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The Entscheidungsproblem

In continuation of his "program" with which he challenged the 
mathematics community in 1900, at a 1928 international conference 
David Hilbert asked three questions, the third of which became known 
as "Hilbert's Entscheidungsproblem". 

A first-order statement is called "universally valid" or "logically valid" if it 
follows from the axioms of the first-order predicate calculus. Gödel's 
completeness theorem states that a statement is universally valid in 
this sense if and only if it is true in every interpretation of the formula in 
a model.

The Entscheidungsproblem (German for 'decision problem') is the 
challenge in symbolic logic to find a general algorithm which decides 
for given first-order statements whether they are universally valid or 
not. 



Church and Turing

In 1936, working independently, Alonzo Church and Alan Turing both 
showed that this is impossible. As a consequence, it is in particular 
impossible to decide algorithmically whether statements in arithmetic 
are true or false.

Before the question could be answered, the notion of "algorithm" had 
to be formally defined. This was done by Alonzo Church in 1936 with 
the concept of "effective calculability" based on his lambda calculus 
and by Alan Turing in the same year with his concept of Turing 
machines. 

The two approaches are equivalent, an instance of the Church-Turing 
thesis.



Alan M. Turing (1912-1954)

Alan Mathison Turing was a British 
mathematician, logician, and 
cryptographer. Turing is often 
considered to be the father of modern 
computer science.

During World War II, Turing worked at 
Bletchley Park, Britain's codebreaking 
centre and was for a time head of Hut 8, 
the section responsible for German 
Naval cryptanalysis. He devised a 
number of techniques for breaking 
German ciphers, including the method 
of the bombe, an electromechanical 
machine which could find settings for 
the Enigma machine.

In 1952, Turing was convicted of acts of gross indecency after admitting to a 
sexual relationship with a man in Manchester. He was placed on probation and 
required to undergo hormone therapy. When Alan Turing died in 1954, an inquest 
found that he had committed suicide by eating an apple laced with cyanide.



Turing’s Contributions

Turing provided an influential 
formalisation of the concept of algorithm 
and computation with the Turing 
machine, formulating the now widely 
accepted "Turing" version of the Church–
Turing thesis. 

After the war, he worked at the National 
Physical Laboratory, creating one of the 
first designs for a stored-program 
computer, although it was never actually 
built. In 1947 he moved to the University 
of Manchester to work, largely on 
software, on the Manchester Mark I then 
emerging as one of the world's earliest 
true computers.

With the Turing test, Turing made a significant and characteristically provocative 
contribution to the debate regarding artificial intelligence. 



How powerful a computer can be?  Can it replace intelligence?  

It came as a surprise in 1930s before the advent of digital 
electronic computer that Alan Turing argued that any computer, 
present and the ones ever will exist, is as power as the simple 
“Turing Machine”.  

Certain problems cannot be solved by computer, no matter how 
powerful the computer is.



On Computable Numbers, with an Application 
to the Entscheidungsproblem (1936)

«We may compare a man in the process of computing a real number to a 
machine which is only capable of a finite number of conditions q1, q2, ..., qR 
which will be called “m-configurations”. The machine is supplied with a “tape”, 
(the analogue of paper) running through it, and divided into sections (called 
“squares”) each capable of bearing a “symbol”. At any moment there is just one 
square, say the r-th, bearing the symbol S(r) which is “in the machine”. We may 
call this square the “scanned square”. The symbol on the scanned square may 
be called the “scanned symbol”. The “scanned symbol” is the only one of which 
the machine is, so to speak, “directly aware”. However, by altering its m-
configuration the machine can effectively remember some of the symbols which 
it has “seen” (scanned) previously. The possible behaviour of the machine at 
any moment is determined by the m-configuration qn and the scanned symbol 
S(r). This pair qn, S(r) will be called the “configuration”: thus the configuration 
determines the possible behaviour of the machine. In some of the
configurations in which the scanned square is blank (i.e. bears no symbol) the 
machine writes down a new symbol on the scanned square: in other
configurations it erases the scanned symbol. The machine may also change the 
square which is being scanned, but only by shifting it one place to right or left. In 
addition to any of these operations the m-configuration may be changed. 



