12) instead of Lemma 10(ii) in [2], the proof is the same as the in [2]. �

Note that due to Eq. (13) the recursive part of Eq. (15) can be written as

q(G) = q(G − a) + q(ppt(G, {a, b}) − a). (16)

Arratia et al. [4] and Aigner and van der Holst [1] express the interlace polynomial q(·) (the former also a two-variable
extension of q(·)) in an explicit (non-recursive) way. Specifically, if the vertex set of the (undirected simple) graph Gu
is {1, . . . , n}, if AT denotes the adjacency matrix (with entries from F2) of the subgraph of Gu that is induced by T,
and if co(AT ) denotes the corank of AT , one can write

q(Gu) =
∑

T ⊆{1,...,n}
(x − 1)co(AT ) (17)

(see Eq. (13) in [4] and Eq. (3) in [1]). As noted by Arratia et al. [4] this form of the interlace polynomial suggests an
extension to fields other than F2 (by allowing that the AT are over a field other than F2). Now the question arises as to
whether the extended interlace polynomial of a gain graph G over F �= F2 in Eq. (15) can also be written as in Eq. (17)
(with G instead of Gu). This is indeed the case.

Proposition 3.3 (Explicit form of q(·)). Let G be a gain graph with vertex set {1, . . . , n}. Then the extended interlace
polynomial q(G) defined recursively in Eq. (15) takes the form

q(G) =
∑

T ⊆{1,...,n}
(x − 1)co(AT ),

where AT is the skew-symmetric adjacency matrix of the subgraph of G induced by T.

Proof. Theorem 1 together with Corollary 1 in [1] is a special case, i.e., F = F2, of our proposition. The plan is to
extend their proof to F �= F2. Consider the n × 2n-matrix LG = (A|I ), i.e., the skew symmetric adjacency matrix of
G adjoined to the n × n-identity matrix. If F = F2, the rows of LG form an isotropic system (see [5,1] and Section 6 in
this paper). Let the rows of LG be labeled by {1, . . . , n}, and let the columns of LG be labeled by {1, . . . , n; 1, . . . , n}.
As in [1] we call a column set S admissible if |S ∩ {i, i}| = 1 for all i and let LG

S denote the n × n-submatrix of LG

with column set S. Due to co(AT ) = co(LG
S ) for T = S ∩ {1, . . . , n}, S admissible (see [1]), we may as well show that

q(G) =
∑
S

(x − 1)co(LG
S ),

where the sum extends over all admissible column sets S. Our proposition now follows from items (1), (2), and (4).
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(1) For edge-less G we have q(G) = xn. The proof is identical to the one in [1].

(2)
∑

S:n∈S(x − 1)co(LG
S ) = q(G\n). The proof is identical to the one in [1].

(3) Let S′ denote the (admissible) set obtained from S by swapping the membership of n− 1 and n − 1, as well as that
of n and n. Then, co(LG

S ) = co(L
ppt(G,{n−1,n})
S′ ) for all admissible S. Indeed, extending the proof in [1] we may

write

LG =
(

B C D

−CT 0 a

−DT −a 0

∣∣∣∣∣
I 0 0
0 1 0
0 0 1

)
,

where B is a skew-symmetric n− 2 ×n− 2-matrix, I is the n− 2 ×n− 2-identity matrix, C, D are column vectors
with n − 2 entries, and a is a single non-zero entry. Similar to the proof in [1] we multiply LG from the left by the
invertible n × n-matrix

M =

⎛
⎜⎜⎜⎜⎝

I −1

a
D

1

a
C

0
1

a
0

0 0 −1

a

⎞
⎟⎟⎟⎟⎠

and get

MLG =

⎛
⎜⎜⎜⎜⎝

B + 1

a
DCT − 1

a
CDT 0 0

−1

a
CT 0 1

1

a
DT 1 0

∣∣∣∣∣∣∣∣∣∣

I −1

a
D

1

a
C

0
1

a
0

0 0 −1

a

⎞
⎟⎟⎟⎟⎠ .

