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Gottfried Wilhelm Leibniz (1646-1716)

Educated in law and philosophy, and 
serving as factotum to two major German 
noble houses (one becoming the British 
royal family while he served it), Leibniz 
played a major role in the European politics 
and diplomacy of his day. 

He occupies an equally large place in both 
the history of philosophy and the history of 
mathematics. He invented calculus 
independently of Newton, and his notation is 
the one in general use since. 

In philosophy, he is most remembered for 
optimism, i.e., his conclusion that our 
universe is, in a restricted sense, the best 
possible one God could have made. 

He was, along with Descartes and Spinoza, one of the three great 17th century 
rationalists, but his philosophy also both looks back to the Scholastic tradition and 
anticipates logic and analysis.



Leibniz’s Writings

When Leibniz died at the age of 70, he left behind an extraordinarily 
extensive and widespread collection of papers, only a small part of 
which had been published during his lifetime. Leibniz wrote in three 
languages: scholastic Latin, French, and (least often) German.

The bibliography of Leibniz’s printed works contains 882 items, but 
only 325 papers had been published by Leibniz himself. 

Much more impressive than this group of printed works is Leibniz’s 
correspondence. The catalogue Bodemann [1889] contains more than
15,000 letters which Leibniz exchanged with more than 1,000 
correspondents all over Europe, and the whole correspondence can be 
estimated to comprise some 50,000 pages. 

Furthermore, there is the collection of Leibniz’s scientific, historical, 
and political manuscripts in the Leibniz-Archive in Hannover which was 
described in another catalogue (Bodemann [1895]). 



Leibniz’s Logical Works

Throughout his life, Leibniz published not a single line on logic, except 
perhaps for the mathematical Dissertation “De Arte Combinatoria” or 
the Juridical Disputation “De Conditionibus”. 

Leibniz’s main aim in logic was to extend Aristotelian syllogistics to a
“Universal Calculus”. And although we know of several drafts for such 
a logic which had been elaborated with some care and which seem to 
have been composed for publication, Leibniz appears to have 
remained unsatisfied with these attempts. 

So Leibniz’s genuinely logical essays appeared only posthumously. 

It was not until 1903 that the majority of the logical works were 
published in Couturat’s most valuable edition of the Opuscules et 
fragments inédits de Leibniz. 



Leibniz’s Project

«The history of the modern 
computing machine goes back 
to Leibniz and Pascal. Indeed, 

the general idea of a computing 
machine is nothing but a 

mechanization of Leibniz's 
calculus ratiocinator.»

(Norbert Wiener, 1948)



Precursors of Leibniz: 
Raymond Lull (1235-1315)

In his Ars Magna the Spanish 
theologian Raymond Lull 
(1235-1315) used geometrical 
diagrams and primitive logical 
devices to try to demonstrate 
the truths of Christianity. 

He believed that each domain of knowledge involves a finite 
number of basic principles, so that by enumerating the 
permutations of these basic principles in pairs, triples, and larger 
combinations a list of the basic building blocks for theological
discourse could be assembled.



Lullian Circles

Lull mechanized the process of 
forming these permutations by 
constructing devices with two or 
more concentric circles, each 
listing the basic principles around 
the circumference. The 
permutations could then be formed 
by spinning the dials so as to line 
up different permutations. 

The method was an early attempt 
to use logical means to produce 
knowledge. Lull hoped to show 
that Christian doctrines could be 
obtained artificially from a fixed set 
of preliminary ideas. 



The Machine of the 
Grand Academy of Lagado...

«Era un grande quadrato di venti piedi per 
venti, collocato al centro della stanza. La sua 
superficie era fatta di piccoli cubi di legno, di 
dimensioni variabili, ma grossi in media come 
un ditale, e legati per mezzo di un filo di ferro. 
Su ciascuna faccia di questi cubi era attaccato 
un pezzo di carta con su scritta una parola in 
laputiano. C'erano tutte le parole della lingua, 
nei loro differenti tempi, modi o casi, ma senza 
alcun ordine. Il professore mi pregò di fare 
attenzione, perché stava per far funzionare la 
macchina. A un ordine, ciascun allievo prese 
una delle quaranta manovelle di ferro disposte 
ai lati del telaio e le fece fare un giro brusco, in 
modo che la disposizione delle parole si trovò
completamente cambiata; poi trentasei di loro
furono incaricati di leggere a bassa voce le differenti righe che apparivano sul quadro, e 
quando trovavano tre o quattro parole che, messe l'una di seguito all'altra, costituivano un 
elemento di frase, le dettavano ai quattro altri giovani che servivano come segretari. Questa 
operazione fu ripetuta tre o quattro volte, e l'apparecchio era concepito in modo che, a ogni 
giro di manovella, le parole formassero combinazioni diverse, col girare dei cubi su se stessi.»