On Computable Numbers, with an Application 
to the Entscheidungsproblem (1936)

Some of the symbols written down will form the sequence of figures 
which is the decimal of the real number which is being computed. The 
others are just rough notes to “assist the memory”. It will only be these 
rough notes which will be liable to erasure.

It is my contention that these operations include all those which are 
used in the computation of a number. The defence of this contention 
will be easier when the theory of the machines is familiar to the reader. 
In the next section I therefore proceed with the development of the 
theory and assume that it is understood what is meant by “machine”, 
“tape”, “scanned”, etc.»



The Turing Machine

The Turing machine 
consists of a tape, a moving 
head which can read and 
print a set of symbols, an 
internal state of the 
machine, and a “program”.

A program is a list of rules 
what to do next given the 
current reading and internal 
state.

It can move to the left or 
right, change internal state 
and print a symbol on the 
tape.



Turing Machine Details

1. A set of characters (the alphabet), including blank, serves as 
input and output symbols on the tape.  E.g. {a,b,c, … }

2. A tape divided into a sequence of numbered cells each 
containing one character or a blank.  The tape starts from cell 1, 
and extends to the right indefinitely.

3. A tape head that can in one step read the contents of a cell on 
the tape, replace it with some other character, and reposition 
itself to the next cell to the right or left of the one it has just read. 
At the start of the process, tape head always begins by reading 
the input in cell 1.

4. A finite set of internal states of the machine, including START, 
HALT, and other named states such as 1, 2, 3, …

5. A program, which is a set of rules that tell us, on the basis of the 
letter the tape head just read, how to change states, what to print, 
and where to move the tape head. We use five symbols

(state,  letter read, new state, letter write, direction)
to indicate such a rule.



Notes on Turing Machine

The character set will be finite, but the number and symbols are
unspecified.  Same for the states.

The machine begins from the START state and stops at the HALT 
state.  

Illegal action causes the machine to crash (such as move to left 
when it is on cell 1, or moved to state q but no instruction found for 
that state).



Turing Machine to Recognize a Symbol
b in the Second Cell

The symbols will be [a, b, space=∆]
States: 1=START, 2, 3, 4=HALT
Program:  (1,a,2,a,R)

(1,b,2,b,R)
(2,b,3,b,R)
(3,a,3,a,R),(3,b,3,b,R)
(3,∆,4,∆,R)

Starting tape is 
a b a ∆ ∆ ∆ ∆ …

cell 
1

cell 
2

cell 
3

… 
…



Execution of the Turing Machine 
Example

1 Program: 
(1,a,2,a,R)
(1,b,2,b,R)
(2,b,3,b,R)
(3,a,3,a,R)
(3,b,3,b,R)
(3,∆,4,∆,R)
1=start,
4=halt.

Start machine by 
position the head in 
cell 1, in state 1.

First rule says change 
state to 2, move to 
right

3rd rule says change 
state to 3, move to 
right

4th rule says, move to 
right

Last rule says change 
to state 4. Since we 
are in state 4, we 
must halt. Program 
executed successfully.

a b a ∆ ∆ ∆ ∆ …

2

a b a ∆ ∆ ∆ ∆ …

3

a b a ∆ ∆ ∆ ∆ …

3

a b a ∆ ∆ ∆ ∆ …

a b a ∆ ∆ ∆ ∆ …

4



Execution of the Turing Machine 
Example (different input)

Program: 
(1,a,2,a,R)
(1,b,2,b,R)
(2,b,3,b,R)
(3,a,3,a,R)
(3,b,3,b,R)
(3,∆,4,∆,R)
1=start,
4=halt.

1 Start machine by 
position the head in 
cell 1, in state 1.

Second rule says 
change state to 2, 
move to right.

When in state 2 and 
reading a, there is no 
instruction as what to 
do, the machine 
crashes  (given you 
the answer that there 
is no b in cell 2).

b a a ∆ ∆ ∆ ∆ …

2

b a a ∆ ∆ ∆ ∆ …



Adding 1 to a Binary Number

The states are [1=START, 2, 3=HALT]
Characters on tape are [0,1,space=∆]
The program is
(1,0,3,1,R)
(1,1,2,0,R)
(2,0,3,1,R)
(2,1,2,0,R)

Meaning of the “program”: 
When start (state 1) if the digit 
under head is 0, change it to 1, 
and halt (e.g., 1100 + 1 = 
1101).  If it is 1, change it to 0 
and remember the carry by 
putting it in state 2.  In state 2, 
we need to add the carry, just 
like it is in state 1.