As in [1] we swap columns n − 1, n − 1, columns n, n, and rows n − 1, n. Finally, we multiply the columns
n − 1, n, n − 1, n and the rows n − 1, n by −1. We end up with the matrix

⎛
⎜⎜⎜⎜⎝

B + 1

a
DCT − 1

a
CDT 1

a
D −1

a
C

−1

a
DT 0 −1

a
1

a
CT 1

a
0

∣∣∣∣∣∣∣∣∣∣

I 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠= Lppt(G,{n−1,n}). (18)

From M being non-singular it now follows co(LG
S ) = co(MLG

S ) and thus co(LG
S ) = co(L

ppt(G,{n−1,n})
S′ ) for all

admissible S.
(4)

∑
S:n∈S(x − 1)co(LG

S ) = q(G{n−1,n}\n − 1). Indeed, using Eq. (13), we may as well prove that

∑
S:n∈S

(x − 1)co(LG
S ) = q(ppt(G, {n − 1, n})\n). (19)

Looking at the matrix in Eq. (18) one sees that the nth column of Lppt(G,{n−1,n}) has only one non-zero entry,
i.e., the entry 1 in the last row. Thus, for any admissible S′ with n ∈ S′, the last row of L

ppt(G,{n−1,n})
S′ (equal to

the nth row of Lppt(G,{n−1,n})) cannot be written as a linear combination of the rows 1, . . . , n − 1. We conclude
that rank(L

ppt(G,{n−1,n})
S′ ) = 1 + rank(L

ppt(G,{n−1,n})\n
S′ ), i.e., that co(L

ppt(G,{n−1,n})
S′ ) = co(L

ppt(G,{n−1,n})\n
S′ ).

From Item (3) above it now follows that co(L
ppt(G,{n−1,n})\n
S′ ) = co(LG

S ) for all admissible S. By induction we
may assume that Eq. (19) has already been shown for all gain graphs with less than n vertices. This yields
Eq. (19). �
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4. Classes of skew-symmetric adjacency matrices

The plan for the rest of the paper is to derive a new graph polynomial for undirected simple graphs Gu = (V , Eu)

via the extended interlace polynomial of “corresponding” gain graphs. The term “corresponding” implies that the gain
graphs take the form G = (V , E, g(·)), where E = {(u, v) | {u, v} ∈ Eu} and g(e) �= 0 for all e ∈ E. We will have
to make sure that from G and G′ both corresponding to Gu, it always follows that q(G) = q(G′). The new graph
polynomial will be different from the interlace polynomial defined by Arratia et al. [2].

In this section the problem of finding “corresponding” gain graphs is approached via classes of skew-symmetric
adjacency matrices. To formalize our approach we proceed as follows.

Definition 4.1 (Supports M , M). Let M ∈ Fn×n. The support M ∈ {0, 1}n×n of M is defined by

M(i, j) :=
{

1 if M(i, j) �= 0,

0 otherwise.

Let M be a collection of matrices from {0, 1}n×n. Then, the support of M is the n × n matrix

M(i, j) :=
{

1 if there exists M ∈ M with M(i, j) = 1,

0 otherwise.
(20)

Given an adjacency matrix A ∈ {0, 1}n×n of Gu, we are looking for a class maxA of skew-symmetric adjacency
matrices from Fn×n such that

(1) M = A for all M ∈ maxA.
(2) Let M, M ′ ∈ maxA be skew-symmetric adjacency matrices of the gain graphs G and G′. Then, q(G) = q(G′).

Provided that F is infinite, the non-empty class maxA defined at the end of this section will turn out to solve the
problem. Moreover, we will see that principal pivoting on a matrix from maxA never turns a non-zero entry of the Schur
complement to zero. As shown in the next section the latter result implies that the recursive computation of q(G) can
be done such that each end of the recursion corresponds to an independent set of G.