(J. Swift, I Viaggi di Gulliver, 1726. Parte III, Cap. V)



... and Its “Markov Chain” Realization
(C. E. Shannon, A Mathematical Theory of Communication, 1948)





Hobbes’ Legacy

«Quel profondissimo scrutatore dei principi in tutte le cose che fu 
Thomas Hobbes, sostenne giustamente che ogni operazione della 
nostra mente è un calcolo e che da essa si ottiene o la somma 
addizionando o la differenza, sottraendo[…]
Come sono dunque due i segni primari degli algebristi e degli analisti, il 
+ e il -, così due sono le copule, è e non-è: nel primo caso la mente 
compone, nel secondo divide.»

(G. W. Leibniz, De arte combinatoria, 1666)



Thomas Hobbes (1588-1679)

“Per ragionamento, poi, io intendo il calcolo 
[computatio]. Calcolare significa raccogliere la 
somma di più cose aggiunte l’una all’altra, oppure, 
se si detrae una cosa dall’altra, conoscere quel che 
rimane. Quindi ragionare è il medesimo che 
addizionare e sottrarre, e se poi uno vi aggiungesse 
moltiplicare e dividere, non mi opporrei, dal 
momento che la moltiplicazione equivale 
all’addizione di termini uguali, e la divisione alla 
sottrazione di termini uguali tante volte quanto è 
possibile. Ogni ragionamento quindi si riduce a due 
operazioni dell’animo, l’addizione e la sottrazione.” 
[Computatio sive logica, p. 3]

“Non si deve dunque pensare che il calcolare, cioè il ragionare, abbia luogo soltanto 
con i numeri, come se l’uomo si distinguesse dal resto degli esseri animati per la 
sola facoltà del numerare […] infatti si può aggiungere o togliere grandezza a 
grandezza, corpo a corpo, moto a moto, tempo a tempo, gradi di qualità a gradi di 
qualità, azione ad azione, concetto a concetto, proporzione a proporzione, discorso 
a discorso, nome a nome (nelle quali attività è contenuto ogni genere di filosofia).”



In the late 17th century, logic both as an academic discipline and as a 
formal science basically coincided with Aristotelian syllogistics. 

Thus also Leibniz’s logical work was to a large extent related to the 
theory of the syllogism, but at the same time it aimed at the 
construction of a much more powerful “universal calculus”. 

This calculus should primarily serve as a general tool for determining 
which formal inferences (not only of syllogistic form) are logically valid. 

Moreover, Leibniz was looking for a “universal characteristic” by means 
of which he hoped to become able to apply the logical calculus to 
arbitrary (scientific) propositions so that their factual truth could be 
“calculated” in a purely mechanical way. 



Calculemus!

“Io penso che mai le controversie possono essere condotte a 
termine e che mai si puo’ imporre silenzio alle sette se non 
siamo ricondotti dai ragionamenti complicati ai calcoli 
semplici, dai vocaboli di significato incerto e vago a caratteri
determinati ... 
Si deve fare in modo che ogni paralogismo non sia null’altro 
che un errore di calcolo ... 
Fatto cio’, quando sorgano controversie non ci sara’ piu’  
bisogno di dispute fra due filosofi di quanto non ce ne sia fra 
due computisti. Bastera’ infatti prendere la penna, sedersi 
all’abaco e dirsi vicendevolmente: calcoliamo!”

G. W. Leibniz



Leibniz’s Project

Though modern logic is really due to Boole and De Morgan, Leibniz 
was the first to have a really distinct plan of a system of mathematical 
logic. 