Running of the Adding-1-program:
Add 1 to 1011

1 (1,0,3,1,R)
(1,1,2,0,R)
(2,0,3,1,R)
(2,1,2,0,R)

First pair of 
numbers 
are current 
state and 
reading, 
second pair 
new state 
and writing, 
last symbol 
(R or L) is 
moving 
direction.

We set up the input 
tape with the binary 
number 1011, least 
significant digit at the 
leftmost.  

By 2nd rule, change 
tape to 0, change 
state to 2, move to 
right.

By 4th rule, change 
tape to 0, move to 
right.

By 3rd rule, change 0 
to 1, and halt. The 
result is 1100.

1 1 0 1 ∆ ∆ ∆ …

2

0 1 0 1 ∆ ∆ ∆ …

2

0 0 0 1 ∆ ∆ ∆ …

3

0 0 1 1 ∆ ∆ ∆ …



Another Way to Represent 
Turing Machine Programs

A list of 5 
Items:
(1,0,3,1,R)
(1,1,2,0,R)
(2,0,3,1,R)
(2,1,2,0,R)

(0,1,R)

2
(1,0,R) (0,1,R)

1 3
start halt

(1,0,R)

The number in square or circle represents the current state of 
the machine.  The arrow points to next state in a move.  The 
triplet of symbols means (read, write, direction).   Where to 
move is determined by what is read currently.



What Does This Program Do?

States [1=START,2,3,4,5,6,7,8=HALT]
Characters [a,b,∆]
Program:
(1,a,2,∆,R), (1,b,5,∆,R), (1,∆,8,∆,R), (2,a,2,a,R), 
(2,b,2,b,R), (2,∆,3,∆,L), (3,a,4,∆,L), (3,∆,8,∆,R), 
(4,a,4,a,L), (4,b,4,b,L), (4,∆,1,∆,R), (5,a,5,a,R), 
(5,b,5,b,R), (5,∆,6,∆,L), (6,∆,8,∆,R), (6,b,7,∆,L), 
(7,a,7,a,L), (7,b,7,b,L), (7,∆,1,∆,R).

The program determines if the strings formed by a’s
and b’s are palindrome.  It halts if yes, crashes if no.



The Halting Problem

The halting problem is a decision problem which can be informally 
stated as follows:

Given a description of a program and its initial input, determine 
whether the program, when executed on this input, ever halts 
(completes). The alternative is that it runs forever without 
halting.

Alan Turing proved in 1936 that a general algorithm to solve the halting 
problem for all possible program-input pairs cannot exist. 

We say that the halting problem is undecidable over Turing machines. 



The Halting Problem: Sketch of Proof / 1

The proof proceeds by reductio ad absurdum. Start by choosing a programming 
language, a scheme that associates every program with at least one string 
description. Now suppose that someone claims to have found an algorithm 
halt(p, i) that returns true if p describes a program that halts when given as input 
the string i, and returns false otherwise. 

Construct another program trouble that uses halt as a subroutine:

function trouble(string s) 
if halt(s, s) == FALSE then return TRUE 
else loop forever 

This program takes a string s as its argument and runs the algorithm halt, giving 
it s both as the description of the program to check and as the initial data to 
feed to that program. If halt returns false, then trouble returns true, otherwise 
trouble goes into an infinite loop. 

Since all programs can be represented by strings, there is a string t that 
represents the program trouble. Does trouble(t) halt?



The Halting Problem: Sketch of Proof / 2

Consider both cases:

1. If trouble(t) halts, it must be because halt(t, t) returned false, but 
that would mean that trouble(t) should not have halted. 

2. If trouble(t) runs forever, it is either because halt itself runs forever, 
or because it returned true. This would mean either that halt does 
not work for every valid input, or that trouble(t) should have halted. 

Either case concludes that halt did not give a correct answer, contrary 
to the original claim. Since the same reasoning applies to any
program that someone might offer as a solution to the halting 
problem, there can be no solution.



The Halting Problem: Sketch of Proof / 3

This classic proof is typically referred to as the diagonalization proof, 
so called because if one imagines a grid containing all the values of 
halt(p, i), with every possible p value given its own row, and every 
possible i value given its own column, then the values of halt(s, s) are 
arranged along the main diagonal of this grid. 

