
Storia dell’informaticaStoria dell’informatica

Il calcolatore universale:Il calcolatore universale:

Dalla teoria alla praticaDalla teoria alla pratica

The SteamThe Steam--Powered Turing MachinePowered Turing Machine mural at themural at the
Paul G. Allen Center for Computer Science & Engineering, Paul G. Allen Center for Computer Science & Engineering,
University of Washington, WA.University of Washington, WA.

The Entscheidungsproblem

In continuation of his "program" with which he challenged the
mathematics community in 1900, at a 1928 international conference
David Hilbert asked three questions, the third of which became known
as "Hilbert's Entscheidungsproblem".

A first-order statement is called "universally valid" or "logically valid" if it
follows from the axioms of the first-order predicate calculus. Gödel's
completeness theorem states that a statement is universally valid in
this sense if and only if it is true in every interpretation of the formula in
a model.

The Entscheidungsproblem (German for 'decision problem') is the
challenge in symbolic logic to find a general algorithm which decides
for given first-order statements whether they are universally valid or
not.

Church and Turing

In 1936, working independently, Alonzo Church and Alan Turing both
showed that this is impossible. As a consequence, it is in particular
impossible to decide algorithmically whether statements in arithmetic
are true or false.

Before the question could be answered, the notion of "algorithm" had
to be formally defined. This was done by Alonzo Church in 1936 with
the concept of "effective calculability" based on his lambda calculus
and by Alan Turing in the same year with his concept of Turing
machines.

The two approaches are equivalent, an instance of the Church-Turing
thesis.

Alan M. Turing (1912-1954)

Alan Mathison Turing was a British
mathematician, logician, and
cryptographer. Turing is often
considered to be the father of modern
computer science.

During World War II, Turing worked at
Bletchley Park, Britain's codebreaking
centre and was for a time head of Hut 8,
the section responsible for German
Naval cryptanalysis. He devised a
number of techniques for breaking
German ciphers, including the method
of the bombe, an electromechanical
machine which could find settings for
the Enigma machine.

In 1952, Turing was convicted of acts of gross indecency after admitting to a
sexual relationship with a man in Manchester. He was placed on probation and
required to undergo hormone therapy. When Alan Turing died in 1954, an inquest
found that he had committed suicide by eating an apple laced with cyanide.

Turing’s Contributions

Turing provided an influential
formalisation of the concept of algorithm
and computation with the Turing
machine, formulating the now widely
accepted "Turing" version of the Church–
Turing thesis.

After the war, he worked at the National
Physical Laboratory, creating one of the
first designs for a stored-program
computer, although it was never actually
built. In 1947 he moved to the University
of Manchester to work, largely on
software, on the Manchester Mark I then
emerging as one of the world's earliest
true computers.

With the Turing test, Turing made a significant and characteristically provocative
contribution to the debate regarding artificial intelligence.

How powerful a computer can be? Can it replace intelligence?

It came as a surprise in 1930s before the advent of digital
electronic computer that Alan Turing argued that any computer,
present and the ones ever will exist, is as power as the simple
“Turing Machine”.

Certain problems cannot be solved by computer, no matter how
powerful the computer is.

On Computable Numbers, with an Application
to the Entscheidungsproblem (1936)

«We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions q1, q2, ..., qR
which will be called “m-configurations”. The machine is supplied with a “tape”,
(the analogue of paper) running through it, and divided into sections (called
“squares”) each capable of bearing a “symbol”. At any moment there is just one
square, say the r-th, bearing the symbol S(r) which is “in the machine”. We may
call this square the “scanned square”. The symbol on the scanned square may
be called the “scanned symbol”. The “scanned symbol” is the only one of which
the machine is, so to speak, “directly aware”. However, by altering its m-
configuration the machine can effectively remember some of the symbols which
it has “seen” (scanned) previously. The possible behaviour of the machine at
any moment is determined by the m-configuration qn and the scanned symbol
S(r). This pair qn, S(r) will be called the “configuration”: thus the configuration
determines the possible behaviour of the machine. In some of the
configurations in which the scanned square is blank (i.e. bears no symbol) the
machine writes down a new symbol on the scanned square: in other
configurations it erases the scanned symbol. The machine may also change the
square which is being scanned, but only by shifting it one place to right or left. In
addition to any of these operations the m-configuration may be changed.