The principles of the logic of Leibniz, and consequently of his whole 
philosophy, reduce to two: 

1) All our ideas are compounded of a very small number of simple
ideas which form the alphabet of human thoughts; 

2) Complex ideas proceed from these simple ideas by a uniform and 
symmetrical combination which is analogous to arithmetical 
multiplication. 



Alphabet of Human Thought

The idea of an alphabet of human thought originates in the 17th 
century, when proposals were first made for a universal language.

René Descartes suggested that the lexicon of a universal language 
should consist of primitive elements. The systematic combination of 
these elements, according to syntactical rules, would generate “an 
infinity of different words.” 

Leibniz outlined his characteristica universalis, an artificial language in 
which grammatical and logical structure would coincide, which would 
allow much reasoning to be reduced to calculation. 

The basic elements of his characteristica would be pictographic 
characters representing unambiguously a limited number of elementary 
concepts. Leibniz called the inventory of these concepts "the alphabet 
of human thought." 



The Importance of Symbols

Leibniz thought symbols very important for human understanding. 

He attached so much importance to the invention of good notations that 
he attributed to this alone the whole of his discoveries in mathematics. 

His notation for the infinitesimal calculus affords a splendid example of 
his skill in this regard. 

The dot was introduced as a symbol for multiplication by Leibniz. On July 
29, 1698, he wrote in a letter to Johann Bernoulli: “I do not like X as a 
symbol for multiplication, as it is easily confounded with x…”

[Quoted in F Cajori, A History of Mathematical Notations (1928)]

Charles Peirce, a 19th century pioneer of semiotics, shared Leibniz's 
passion for symbols and notation, and his belief that these are essential 
to a well-running logic and mathematics.



“It is obvious that if we could find characters or signs suited for 
expressing all our thoughts as clearly and as exactly as arithmetic 
expresses numbers or geometry expresses lines, we could do in all 
matters insofar as they are subject to reasoning all that we can do in 
arithmetic and geometry. For all investigations which depend on 
reasoning would be carried out by transposing these characters and by 
a species of calculus.” 

(Preface to the General Science, 1677. 
Revision of Rutherford's translation in Jolley 1995: 234)



Thoughts and Numbers

More complex thoughts would be represented by combining in 
some way the characters for simpler thoughts. 

Leibniz saw that the uniqueness of prime factorization suggests 
a central role for prime numbers in the universal characteristic, 
a striking anticipation of Gödel numbering. 

Granted, there is no intuitive or mnemonic way to number any 
set of elementary concepts using the prime numbers.



Calculus Ratiocinator

There are two contrasting perspectives on what Leibniz meant by 
calculus ratiocinator.

The analytic view
The received view in analytic philosophy and formal logic, is that the 
calculus ratiocinator anticipates mathematical logic — an “algebra of 
logic”. That logic, a formal inference engine that can be designed so as 
to grant primacy to calculations, began with Frege's 1879 
Begriffsschrift and Charles Peirce's writings on logic in the 1880s. 

The synthetic view
A contrasting view, stemming from synthetic philosophy and fields such 
as cybernetics, electronic engineering and general systems theory is 
little appreciated in analytic philosophy. The synthetic view 
understands the calculus ratiocinator as referring to a "calculating 
machine." The cybernetician Norbert Wiener considered Leibniz's 
calculus ratiocinator a forerunner to the modern day digital computer: 



The “General Algebra"

Near the end of his life, Leibniz wrote that combining metaphysics with 
mathematics and science through a universal character would require 
creating what he called:

“... a kind of general algebra in which all truths of reason would be 
reduced to a kind of calculus. At the same time, this would be a kind of 
universal language or writing, though infinitely different from all such 
languages which have thus far been proposed; for the characters and 
the words themselves would direct the mind, and the errors --
excepting those of fact -- would only be calculation mistakes. It would 
be very difficult to form or invent this language or characteristic, but 
very easy to learn it without any dictionaries” 

(letter to Nicolas Remond, 10 January 1714)



Sample from One of Leibniz’s 
Logical Calculi

Def. 3. A is in L, or L contains A, is the same as to say that L can be made to 
coincide with a plurality of terms taken together of which A is one. B ⊕ N = L 
signifies that B is in L and that B and N together compose or constitute L. The 
same thing holds for a larger number of terms.