The proof can be framed in the form of the question: what row of the 
grid corresponds to the string t? 

The answer is that the trouble function is devised such that halt(t, i)
differs from every row in the grid in at least one position: namely, the 
main diagonal, where t=i. 

This contradicts the requirement that the grid contains a row for every 
possible p value, and therefore constitutes a proof by contradiction that 
the halting problem is undecidable.



Back to the Entscheidungsproblem

The negative answer to the Entscheidungsproblem was then given by Alonzo 
Church in 1936 and independently shortly thereafter by Alan Turing, also in 
1936. 

Turing reduced the halting problem for Turing machines to the 
Entscheidungsproblem, and his paper is generally considered to be much more 
influential than Church's. 

The work of both authors was heavily influenced by Kurt Gödel's earlier work on 
his incompleteness theorem, especially by the method of assigning numbers (a 
Gödel numbering) to logical formulas in order to reduce logic to arithmetic.

Turing's argument follows. Suppose we had a general decision algorithm for 
first-order logic. The question whether a given Turing machine halts or not can 
be formulated as a first-order statement, which would then be susceptible to the 
decision algorithm. But Turing had proved earlier that no general algorithm can 
decide whether a given Turing machine halts.



Universal Turing Machine

It is possible to build (the most powerful) Turing 
machine that can simulate the behavior of any 
other Turing machine (including itself).  

A Turing machine exists that take an encoded 
Turing machine T and its input data as input on its 
tape.  The result is the same as if executing the 
lesser Turing machine T.



The Church-Turing Thesis

The thesis can be stated as follows:

"Every 'function which would naturally be regarded as 
computable' can be computed by a Turing machine."

Due to the vagueness of the concept of a "function which would 
naturally be regarded as computable", the thesis cannot formally be 
proven. Disproof would be possible only if humanity found ways of 
building hypercomputers whose results should "naturally be regarded 
as computable".

Any computer program can be translated into a Turing machine, and 
any Turing machine can be translated into any general-purpose 
programming language, so the thesis is equivalent to saying that any 
general-purpose programming language is sufficient to express any 
algorithm.



Can Machines Think? The Turing Test
(From, A. M. Turing, Computer Machinery and Intelligence, 1950)

I propose to consider the question, "Can machines think?" This should 
begin with definitions of the meaning of the terms "machine" and
"think." The definitions might be framed so as to reflect so far as 
possible the normal use of the words, but this attitude is dangerous, If 
the meaning of the words "machine" and "think" are to be found by 
examining how they are commonly used it is difficult to escape the 
conclusion that the meaning and the answer to the question, "Can
machines think?" is to be sought in a statistical survey such as a 
Gallup poll. But this is absurd. Instead of attempting such a definition I 
shall replace the question by another, which is closely related to it and 
is expressed in relatively unambiguous words.



The Imitation Game

The new form of the problem can be described in terms of a game which 
we call the 'imitation game." It is played with three people, a man (A), a 
woman (B), and an interrogator (C) who may be of either sex. The
interrogator stays in a room apart front the other two. The object of the 
game for the interrogator is to determine which of the other two is the 
man and which is the woman. He knows them by labels X and Y, and at 
the end of the game he says either "X is A and Y is B" or "X is B and Y is 
A." The interrogator is allowed to put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A's object in the 
game to try and cause C to make the wrong identification. His answer 
might therefore be:

"My hair is shingled, and the longest strands are about nine inches 
long."



In order that tones of voice may not help the interrogator the answers 
should be written, or better still, typewritten. The ideal arrangement is 
to have a teleprinter communicating between the two rooms. 
Alternatively the question and answers can be repeated by an 
intermediary. The object of the game for the third player (B) is to help 
the interrogator. The best strategy for her is probably to give truthful 
answers. She can add such things as "I am the woman, don't listen to 
him!" to her answers, but it will avail nothing as the man can make 
similar remarks. 

We now ask the question, "What will happen when a machine takes 
the part of A in this game?" Will the interrogator decide wrongly as 
often when the game is played like this as he does when the game is 
played between a man and a woman? These questions replace our 
original, "Can machines think?" 