On Computable Numbers, with an Application
to the Entscheidungsproblem (1936)

Some of the symbols written down will form the sequence of figures
which is the decimal of the real number which is being computed. The
others are just rough notes to “assist the memory”. It will only be these
rough notes which will be liable to erasure.

It is my contention that these operations include all those which are
used in the computation of a number. The defence of this contention
will be easier when the theory of the machines is familiar to the reader.
In the next section I therefore proceed with the development of the
theory and assume that it is understood what is meant by “machine”,
“tape”, “scanned”, etc.»

The Turing Machine

The Turing machine
consists of a tape, a moving
head which can read and
print a set of symbols, an
internal state of the
machine, and a “program”.

A program is a list of rules
what to do next given the
current reading and internal
state.

It can move to the left or
right, change internal state
and print a symbol on the
tape.

Turing Machine Details

1. A set of characters (the alphabet), including blank, serves as
input and output symbols on the tape. E.g. {a,b,c, … }

2. A tape divided into a sequence of numbered cells each
containing one character or a blank. The tape starts from cell 1,
and extends to the right indefinitely.

3. A tape head that can in one step read the contents of a cell on
the tape, replace it with some other character, and reposition
itself to the next cell to the right or left of the one it has just read.
At the start of the process, tape head always begins by reading
the input in cell 1.

4. A finite set of internal states of the machine, including START,
HALT, and other named states such as 1, 2, 3, …

5. A program, which is a set of rules that tell us, on the basis of the
letter the tape head just read, how to change states, what to print,
and where to move the tape head. We use five symbols

(state, letter read, new state, letter write, direction)
to indicate such a rule.

Notes on Turing Machine

The character set will be finite, but the number and symbols are
unspecified. Same for the states.

The machine begins from the START state and stops at the HALT
state.

Illegal action causes the machine to crash (such as move to left
when it is on cell 1, or moved to state q but no instruction found for
that state).

Turing Machine to Recognize a Symbol
b in the Second Cell

The symbols will be [a, b, space=∆]
States: 1=START, 2, 3, 4=HALT
Program: (1,a,2,a,R)

(1,b,2,b,R)
(2,b,3,b,R)
(3,a,3,a,R),(3,b,3,b,R)
(3,∆,4,∆,R)

Starting tape is
a b a ∆ ∆ ∆ ∆ …

cell
1

cell
2

cell
3

…
…

Execution of the Turing Machine
Example

1 Program:
(1,a,2,a,R)
(1,b,2,b,R)
(2,b,3,b,R)
(3,a,3,a,R)
(3,b,3,b,R)
(3,∆,4,∆,R)
1=start,
4=halt.

Start machine by
position the head in
cell 1, in state 1.

First rule says change
state to 2, move to
right

3rd rule says change
state to 3, move to
right

4th rule says, move to
right

Last rule says change
to state 4. Since we
are in state 4, we
must halt. Program
executed successfully.

a b a ∆ ∆ ∆ ∆ …

2

a b a ∆ ∆ ∆ ∆ …

3

a b a ∆ ∆ ∆ ∆ …

3

a b a ∆ ∆ ∆ ∆ …

a b a ∆ ∆ ∆ ∆ …

4

Execution of the Turing Machine
Example (different input)

Program:
(1,a,2,a,R)
(1,b,2,b,R)
(2,b,3,b,R)
(3,a,3,a,R)
(3,b,3,b,R)
(3,∆,4,∆,R)
1=start,
4=halt.

1 Start machine by
position the head in
cell 1, in state 1.

Second rule says
change state to 2,
move to right.