Axiom 1. B ⊕ N = N ⊕ B.

Postulate. Any plurality of terms, as A and B, can be added to compose a 
single term A ⊕ B.

Axiom 2. A ⊕ A = A.

Prop. 5. If A is in B and A = C; then C is in B.

For in the proposition A is in B the substitution of A for B gives C is in B.

Prop. 6. If C is in B and A = B then C is in A.

For in the proposition C is in B the substitution of A for B gives C is in A.

Prop. 7. A is in A.

For A is in A ⊕ A (by Def. 3). Therefore (by Prop. 6) A is in A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Prop. 20 If A is in M and B is in N, then A ⊕ B is in M ⊕ N.



Leibniz Loses Heart

Leibniz rightly saw that creating the characteristica would be difficult, 
fixing the time required for devising it as follows: “I think that some 
selected men could finish the matter in five years”.

But later in life, a more sober note emerged. In a March 1706 letter to 
the Electress Sophia of Hanover, the spouse of his patron, he wrote:

“It is true that I once planned a new method of calculation proper to 
subjects having nothing in common with mathematics, and if this manner 
of Logic were put into practice, all reasoning, even analogical ones, 
would be carried out in a mathematical way. Then modest intellects 
could, with diligence and good will, not accompany but at least follow 
greater ones. For one could always say "let us calculate" and judge 
properly, insofar as reason and the data can furnish us the means to do 
so. But I do not know whether I will ever be able to execute such a 
project, one requiring more than one hand, and it would even seem that 
humanity is not yet sufficiently mature to pretend to the advantages to 
which this method could lead.”



In an another 1714 letter to Nicholas Remond, Leibniz wrote:

“I have spoken to the Marquis de l'Hôpital and others about my general 
algebra, but they have paid no more attention to it than if I had told 
them about a dream of mine. I should have to support it too by some 
obvious application, but to achieve this it would be necessary to work 
out at least a part of my characteristic, a task which is not easy, 
especially in my present condition and without the advantage of 
discussions with men who could stimulate and help me in work of this 
nature.”

(Loemker 1969, p. 656)



Leibniz As a Precursor of Boole

The rediscovery of Leibniz’s logical work would not have been possible 
without the pioneering work Louis Couturat. On the other hand, 
Couturat is also (at least partially) responsible for the underestimation 
of the value of traditional logic in general and of Leibniz’s logic in 
particular as it may be observed throughout the 20th century. 

In the “Résumé et conclusion” of chapter 8, Couturat compares 
Leibniz’s logical achievements with those of modern logicians, 
especially with the work of George Boole:

“Summing up, Leibniz had the idea […] of all logical operations, not 
only of multiplication, addition and negation, but even of subtraction 
and division. […] He found the correct algebraic translation of the four 
classical propositions […] He discovered the main laws of the logic 
calculus, in particular the rules of composition and decomposition […] 
In one word, he possessed almost all principles of the Boole-Schröder-
logic, and in some points he was even more advanced then Boole 
himself.” (Cf. Couturat [1901: 385-6])



George Boole (1815-1864)

George Boole was born in Lincoln, 
England on Nov. 2nd 1815. He inherited his 
father's passion for science and by the age 
of 14 could read Latin, Greek, French and 
German. But Boole's family fell on hard 
times, and he was forced find work to 
support them.

Boole discovered and taught himself 
mathematics while teaching in local 
schools. The papers that he published in 
the Cambridge Mathematical Journal 
earned him respect as a capable 
mathematician. In 1849, despite lacking a 
university degree, he was offered the first 
professorship of mathematics at Queen's 
College, Cork, in Ireland, where he taught 
until his death on Dec. 8th, 1864.

In 1854, Boole published his greatest and most influential work: "An Investigation 
Into the Laws of Thought, on Which are Founded the Mathematical Theories of 
Logic and Probabilities" in which he brilliantly combined algebra with logic. 