The new problem has the advantage of drawing a fairly sharp line between the 
physical and the intellectual capacities of a man. No engineer or chemist claims 
to be able to produce a material which is indistinguishable from the human skin. 
It is possible that at some time this might be done, but even supposing this 
invention available we should feel there was little point in trying to make a 
"thinking machine" more human by dressing it up in such artificial flesh. The 
form in which we have set the problem reflects this fact in the condition which 
prevents the interrogator from seeing or touching the other competitors, or 
hearing -their voices. Some other advantages of the proposed criterion may be 
shown up by specimen questions and answers. Thus:

Q: Please write me a sonnet on the subject of the Forth Bridge.
A : Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764.
A: (Pause about 30 seconds and then give as answer) 105621.
Q: Do you play chess?
A: Yes.
Q: I have K at my K1, and no other pieces. You have only K at K6 and R at R1. 
It is your move. What do you play? 
A: (After a pause of 15 seconds) R-R8 mate.



ELIZA

ELIZA is a famous 1966 computer program by Joseph Weizenbaum, which 
parodied a Rogerian therapist, largely by rephrasing many of the patient's 
statements as questions and posing them to the patient. 

Weizenbaum chose the context of psychotherapy to "sidestep the problem of 
giving the program a data base of real-world knowledge", the therapeutic 
situation being one of the few real human situations in which a human being can 
reply to a statement with a question that indicates very little specific knowledge 
of the topic under discussion. 

Eliza worked by simple parsing and substitution of key words into canned 
phrases. Depending upon the initial entries by the user the illusion of a human 
writer could be instantly dispelled, or could continue through several 
interchanges. 

It was sometimes so convincing that there are many anecdotes about people 
becoming very emotionally caught up in dealing with ELIZA for several minutes 
until the machine's true lack of understanding became apparent. All this was 
due to people's tendency to attach to words meanings which the computer 
never put there.



An Example (Real) Conversation 
with ELIZA / 1

young woman: Men are all alike. 
eliza: In what way? 
young woman: They're always bugging us about something specific or 
other. 
eliza: Can you think of a specific example? 
young woman: Well, my boyfriend made me come here. 
eliza: Your boyfriend made you come here? 
young woman: He says I'm depressed much of the time. 
eliza: I am sorry to hear you are depressed. 
young woman: It's true. I'm unhappy. 
eliza: Do you think coming here will help you not to be unhappy? 
young woman: I need some help, that much seems certain. 
eliza: What would it mean to you if you got some help? 
young woman: Perhaps I could learn to get along with my mother. 
eliza: Tell me more about your family. 
young woman: My mother takes care of me. 
eliza: Who else in your family takes care of you? 



An Example (Real) Conversation 
with ELIZA / 2

young woman: My father. 
eliza: Your father. 
young woman: You are like my father in some ways. 
eliza: What resemblance do you see? 
young woman: You are not very aggressive but I think you don't want me 
to notice that. 
eliza: What makes you think I am not very aggressive? 
young woman: You don't argue with me. 
eliza: Why do you think I don't argue with you? 
young woman: You are afraid of me. 
eliza: Does it please you to believe I am afraid of you? 
young woman: My father is afraid of everybody. 
eliza: What else comes to mind when you think of your father? 
young woman: Bullies. 
eliza: Does that have anything to do with the fact that your boyfriend made 
you come here
….



Who Invented the First Computer?
ACE vs EDVAC



A Step Back: The ENIAC

ENIAC, short for Electronic Numerical Integrator and Computer, 
was the first large-scale, electronic, digital computer capable of being 
reprogrammed to solve a full range of computing problems, although 
earlier computers had been built with some of these properties. 

ENIAC was developed and built by the U.S. Army for their Ballistics 
Research Laboratory in 1942, with the purpose of calculating ballistic 
firing tables. 

The computer was commissioned on May 17, 1943 as Project PX and 
constructed at Penn's Moore School of Electrical Engineering from 
mid-1944. It was unveiled on February 14, 1946 at the University of 
Pennsylvania, having cost almost $500,000. 

ENIAC was shut down on November 9, 1946 for a refurbishment and a 
memory upgrade, and was transferred to the Aberdeen Proving 
Ground, Maryland in 1947. There, on July 29 of that year, it was turned 
on and would be in continuous operation until 11:45 p.m. on Oct. 2, 
1955.