When in state 2 and
reading a, there is no
instruction as what to
do, the machine
crashes (given you
the answer that there
is no b in cell 2).

b a a ∆ ∆ ∆ ∆ …

2

b a a ∆ ∆ ∆ ∆ …

Adding 1 to a Binary Number

The states are [1=START, 2, 3=HALT]
Characters on tape are [0,1,space=∆]
The program is
(1,0,3,1,R)
(1,1,2,0,R)
(2,0,3,1,R)
(2,1,2,0,R)

Meaning of the “program”:
When start (state 1) if the digit
under head is 0, change it to 1,
and halt (e.g., 1100 + 1 =
1101). If it is 1, change it to 0
and remember the carry by
putting it in state 2. In state 2,
we need to add the carry, just
like it is in state 1.

Running of the Adding-1-program:
Add 1 to 1011

1 (1,0,3,1,R)
(1,1,2,0,R)
(2,0,3,1,R)
(2,1,2,0,R)

First pair of
numbers
are current
state and
reading,
second pair
new state
and writing,
last symbol
(R or L) is
moving
direction.

We set up the input
tape with the binary
number 1011, least
significant digit at the
leftmost.

By 2nd rule, change
tape to 0, change
state to 2, move to
right.

By 4th rule, change
tape to 0, move to
right.

By 3rd rule, change 0
to 1, and halt. The
result is 1100.

1 1 0 1 ∆ ∆ ∆ …

2

0 1 0 1 ∆ ∆ ∆ …

2

0 0 0 1 ∆ ∆ ∆ …

3

0 0 1 1 ∆ ∆ ∆ …

Another Way to Represent
Turing Machine Programs

A list of 5
Items:
(1,0,3,1,R)
(1,1,2,0,R)
(2,0,3,1,R)
(2,1,2,0,R)

(0,1,R)

2
(1,0,R) (0,1,R)

1 3
start halt

(1,0,R)

The number in square or circle represents the current state of
the machine. The arrow points to next state in a move. The
triplet of symbols means (read, write, direction). Where to
move is determined by what is read currently.

What Does This Program Do?

States [1=START,2,3,4,5,6,7,8=HALT]
Characters [a,b,∆]
Program:
(1,a,2,∆,R), (1,b,5,∆,R), (1,∆,8,∆,R), (2,a,2,a,R),
(2,b,2,b,R), (2,∆,3,∆,L), (3,a,4,∆,L), (3,∆,8,∆,R),
(4,a,4,a,L), (4,b,4,b,L), (4,∆,1,∆,R), (5,a,5,a,R),
(5,b,5,b,R), (5,∆,6,∆,L), (6,∆,8,∆,R), (6,b,7,∆,L),
(7,a,7,a,L), (7,b,7,b,L), (7,∆,1,∆,R).

The program determines if the strings formed by a’s
and b’s are palindrome. It halts if yes, crashes if no.

The Halting Problem

The halting problem is a decision problem which can be informally
stated as follows:

Given a description of a program and its initial input, determine
whether the program, when executed on this input, ever halts
(completes). The alternative is that it runs forever without
halting.

Alan Turing proved in 1936 that a general algorithm to solve the halting
problem for all possible program-input pairs cannot exist.

We say that the halting problem is undecidable over Turing machines.

The Halting Problem: Sketch of Proof / 1

The proof proceeds by reductio ad absurdum. Start by choosing a programming
language, a scheme that associates every program with at least one string
description. Now suppose that someone claims to have found an algorithm
halt(p, i) that returns true if p describes a program that halts when given as input
the string i, and returns false otherwise.

Construct another program trouble that uses halt as a subroutine:

function trouble(string s)
if halt(s, s) == FALSE then return TRUE
else loop forever

This program takes a string s as its argument and runs the algorithm halt, giving
it s both as the description of the program to check and as the initial data to
feed to that program. If halt returns false, then trouble returns true, otherwise
trouble goes into an infinite loop.

Since all programs can be represented by strings, there is a string t that
represents the program trouble. Does trouble(t) halt?

The Halting Problem: Sketch of Proof / 2

Consider both cases:

1. If trouble(t) halts, it must be because halt(t, t) returned false, but
that would mean that trouble(t) should not have halted.