The Laws of Thought

«The design of the following treatise is to investigate the 
fundamental laws of those operations of the mind by which 
reasoning is performed; to give expression to them in the 
symbolical language of a Calculus, and upon this foundation to 
establish the science of Logic and construct its method; to make
that method itself the basis of a general method for the 
application of the mathematical doctrine of Probabilities; and, 
finally, to collect from the various elements of truth brought to 
view in the course of these inquiries some probable intimations 
concerning the nature and constitution of the human mind.»

(G. Boole, The Laws of Thought, 1854)



Signs and Their Laws

A sign is an arbitrary mark, having a fixed interpretation, and susceptible 
of combination with other signs in subjection to fixed laws dependent 
upon their mutual interpretation.

All the operations of Language, as an instrument of reasoning, may be 
conducted by a system of signs composed of the following elements:

1. Literal symbols, as x, y, &c., representing things as subjects of our 
conceptions.

2. Signs of operation, as +, -, ×, standing for those operations of the 
mind by which the conceptions of things are combined or resolved so as 
to for new conceptions involving the same elements.

3. The sign of identity, =.



The “Intersection”

Let us then agree to represent the class of individuals to whichLet us then agree to represent the class of individuals to which a a 
particular name or description is applicable, by a single letterparticular name or description is applicable, by a single letter, as x., as x. If 
the name is “men,” for instance, let x represent “all men,” or the class 
“men.” 

Again, if an adjective, as “good,” is employed as a term of description, 
let us represent by a letter, as y, all things to which the description 
“good” is applicable, i.e. “all good things,” or the class “good things.” 

Let it further be agreed, that by the combination xy shall be Let it further be agreed, that by the combination xy shall be 
represented that class of things to which the names or descriptirepresented that class of things to which the names or descriptions ons 
represented by x and y are simultaneously applicable.represented by x and y are simultaneously applicable.

Thus, if x alone stands for “white things,” and y for “sheep,” let xy stand 
for “white sheep;” and in like manner, if z stand for “horned things,” and 
x and y retain their previous interpretations, let zxy represent “horned 
white sheep,” i.e. that collection of things to which the name “sheep,” 
and the descriptions “white” and “horned” are together applicable.



Commutativity

First, it is evident, that according to the above combinations, the 
order in which two symbols are written is indifferent. 

The expressions xy and yx equally represent that class of things
to the several members of which the names or descriptions x 
and y are together applicable. 

Hence we have,

xy = yx 



Idempotence

As the combination of two literal symbols in the form xy expresses the 
whole of that class of objects to which the names or qualities 
represented by x and y are together applicable, it follows that if the two 
symbols have exactly the same signification, their combination 
expresses no more than either of the symbols taken alone would do. 

In such case we should therefore have

xy = x.

As y is, however, supposed to have the same meaning as x, we may
replace it in the above equation by x, and we thus get

xx = x.



Idempotence

Now in common Algebra the combination xx is more briefly 
represented by x2. [...]

In accordance with this notation, then, the above equation 
assumes the form

x2 = x

and is, in fact, the expression of a second general law of those
symbols by which names, qualities, or descriptions, are 
symbolically represented.



Addition

We are not only capable of entertaining the conceptions of objects, as 
characterized by names, qualities, or circumstances, applicable to 
each individual of the group under consideration, but also of forming 
the aggregate conception of a group of objects consisting of partial 
groups, each of which is separately named or described. For this
purpose we use the conjunctions “and,” “or,” &c. “Trees and minerals,” 
“barren mountains, or fertile vales,” are examples of this kind. [...]

In this and in all other respects the words “and” “or” are analoIn this and in all other respects the words “and” “or” are analogous with gous with 
the sign + in algebra, and their laws are identical. the sign + in algebra, and their laws are identical. 

Thus the expression “men and women” is, conventional meanings set 
aside, equivalent with the expression “women and men.” Let x 
represent “men,” y, “women;” and let + stand for “and” and “or,” then 
we have 

x + y = y + x



Distributivity

Let the symbol z stand for the adjective “European,” then since it is, in 
effect, the same thing to say “European men and women,” as to say 
“European men and European women,” we have

z (x + y) = zx + zy.

And this equation also would be equally true were x, y, and z symbols 
of number, and were the juxtaposition of two literal symbols to 
represent their algebraic product, just as in the logical signification 
previously given, it represents the class of objects to which both the 
epithets conjoined belong.