For the time being we restrict ourselves to principal pivoting on skew-symmetric n × n adjacency matrices with a
fixed support A and with respect to a fixed � ⊆ 〈n〉. Of course, � has to be such that there exists a skew-symmetric
matrix M with non-singular M[�] and M = A.

Definition 4.2 (Regular w.r.t. A, nA). Let A ∈ {0, 1}n×n be symmetric with A(i, i) = 0 for all i. The set � ⊆ 〈n〉
is said to be regular w.r.t. A, if there exists skew-symmetric M ∈ Fn×n such that M = A and M[�] is non-singular.
Furthermore, set

nA := {� ⊆ 〈n〉 | � is regular with respect to A}.

We assume that � is regular with respect to A, set

VA,� := {N ∈ Fn×n | N is skew-symmetric, N [�] is non-singular, N = A}
and ask whether the support of

TA,� := {N\N [�] | N ∈ VA,�} (21)

is contained in TA,�. The answer will be “yes, provided that F is infinite”. In this case the elements in VM,� that yield
elements of TA,� whose support is not the support of TA,� turn out to be singular cases. In other words, the regular
case is the one with a maximum number of 1-entries in TA,�.

Proposition 4.3 (TA,� ∈ TA,�). Let F be infinite, let A ∈ {0, 1}n×n be symmetric with A(i, i) = 0 for all i, and let
� ∈ nA. Then, TA,� ∈ TA,� and TA,�(i, j) = 0 implies A(i, j) = 0 for all i, j ∈ �.
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Proof. First we prove that for all N, N ′ ∈ VA,� such that N\N [�](i, j)= 0 and N ′\N ′[�](i, j) �= 0 for some i, j ∈ �,
there exists N ′′ ∈ VA,� such that N ′′\N ′′[�](i, j) �= 0, and N ′′\N ′′[�](i, j) = 0 implies N\N [�](i, j) = 0. Indeed,
from

0 �= (N ′\N ′[�])(i, j)

= N ′(i, j) − (N ′[�, �]N ′[�]−1N ′[�, �])(i, j)

= N ′(i, j) −
∑
k∈�

(
N ′(i, k)

(∑
m∈�

N ′[�]−1(k, m)N ′(m, j)

))

it follows that N ′(i, j) �= 0 or that there exist k, m ∈ � such that N ′(i, k), N ′[�]−1(k, m), and N ′(m, j) are non-zero.
In the first case all but finitely many coupled modifications of N(i, j) and N(j, i) (the resulting matrix has to be
skew-symmetric again) yield matrices N ′′ that fulfill the conditions above. In the second case all but finitely many
coupled modifications of N(i, k) and N(k, i) yield matrices N ′′ that fulfill the conditions above (note that N(k, i) has
no effect on the value of N(i, j), since otherwise i = j , a contradiction to N ′(i, j) �= 0). The first part of the proof now
follows from F being infinite.

Looking at the first part of the proof again, we see that N ′′(i, j) �= 0 implies N ′′\N ′′[�](i, j) �= 0.
Repeatedly applying the modifications in the first part of the proof we can construct N∗ ∈ VM,� such that TM,� �

N∗\N∗[�] = TA,�. �

From now on the field F is always infinite. Proposition 4.3 implies that the matrix class defined below is non-empty.

Definition 4.4 (Matrix class maxA,�). Let A ∈ {0, 1}n×n be symmetric with A(i, i)= 0 for all i and let � ∈ NA. Then,
maxA,� consists of all skew-symmetric N ∈ Fn×n such that N = A, N [�] is non-singular, and N\N [�] = TN,�}.

Finally, the matrix class maxA is defined as follows.

Definition 4.5 (Matrix class maxA). Let A ∈ {0, 1}n×n be symmetric with A(i, i) = 0 for all i. Then, the class maxA

is defined by

maxA :=
⋂

�∈nA

max
A,�

.

Looking at Proposition 4.3 once again, we get the following.

Proposition 4.6. Let M, N ∈ maxA and let � ∈ nA. Then, (ppt(M, �))(i, j) = (ppt(N, �))(i, j) and (ppt(M, �))

(i, j) = 0 implies M(i, j) = 0 for all i, j ∈ �.