The ENIAC



John Presper Eckert Jr. and  
John Mauchly



Physically, ENIAC was a monster. It contained 17,468 vacuum tubes, 
7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors 
and around 5 million hand-soldered joints. 

It weighed 30 short tons (27 t), was roughly 8 feet (2.4 m) by 3 feet (0.9 
m) by 100 feet (30 m), took up 1800 square feet (167 m2), and 
consumed 150 kW of power. 

Input was possible from an IBM card reader, while an IBM card punch 
was used for output. These cards could be used to produce printed 
output offline using an IBM accounting machine, probably the IBM 405.



ENIAC

Some electronics experts predicted that tube failures would occur so frequently 
that the machine would never be useful. This prediction turned out to be partially 
correct: several tubes burned out almost every day, leaving it nonfunctional 
about half the time. (According to a 1989 interview with Eckert the continuously 
failing tubes story was a myth: "We had a tube fail about every two days and we 
could locate the problem within 15 minutes.") Special high-reliability tubes were 
not available until 1948. 

Most of these failures, however, occurred during the warm-up and cool-down 
periods, when the tube heaters and cathodes were under the most thermal 
stress. By the simple (if expensive) expedient of never turning the machine off, 
the engineers reduced ENIAC's tube failures to the more acceptable rate of one 
tube every two days. 

In 1954, the longest continuous period of operation without a failure was 116 
hours (close to five days). Given the technology available at the time, this failure 
rate was remarkably low, and stands as a tribute to the precise engineering of 
ENIAC



EDVAC

EDVAC (Electronic Discrete Variable Automatic Computer) was 
one of the earliest electronic computers. Unlike the ENIAC, it was 
binary rather than decimal.

The design for the EDVAC was developed before the ENIAC was 
even operational. It was intended to resolve many of the problems 
created by the ENIAC's design. Like the ENIAC, the EDVAC was 
built for the U.S. Army's Ballistics Research Laboratory at the 
Aberdeen Proving Ground by the University of Pennsylvania. The 
ENIAC designers Eckert & Mauchly were joined by John von 
Neumann and some others and the new design was based on von 
Neumann's 1945 report.
A contract to build the new computer was signed in April 1946 with 
an initial budget of US$100,000 and the contract named the device 
the Electronic Discrete Variable Automatic Calculator. A major 
concern in construction was to balance reliability and economy. The 
final cost of EDVAC, however, ended up similar to the ENIAC's at
just under $500,000; five-fold the initial estimate



John von Neumann (1903-1957)

John von Neumann was a Hungarian 
mathematician and polymath of Jewish 
ancestry who made important contributions 
in quantum physics, functional analysis, set 
theory, economics, computer science, 
numerical analysis, hydrodynamics (of 
explosions), statistics and many other 
mathematical fields.

Most notably, von Neumann was a pioneer 
of the modern digital computer and the 
application of operator theory to quantum 
mechanics, a member of the Manhattan 
Project Team, and creator of game theory 
and the concept of cellular automata. 

Along with Edward Teller and Stanislaw Ulam, von Neumann worked out key steps 
in the nuclear physics involved in thermonuclear reactions and the hydrogen bomb.



Eckert was delighted that von Neumann was so keenly interested
in the logical problems surrounding the new idea, and these meetings
were scenes of greatest intellectual activity.
This work on the logical plan for the new machine was exactly
to von Neumann’s liking and precisely where his previous work on
formal logics came to play a decisive role. Prior to his appearance on
the scene, the group at the Moore School concentrated primarily on
the technological problems, which were very great; after his arrival he
took over leadership on the logical problems.

H. Goldstine



During the latter part of 1944, and continuing to the present time, Dr.
John von Neumann . . . has fortunately been available for consultation.
He has contributed to many discussions on the logical controls of the
EDVAC, has prepared certain instruction codes, and has tested these
proposed systems by writing out the coded instructions for specific
problems. Dr. von Neumann has also written a preliminary report
in which most of the results of earlier discussions are summarized.
. . . In his report, the physical structures and devices . . . are replaced by
idealized elements to avoid raising engineering problems which might
distract attention from the logical considerations under discussion.