Substraction...

But the very idea of an operation effecting some positive change seems 
to suggest to us the idea of an opposite or negative operation, having the 
effect of undoing what the former one has done. Thus we cannot 
conceive it possible to collect parts into a whole, and not conceive it also 
possible to separate a part from a whole.

This operation we express in common language by the sign except, as, 
“All men except Asiatics,” “All states except those which are 
monarchical.” Here it is implied that the things excepted form a part of the 
things from which they are excepted. 

As we have expressed the operation of aggregation by the sign +,As we have expressed the operation of aggregation by the sign +, so we so we 
may express the negative operation above described by may express the negative operation above described by -- minus. minus. 

Thus if x be taken to represent men, and y, Asiatics, i. e. Asiatic men, 
then the conception of “All men except Asiatics” will be expressed by x-y. 



... and its Properties

As it is indifferent for all the essential purposes of reasoning whether we 
express excepted cases first or last in the order of speech, it is also 
indierent in what order we write any series of terms, some of which are 
affected by the sign -. 

Thus we have, as in the common algebra,

x - y = -y + x.

Still representing by x the class “men,” and by y “Asiatics,” let z 
represent the adjective “white.” Now to apply the adjective “white” to the 
collection of men expressed by the phrase “Men except Asiatics,” is the 
same as to say, “White men, except white Asiatics.” Hence we have

z (x - y) = zx - zy.

This is also in accordance with the laws of ordinary algebra.



The symbol “=”

The above sign, is or are may be expressed by the symbol =. The laws, 
or as would usually be said, the axioms which the symbol introduces, are 
next to be considered.

Instead of dwelling upon particular cases, we may at once affirm the 
general axioms:

1st. If equal things are added to equal things, the wholes are equal.

2nd. If equal things are taken from equal things, the remainders are 
equal.

And it hence appears that we may add or subtract equations, and employ 
the rule of transposition above given just as in common algebra.



Binary Variables

We have seen that x2 = x. We know that 02 = 0, and that 12 = 1; and 
the equation x2 = x, considered as algebraic, has no other roots than 0 
and 1. [...]

Let us conceive, then, of an Algebra in which the symbols x, y, Let us conceive, then, of an Algebra in which the symbols x, y, z, etc. z, etc. 
admit indifferently of the values 0 and 1, and of these values aadmit indifferently of the values 0 and 1, and of these values alone. lone. 

The laws, the axioms, and the processes, of such an Algebra will be 
identical in their whole extent with the laws, the axioms, and the 
processes of an Algebra of Logic. [...]

Upon this principle the method of the following work is establisUpon this principle the method of the following work is established.hed.



Nothing...

The symbol 0, as used in Algebra, satisfies the following formal law,

0 × y = 0, or 0y = 0

whatever number y may represent. 

That this formal law may be obeyed in the system of Logic, we must 
assign to the symbol 0 such an interpretation that the class 
represented by 0y may be identical with the class represented by 0, 
whatever the class y may be. 

A little consideration will show that this condition is satisfieA little consideration will show that this condition is satisfied if the d if the 
symbol 0 represent symbol 0 represent NothingNothing..



... and Everything

The symbol 1 satisfies in the system of Number the following law,

1 × y = y, or 1y = y,

whatever number y may represent. And this formal equation being 
assumed as equally valid in the system of this work, in which 1 and y 
represent classes, it appears that the symbol 1 must represent such a 
class that all the individuals which are found in any proposed class y 
are also all the individuals 1y that are common to that class y and the 
class represented by 1. 

A little consideration will here show that the class representedA little consideration will here show that the class represented by 1 by 1 
must be “must be “the Universethe Universe,” ,” since this is the only class in which are found 
all the individuals that exist in any class.

Hence the respective interpretations of the symbols 0 and 1 in tHence the respective interpretations of the symbols 0 and 1 in the he 
system of Logic are Nothing and Universe.system of Logic are Nothing and Universe.



The Complement (1-x)

If x represent any class of objects, then will 1 - x represent the contrary 
or supplementary class of objects., i.e. the class including all objects 
which are not comprehended in the class x.