5. The pivoting polynomial

The following definition allows us to extend the results of Section 4 to classes of gain graphs.

Definition 5.1 (Maximum gain graphs corresponding to Gu). Let Gu be an undirected simple graph with vertex set
V. Moreover, let A be an adjacency matrix of Gu. A gain graph with vertex set V is called maximum gain graph
corresponding to Gu, if it has an adjacency matrix in maxA.

In the following we will see that the extended interlace polynomials of maximum gain graphs corresponding to Gu
are identical.

A gain graph G′ is called first-order-descendant of G, if G has an edge (a, b) such that G′ =G−a or G′ =G{a,b} −b.
A descendant of order n + 1 is a first-order-descendant of an nth order descendant. It will turn out to be convenient if
G may be referred to as its descendant of order 0. G′ is called a descendant of G, if G′ is an nth order descendant of G
for some n ∈ N0. A descendant of G is called terminal, if it has no edges (and thus no descendants).
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Proposition 5.2 (Descendants of q(G)). Let G be a gain graph. Then, the recursive computation of q(G) can be done
such that each descendant is a subgraph of G or a subgraph of some GU1,...,Um\U , where U =⋃m

i=1Ui ⊆ V and each
Ui has cardinality 2.

Proof. Consider the following scheme for computing q(G).

• Step i = 1. Pick a non-isolated vertex a1 of G. As long as a1 is a non-isolated vertex of G, continue the computation
of q(G) via the descendants G−a1 and G{a1,b1} −b1 for some b1. The descendant G−a1 has no further descendants
at this stage of the scheme. If a1 is not isolated in G{a1,b1} − b1, the scheme continues with the computation of
G{a1,b1} − b1 by selecting the descendants G{a1,b1} − a1 − b1 and (G{a1,b1} − b1)

{a1,b2} − b2 for some b2. Again, the
first descendant has no further descendants at this stage and, using Eq. (12), the second descendant can be written
as (G{a1,b1} − b1)

{a1,b2} − b2=
(G{a1,b1}){a1,b2} − b1 − b2 = G{a1,b2} − b1 − b2.

In the following let d denote the degree of a1 in G. Continued expansion of each second descendant eventually leaves
us with the descendant G − a1, descendants of the form

G{a1,bk} − a1 − b1 − b2 − · · · − bk (k < d), (22)

and the descendant G{a1,bd }−b1−· · ·−bd with isolated a1. The expression of the latter descendant can be simplified as
follows. Pivoting w.r.t. {a1, bd} has no effect on the neighborhood of a1. Hence, b1, . . . , bd are precisely the neighbors
of a1 in G and bd is the only neighbor of a1 in G − b1 − · · · − bd−1. Thus, G{a1,bd } − b1 − · · · − bd = (G − b1 −
· · · − bd−1)

{a1,bd } − bd=
G − b1 − · · · − bd .

Hence, each descendant is a subset of G or it has form (22).
• Steps i > 1. We may assume that each descendant D is a subgraph of G or a subgraph of GU1,...,Uj −⋃j

k=1Uk for
some Uk , 1�k�j � i − 1. If D has a non-isolated vertex ai , we apply the first step of the scheme to ai in D instead
of a1 in G. All descendants still have the required form. �

Theorem 5.3 (Identical polynomials, independent sets). Let G and G′ be maximum gain graphs corresponding to Gu.
Then q(G) = q(G′). Furthermore, for each term akx

k of q(G) with ak �= 0 there exist independent sets of Gu with
cardinality k.

Proof. According to Proposition 5.2 the polynomial q(G) can be computed such that every descendant is a subgraph
of G or a subgraph of some GU1,...,Um\U , where U =⋃m

i=1Ui , the Ui are disjoint, and each Ui has cardinality 2.
If A is an adjacency matrix of Gu, then G has an adjacency matrix M ∈ maxA. From Theorem 2.3 it follows that

GU1,...,Um\U has an adjacency matrix equal to M\M[�] for some � ⊆ 〈|G|〉. Since N\N [�] is unique for N ∈ maxA

(see Proposition 4.6), it follows that q(G) and q(G′) can be computed according to the same scheme (of the type
specified in the proof of Proposition 5.2) and that the supports of the descendants are the same for G and G′. Hence
q(G) = q(G′).