John Presper Eckert Jr. e John Mauchly



General-purpose Computers

In order to test the general applicability of the EDVAC, von Neumann 
wrote his first serious program, not for the kind of number crunching 
application for which the machine was mainly developed, but rather to 
simply sort data efficiently. The success of this program helped to 
convince von Neumann that 

``… it is legitimate to conclude already on the basis of the now
available evidence, that the EDVAC is very nearly an `all purpose‘
machine, and that the present principles for the logical controls 
are sound.'‘

John von Neumann



The von Neumann Architecture

The term von Neumann 
architecture refers to a computer 
design model that uses a single 
storage structure to hold both 
instructions and data. The term von 
Neumann machine can be used to 
describe such a computer, and 
remember that it implements a 
Turing machine.

The separation of storage from the 
processing unit is implicit in the von 
Neumann architecture. 

The term "stored-program computer" 
is generally used to mean a 
computer of this design.



In October 1973 Judge Earl Larson of the U.S. 
District Court in Minnesota rendered a 
decision invalidating the ENIAC patent. But 
rather than being a clear judgement as to who 
invented the electronic computer, this decision 
and the law suit, Honeywell v. Sperry-Rand, 
have done more to polarize opinions with 
respect to the varied contributions of many 
different individuals. In fact, this decision 
points to some of the limitations of the U.S. 
patent system with respect to complex 
technologies. Namely, the U.S. patent system 
sets forth certain pressures to name a sole 
inventor when invention itself is a often a 
highly collaborative process. We hope that this 
exhibition reveals something of the 
complexities involved in the process of 
invention. We hope also that in approaching 
the fifty-year mark of modern computing, we 
can recognize the diverse contributions of 
individuals, regardless of what we individually 
consider to be its origins.



The ACE

The ACE (Automatic Computing Engine) was the first computer designed in 
Britain; it was designed by Alan Turing in 1946.

On February 19, 1946 Turing presented a paper to the National Physical 
Laboratory (NPL) Executive Committee, giving the first complete design of a 
stored-program computer. 

Unlike most other early computers, it owed nothing to EDVAC; it was a 
completely independent design which was contemporaneous with EDVAC.

The ACE had a 48-bit word. It used delay line main memory, and contained 
about 7000 vacuum tubes. Its multiplication time was about 448 microseconds.

Due to various difficulties, the first version of the ACE actually built was the Pilot 
ACE, a smaller version of Turing's original complete design. 

The full-scale version was constructed later, in the late 1950s; it was working by 
late 1957, but was already obsolete, due to its reliance on delay-line main 
memory.



[It] is … very contrary to the line of development here, and much 
more in the American tradition of solving one's difficulties by 
means of much equipment rather than by thought.
… Furthermore certain operations which we regard as more
fundamental than addition and multiplication have been omitted.

Alan Turing



By the end of 1945, Turing had produced his remarkable ACE 
(Automatic Computing Engine) Report.  One detailed 
comparison of the ACE Report with von Neumann's EDVAC 
Report, notes that whereas the latter ``is a draft and is 
unfinished … more important … is incomplete …'' the ACE 
Report ``is a complete description of a computer, right 
down to the logical circuit diagrams'' and even including ``a
cost estimate of £11,200.''



La macchina ACE di Turing era molto diversa dall’EDVAC di von 
Neumann's (come lo erano I due matematici!).

Sebbene von Neumann volesse una macchina “all purpose” era molto
piu’ portato a pensare a una grossa calcolatrice (number 
crunching).

L’idea di Turing era di costruire una macchina piu’ semplice e piu’ 
indipendente dalle possibli applicazioni. 

[…] An opposing paradigm, the so-called RISC (reduced instruction set 
computing) architecture, adopted by a number of computer 
manufacturers, uses a minimal instruction set on the chip, with 
needed functionality supplied by programming, again very much in 
line with the ACE philosophy.



In discussions of this period, the new computers that were being developed
are usually referred to as embodying “the stored program concept” because
for the first time the programs to be executed were being stored within
the computer. Unfortunately this terminology has served to obscure the fact
that what was really revolutionary about these machines was their universal
all-purpose character, while the stored program aspect was only a means to
an end. The point of view of Turing and von Neumann is conceptually so
simple and has so much become part of our intellectual climate, that it is
diffcult to understand how radically new it was.



ENIAC (e UNIVAC): 
l’impresa ingegneristica (e commerciale)



IBM 701 around 1954



Punched Cards

Programs in the 1950s 
to 1970s are coded on 
a piece of paper card 
with punched holes.  