The “Principle” of Contradiction... 
Derived!

That axiom of metaphysicians which is termed the principle of 
contradiction, and which affirms that it is impossible for any being to 
possess a quality, and at the same time not to possess it, is a 
consequence of the fundamental law of thought, whose expression is 

x2 = x.

Let us write this equation in the form x - x2 = 0 whence we have

x (1 - x) = 0.

Hence x (1 - x) will represent the class whose members are at once 
“men,” and “not men,” and the equation (1) thus express the principle, 
that a class whose members are at the same time men and not men that a class whose members are at the same time men and not men 
does not exist. In other words, that it is impossible for the sadoes not exist. In other words, that it is impossible for the same me 
individual to be at the same time a man and not a man.individual to be at the same time a man and not a man.



Derivation of Aristotle’s Syllogisms

Barbara:
Every x is y  x(1-y) = 0   [or, x=xy]
Every y is z y(1-z) = 0   [or, y=yz]
----------------- ---------------------------
Every x is z x(1-z) = 0   [or, x=xz]

In fact: x = xy = x(yz) = (xy)z = xz

Using the properties 
derived above, Boole 
was able to prove 
(algebraically!)
the validity of 
Aristotle’s syllogisms. Celarent:

No X is Y xy=0
Every Z is Y z=zy   [or, z(1-y) = 0]
---------------- ---------------------------
No X is Z xz=0

In fact: xz = x(zy) = x(yz) = (xy)z = 0z = 0



Modern Developments of 
Boole’s Algebraic Logic



Claude Shannon: 
The Father of the “Digital Age”

Claude Elwood Shannon was born in 
Petoskey, Michigan, on April 30th, 1916. 
He graduated from the University of 
Michigan in 1936 with bachelor's degrees in 
mathematics and electrical engineering. In 
1940 he was awarded both a master's 
degree in electrical engineering and a 
Ph.D. in mathematics from the MIT.

Shannon joined the Mathematics 
Department at Bell Labs in 1941 with which 
he remained affiliated until 1972. He 
became a visiting professor at MIT in 1956, 
a permanent member of the faculty in 
1958, and a professor emeritus in 1978.

He gave pioneering contributions in diverse fields such as Information Theory, 
Cryptography, Circuit Design, Game Theory, and developed one of the first 
computer programs to play chess.

Claude Shannon died on February 26th, 2001



The Electromechanical Relay

The relay technique 
is standard in the 
telephone 
exchange in the 
1940s.



Shannon’s Master Thesis (1937)

In his 1937 MIT master's thesis, A Symbolic Analysis of Relay and Switching 
Circuits, Shannon proved that Boolean algebra and binary arithmetic could be 
used to simplify the arrangement of the electromechanical relays then used in 
telephone routing switches, then turned the concept upside down and also proved 
that it should be possible to use arrangements of relays to solve Boolean algebra 
problems. 

This concept, of utilizing the properties of electrical switches to do logic, is the 
basic concept that underlies all electronic digital computers, and the thesis 
became the foundation of practical digital circuit design when it became widely 
known among the electrical engineering community during and after World War II.

Professor Howard Gardner (Harvard) called Shannon's thesis "possibly the most 
important, and also the most famous, master's thesis of the century". 

A version of the paper was published in the 1938 issue of the Transactions of the 
American Institute of Electrical Engineers, and in 1940, it earned Shannon the 
Alfred Noble American Institute of American Engineers Award.



The Basic Idea

The fundamental unit of information is a yes-no situation. Either something 
is or is not. This can be easily expressed in Boolean two-value binary 
algebra by 1 and 0, so that 1 means "on" when the switch is closed and the 
power is on, and 0 means "off" when the switch is open and power is off.



Shannon’s Master Thesis (1937)

“Claude E. Shannon, the founder of what is 
often called Information Theory, in his 

master's thesis showed in a masterful way 
how the analysis of complicated circuits for 

switching could be affected by the use of 
Boolean algebra. This surely must be one of 

the most important master's theses ever 
written... The paper was a landmark in that it 
helped to change digital circuit design from 

an art to a science.”