Moreover, Proposition 4.6 implies that the edge set of any GU1,...,Um\U is a superset of the edge set of G\U . Hence,
computing q(G) according to the scheme in the proof of Proposition 5.2, the (edge-less) terminal descendants of q(G)

correspond to independent sets of Gu. �

Proposition 5.3 implies that the following is well defined.

Definition 5.4 (Pivoting polynomial p(Gu)). Let Gu be an undirected simple graph and let G be a maximum gain
graph corresponding to Gu. The pivoting polynomial p(Gu) of Gu is defined by p(Gu) := q(G).

The following is a consideration from [2] (extended from undirected simple graphs to gain graphs). Consider a vertex
a1 of a gain graph G. If a1 is an isolated vertex of G, then q(G) = xq(G − a1). Otherwise, for any edge (a1, b) it holds
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that q(G) = q(G − a1) + q(G{a1,b} − b). In any case, since all coefficients of all q(·) are non-negative, it follows that
the degree of q(G) is not smaller than the degree of q(G − a1). By subsequently taking ai that are not contained in a
fixed maximum independent set, we get that the degree of q(G) is an upper bound for the independence number.

From Proposition 5.3 it follows that the degree of q(G) is a lower bound for the independence number, if G is a
maximum gain graph corresponding to some Gu. Hence, we get the following.

Theorem 5.5 (Degree of p(·) equals the independence number). For any undirected, simple graph Gu the degree of
p(Gu) is equal to the independence number of Gu.

The example p(K3)= 4x shows that the pivoting polynomial, in contrast to the independence polynomial [10], may
list an independent set more than once.

Recall that the original recursive definition of Arratia et al.’s interlace polynomial is

q(Gu) := q(Gu − a) + q(G{a,b}
u − b),

where a, b is an edge of Gu and G
{a,b}
u is another undirected simple graph that one can derive easily from Gu. Now the

question arises as to whether p(Gu) can be computed in a similar way, i.e., without resorting to a maximum gain graph
corresponding to Gu, or equivalently, to a skew-symmetric matrix M ∈ maxA, where A ∈ {0, 1}n×n is the adjacency
of Gu.

Fortunately, it is possible to characterize the supports of the descendants of M without knowing M (i.e., just knowing
that M ∈ maxA). Indeed, let M ∈ maxA and assume that M(a, b) �= 0. Then, according to the last item in the proof
of Proposition 2.4, a zero-entry M(i, j), i, j ∈ �, turns into a non-zero-entry M{a,b}(i, j) whenever

(M(a, i) �= 0 ∧ M(b, j) �= 0) ∨ (M(a, j) �= 0 ∧ M(b, i) �= 0),

and these are the only changes between M and M{a,b}. This leads us to a new pivoting operation on Gu and a recursive
formula for q(·) in terms of the new operation.

Definition 5.6. Let Gu = (V , E) be an undirected graph and let {a, b} ∈ E. Then, G
[a,b]
u := (V [a,b], E[a,b]) is given

by V [a,b] = V and

E[a,b] = E ∪ {{i, j} | {a, i}, {b, j} ∈ E or {a, j}, {b, i} ∈ E}.

Proposition 5.7 (p(Gu) in terms of G
{a,b}
u ). Let {a, b} an edge of Gu. Then

p(Gu) = p(Gu − a) + p(G[a,b]
u − b).