They are read by 
electromechanical or 
optical reader into the 
computer.  

Each card can hole 
only one line of 
information.  

The standard IBM card 
is 80 characters long.  



Transistors

Integrated circuits 
placed all components 
in one chip, drastically 
reducing the size.

In 1947, John Bardeen and Walter Brattain
invented the transistor, which quickly replaced 
the vacuum tube technology. Initially, electronic 
devices are made of individual components.



Vax-11 from Digital Equipment

Vax-11 is popular in universities in the early 1980s. 



Cray Supercomputer

One of the first so-called supercomputer 
built around 1976.  It was the fastest and 
also most expensive.



IBM PCs (1981)

The IBM Personal 
Computer started a 
revolution for computing 
by the common folks.  

The “PC” comes with 
64kilobyte of memory, 
5.25 inch floppy disk 
drive.  It runs at 
4.7mega-Hertz.  

The whole operating 
system, the Microsoft’s 
DOS, is on one floppy.



Very Large Scale Integrated (VLSI) Circuits

Modern computers are based on 
technology of very large number of 
components on a small silicon chip.



Portable Computing

Nowadays in 2006, 
laptop of 1.2kg in 
weight is common 
place. 

It runs at 1.8 
GegaHertz speed 
with 512 MegaByte
of RAM and 40 
Gbyte of internal 
hard disk, plus DVD 
drive etc. 



Characteristics of Commercial 
Computers
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TIME on Turing and von Neumann

Alan Turing’s name was on the list of the twenty greatest “scientists 
and thinkers” of the twentieth century as proposed by TIME magazine 
(in its March 29, 1999 issue). Said TIME:

“So many ideas and technological advances converged to create the modern 
computer that it is foolhardy to give one person the credit for inventing it. But the 
fact remains that everyone who taps at a keyboard, opening a spreadsheet or a 

word-processing program, is working on an incarnation of a Turing machine.”

And here is what TIME had to say about von Neumann:

“Virtually all computers today from $10 million supercomputers to the tiny chips 
that power cell phones and Furbies, have one thing in common: they are all 

“von Neumann machines,” variations on the basic computer architecture that 
John von Neumann, building on the work of Alan Turing, laid out in the 1940s.”



Per approfondire….



Su Turing e von Neumann


	Storia dell’informatica
	The Entscheidungsproblem
	Church and Turing
	Alan M. Turing (1912-1954)
	Turing’s Contributions
	
	On Computable Numbers, with an Application to the Entscheidungsproblem (1936)
	On Computable Numbers, with an Application to the Entscheidungsproblem (1936)
	The Turing Machine
	Turing Machine Details
	Notes on Turing Machine
	Turing Machine to Recognize a Symbol b in the Second Cell
	Execution of the Turing Machine Example
	Execution of the Turing Machine Example (different input)
	Adding 1 to a Binary Number
	Running of the Adding-1-program:Add 1 to 1011
	Another Way to Represent Turing Machine Programs
	What Does This Program Do?
	The Halting Problem
	The Halting Problem: Sketch of Proof / 1
	The Halting Problem: Sketch of Proof / 2
	The Halting Problem: Sketch of Proof / 3
	Back to the Entscheidungsproblem
	Universal Turing Machine
	The Church-Turing Thesis
	Can Machines Think? The Turing Test(From, A. M. Turing, Computer Machinery and Intelligence, 1950)
	The Imitation Game
	
	
	ELIZA
	An Example (Real) Conversation with ELIZA / 1
	An Example (Real) Conversation with ELIZA / 2
	Who Invented the First Computer?ACE vs EDVAC
	A Step Back: The ENIAC
	The ENIAC
	John Presper Eckert Jr. and  John Mauchly
	
	ENIAC
	EDVAC
	John von Neumann (1903-1957)
	
	General-purpose Computers
	The von Neumann Architecture
	The ACE
	
	
	
	
	ENIAC (e UNIVAC): l’impresa ingegneristica (e commerciale)
	IBM 701 around 1954
	Punched Cards
	Transistors
	Vax-11 from Digital Equipment
	Cray Supercomputer
	IBM PCs (1981)
	Very Large Scale Integrated (VLSI) Circuits
	Portable Computing
	Characteristics of Commercial Computers
	TIME on Turing and von Neumann
	Per approfondire….
	Su Turing e von Neumann