Hermann Goldstine

SHANNON, Claude E. (1916-2001). A symbolic analysis of relay and switching circuits, In Transactions of the American 
Institute of Electrical Engineers, Vol. 57 (1938). pp. 713-23. Quarto, original publisher's blue cloth. $18,000.



Shannon’s Forerunners

Indeed, Shannon was not the first to suggest the isomorphism between 
propositional calculus and relay and switching circuits . 

The idea had been suggested in the Russian literature in 1910 by Paul 
Ehrenfest and followed up in 1934 by V. I. S . Sestakov. 

It also appeared in a 1936 Japanese publication by Akira Nakasima 
and Masao Hanzawa.

However, none of these received the wide attention of Shannon's 
paper, mainly because his paper was published in English and 
presented a detailed account of the isomorphism in a way that 
highlighted its value to circuit design theory.



The “Neuron” as the Elementary 
Computational Unit in the Brain

Santiago Ramón y Cajal (1852–1934) 
was a famous Spanish histologist, 
physician, and Nobel laureate. He is 
considered to be one of the founders of 
modern neuroscience.

Ramón y Cajal's most famous studies 
were on the fine structure of the central 
nervous system. Cajal used a 
histological staining technique developed 
by his contemporary Camillo Golgi.

Using Golgi's method, he found  that the 
nervous system is made up of billions of 
separate neurons and that these cells 
are polarized. Rather than forming a 
continuous web, 

For this work Ramón y Cajal and Golgi shared the Nobel Prize in Physiology or 
Medicine in 1906.



The Structure of the Brain

The human cerebral cortex is 
composed of about 100 billion  
(1011) neurons (nerve cells) of 
many different types.

Each neuron is connected to 
other 1000/10000 neurons, wich 
yields 1014/1015 connections.

The cortex covers about 0.15 m²
and is 2 – 5 mm thick



The Structure of Neurons

A “generic” neuron consists of:

Cell Body (Soma): Computational unit. 5-10 microns in 
diameter

Axon: Output mechanism for a neuron; one axon/cell, but 
thousands of branches and  cells possible for a single axon

Dendrites: Receive incoming signals from other nerve axons 
via synapse 



Synapses

The synapse is the relay point where information is conveyed by chemical transmitters 
from neuron to neuron. A synapse consists of two parts: the knowblike tip of an axon 
terminal and the receptor region on the surface of another neuron. The membranes are 
separated by a synaptic cleft some 200 nanometers across. Molecules of chemical 
transmitter, stored in vesicles in the axon terminal, are released into the cleft by arriving 
nerve impulses. Transmitter changes electrical state of the receiving neuron, making it 
either more likely or less likely to fire an impulse. 



Neural Dynamics

The transmission of signal in the cerebral cortex is a complex process:

electrical — chemical — electrical
Simplifying :

1) The cellular body performs a “weighted sum” of the incoming signals
2) If the result exceeds a certain threshold value, then it produces an 

“action potential” which is sent down the axon (cell has “fired”), 
otherwise it remains in a rest state

3)   When the electrical signal reaches the synapse, it allows the
“neuro-transmitter” to be released and these combine with the 
“receptors” in the post-synaptic membrane

4)   The post-synaptic receptors provoke the diffusion of an electrical
signal in the post-synaptic neuron 



Synaptic Efficacy

It is the amount of current that enters into the post-synaptic neuron, 
compared to the action potential of the pre-synaptic neuron.

Learning takes place by modifying the synaptic efficacy.

There are two types of synapses:

Excitatory: favor the generation of action potential in the 
post-synaptic neuron

Inhibitory : hinder the generation of action potential 



The McCulloch and Pitts “Neuron” 
(1943)



Neural Nets and Propositional Calculus

Three elementary logical operations (a) negation, (b) and, (c) or. In each diagram  the states of the 
neurons on the left are at time t and those on the right at time t +1.

The construction for the exclusive or



Original Texts

G. Boole. An Investigation of The Laws of Thought (1854). 
http://www.gutenberg.org/etext/15114

L. Couturat. The Algebra of Logic (1905).
http://www.gutenberg.org/etext/10836

C. E. Shannon. A Symbolic Analysis of Relay and Switching 
Circuits (1937).
http://hdl.handle.net/1721.1/11173
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