It is clear that up to three vertices in Gu we have p(Gu) = q(Gu). There exists a graph G4 with four vertices, e.g.,
the graph with adjacency matrix

A =
⎛
⎜⎝

0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎠

such that p(G4) �= q(G4). In particular, p(G4) = 6x + x2 while q(G4) = 4x + 2x2.
For the complete graph Kn we have (Kn)[a,b] = (Kn){a,b} = Kn. Thus, p(Kn) = q(Kn). Likewise, let Pn be the

path with n vertices. Then, (Pn)
[a,b] = (Pn)

{a,b} and p(Pn) = q(Pn). For explicit formulas see [2].

6. Principal pivoting and isotropic systems

In [1] the interlace polynomial as introduced by Arratia et al. [2], i.e., q(G) from Theorem 3.2 when F=F2, is shown
to coincide with the Martin polynomial m(SG). Specifically,

SG = (V ,LG)
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is an isotropic system (see below), where V ={1, . . . , n} is the vertex set of G, andLG is the row space of the adjacency
matrix M of G adjoined to the n × n identity matrix In. Hence, LG is the row space of the n × 2n matrix

LG := (M|In).

For the following we need the bilinear form 〈·, ·〉 on F2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)} defined by

〈(x, y), (x′, y′) :=
{

1 if (0, 0) �= (x, y) �= (x′, y′) �= (0, 0),

0 otherwise.

This bilinear form extends to F2n
2 by

〈R, R′〉 =
∑
v∈V

〈(Rv, Rn+v), (Rv, Rn+v)〉.

Aigner and van der Holst [1] show that SG = (V ,LG) is an isotropic system (see also [5]). This means that

• dim(LG) = n and
• 〈R, R′〉 = 0 for all rows R, R′ of LG.

Following Aigner and van der Holst [1] the Martin polynomial of SG is given by

m(SG) =
∑
C

(x − 1)dim(LG∩C),

where the sum is extended over all rows C with (Cv, Cv+n) �= (0, 0), (1, 1), and C denotes the set of all restrictions of
C. Specifically, R is a restriction of C, if there exists P ⊆ V such that

(Rv, Rv+n) =
{

(Cv, Cv+n) if v ∈ P,

(0, 0) if v /∈ P.

Since G has no self-loops, the rows of LG are complementary, i.e., R(v) = 1 implies R(v + n) = 0 for all v and for
all rows R. Let the kth column of In be denoted by uk . Then, Muk coincides with the kth column of M and, due to
M being symmetric, also with the kth row of M. In other words, the complementarity of the rows can also be seen as
complementarity between uk and Muk , i.e., as in a solution of a LCP (see [6]).

Theorem 2.2 implies that principal pivoting preserves complementarity in the following sense. Let x ∈ Fn
2 and

y := Mx be complementary, let M[�] be non-singular, and let

ui =
{

yi if i ∈ �,

xi otherwise.
vi =

{
xi if i ∈ �,

yi otherwise.

Then ppt(M, �)u = v and u, v are complementary. Proposition 5.2 states that q(G) can be computed via descendants
whose adjacency matrices all take the form ppt(M, �)[�] for some � such that M[�] is non-singular.

We now consider the n×2n matrix LD for one such descendant D. It takes the form ppt(M, �)[�]|Im, where m=|�|
is the number of vertices in D. Thus, the isotropic system SD can be obtained from the isotropic system SG by a
single principal pivoting step w.r.t. some �, followed by a deletion of all �-rows and �-columns.

7. Conclusions

By expressing pivoting on graphs in terms of principal pivoting on adjacency matrices, we have been able to extend the
interlace polynomial from undirected simple graphs to gain graphs over arbitrary fields. Provided that the underlying
field is infinite, gain graphs with identical vertex and edge sets were shown to yield the same extended interlace
polynomial, as long as they fulfill a non-singularity condition formulated in terms of their (non-zero) gains. Thus, the
pivoting polynomial, a new graph polynomial on undirected simple graphs could be defined via gain graphs that fulfill
the non-singularity condition. The recursive computation of the pivoting polynomial can be done such that each end of
the recursion corresponds to an independent set, one of which is maximum. In contrast to the independence polynomial
the pivoting polynomial may list an independent set more than once.
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