2. If trouble(t) runs forever, it is either because halt itself runs forever,
or because it returned true. This would mean either that halt does
not work for every valid input, or that trouble(t) should have halted.

Either case concludes that halt did not give a correct answer, contrary
to the original claim. Since the same reasoning applies to any
program that someone might offer as a solution to the halting
problem, there can be no solution.

The Halting Problem: Sketch of Proof / 3

This classic proof is typically referred to as the diagonalization proof,
so called because if one imagines a grid containing all the values of
halt(p, i), with every possible p value given its own row, and every
possible i value given its own column, then the values of halt(s, s) are
arranged along the main diagonal of this grid.

The proof can be framed in the form of the question: what row of the
grid corresponds to the string t?

The answer is that the trouble function is devised such that halt(t, i)
differs from every row in the grid in at least one position: namely, the
main diagonal, where t=i.

This contradicts the requirement that the grid contains a row for every
possible p value, and therefore constitutes a proof by contradiction that
the halting problem is undecidable.

Back to the Entscheidungsproblem

The negative answer to the Entscheidungsproblem was then given by Alonzo
Church in 1936 and independently shortly thereafter by Alan Turing, also in
1936.

Turing reduced the halting problem for Turing machines to the
Entscheidungsproblem, and his paper is generally considered to be much more
influential than Church's.

The work of both authors was heavily influenced by Kurt Gödel's earlier work on
his incompleteness theorem, especially by the method of assigning numbers (a
Gödel numbering) to logical formulas in order to reduce logic to arithmetic.

Turing's argument follows. Suppose we had a general decision algorithm for
first-order logic. The question whether a given Turing machine halts or not can
be formulated as a first-order statement, which would then be susceptible to the
decision algorithm. But Turing had proved earlier that no general algorithm can
decide whether a given Turing machine halts.

Universal Turing Machine

It is possible to build (the most powerful) Turing
machine that can simulate the behavior of any
other Turing machine (including itself).

A Turing machine exists that take an encoded
Turing machine T and its input data as input on its
tape. The result is the same as if executing the
lesser Turing machine T.

The Church-Turing Thesis

The thesis can be stated as follows:

"Every 'function which would naturally be regarded as
computable' can be computed by a Turing machine."

Due to the vagueness of the concept of a "function which would
naturally be regarded as computable", the thesis cannot formally be
proven. Disproof would be possible only if humanity found ways of
building hypercomputers whose results should "naturally be regarded
as computable".

Any computer program can be translated into a Turing machine, and
any Turing machine can be translated into any general-purpose
programming language, so the thesis is equivalent to saying that any
general-purpose programming language is sufficient to express any
algorithm.

Can Machines Think? The Turing Test
(From, A. M. Turing, Computer Machinery and Intelligence, 1950)

I propose to consider the question, "Can machines think?" This should
begin with definitions of the meaning of the terms "machine" and
"think." The definitions might be framed so as to reflect so far as
possible the normal use of the words, but this attitude is dangerous, If
the meaning of the words "machine" and "think" are to be found by
examining how they are commonly used it is difficult to escape the
conclusion that the meaning and the answer to the question, "Can
machines think?" is to be sought in a statistical survey such as a
Gallup poll. But this is absurd. Instead of attempting such a definition I
shall replace the question by another, which is closely related to it and
is expressed in relatively unambiguous words.

The Imitation Game

The new form of the problem can be described in terms of a game which
we call the 'imitation game." It is played with three people, a man (A), a
woman (B), and an interrogator (C) who may be of either sex. The
interrogator stays in a room apart front the other two. The object of the
game for the interrogator is to determine which of the other two is the
man and which is the woman. He knows them by labels X and Y, and at
the end of the game he says either "X is A and Y is B" or "X is B and Y is
A." The interrogator is allowed to put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A's object in the
game to try and cause C to make the wrong identification. His answer
might therefore be:

"My hair is shingled, and the longest strands are about nine inches
long."

In order that tones of voice may not help the interrogator the answers
should be written, or better still, typewritten. The ideal arrangement is
to have a teleprinter communicating between the two rooms.
Alternatively the question and answers can be repeated by an
intermediary. The object of the game for the third player (B) is to help
the interrogator. The best strategy for her is probably to give truthful
answers. She can add such things as "I am the woman, don't listen to
him!" to her answers, but it will avail nothing as the man can make
similar remarks.

We now ask the question, "What will happen when a machine takes
the part of A in this game?" Will the interrogator decide wrongly as
often when the game is played like this as he does when the game is
played between a man and a woman? These questions replace our
original, "Can machines think?"

The new problem has the advantage of drawing a fairly sharp line between the
physical and the intellectual capacities of a man. No engineer or chemist claims
to be able to produce a material which is indistinguishable from the human skin.
It is possible that at some time this might be done, but even supposing this
invention available we should feel there was little point in trying to make a
"thinking machine" more human by dressing it up in such artificial flesh. The
form in which we have set the problem reflects this fact in the condition which
prevents the interrogator from seeing or touching the other competitors, or
hearing -their voices. Some other advantages of the proposed criterion may be
shown up by specimen questions and answers. Thus:

Q: Please write me a sonnet on the subject of the Forth Bridge.
A : Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764.
A: (Pause about 30 seconds and then give as answer) 105621.
Q: Do you play chess?
A: Yes.
Q: I have K at my K1, and no other pieces. You have only K at K6 and R at R1.
It is your move. What do you play?
A: (After a pause of 15 seconds) R-R8 mate.

ELIZA

ELIZA is a famous 1966 computer program by Joseph Weizenbaum, which
parodied a Rogerian therapist, largely by rephrasing many of the patient's
statements as questions and posing them to the patient.

Weizenbaum chose the context of psychotherapy to "sidestep the problem of
giving the program a data base of real-world knowledge", the therapeutic
situation being one of the few real human situations in which a human being can
reply to a statement with a question that indicates very little specific knowledge
of the topic under discussion.

Eliza worked by simple parsing and substitution of key words into canned
phrases. Depending upon the initial entries by the user the illusion of a human
writer could be instantly dispelled, or could continue through several
interchanges.

It was sometimes so convincing that there are many anecdotes about people
becoming very emotionally caught up in dealing with ELIZA for several minutes
until the machine's true lack of understanding became apparent. All this was
due to people's tendency to attach to words meanings which the computer
never put there.

An Example (Real) Conversation
with ELIZA / 1

young woman: Men are all alike.
eliza: In what way?
young woman: They're always bugging us about something specific or
other.
eliza: Can you think of a specific example?
young woman: Well, my boyfriend made me come here.
eliza: Your boyfriend made you come here?
young woman: He says I'm depressed much of the time.
eliza: I am sorry to hear you are depressed.
young woman: It's true. I'm unhappy.
eliza: Do you think coming here will help you not to be unhappy?
young woman: I need some help, that much seems certain.
eliza: What would it mean to you if you got some help?
young woman: Perhaps I could learn to get along with my mother.
eliza: Tell me more about your family.
young woman: My mother takes care of me.
eliza: Who else in your family takes care of you?

An Example (Real) Conversation
with ELIZA / 2

young woman: My father.
eliza: Your father.
young woman: You are like my father in some ways.
eliza: What resemblance do you see?
young woman: You are not very aggressive but I think you don't want me
to notice that.
eliza: What makes you think I am not very aggressive?
young woman: You don't argue with me.
eliza: Why do you think I don't argue with you?
young woman: You are afraid of me.
eliza: Does it please you to believe I am afraid of you?
young woman: My father is afraid of everybody.
eliza: What else comes to mind when you think of your father?
young woman: Bullies.
eliza: Does that have anything to do with the fact that your boyfriend made
you come here
….

Who Invented the First Computer?
ACE vs EDVAC

A Step Back: The ENIAC

ENIAC, short for Electronic Numerical Integrator and Computer,
was the first large-scale, electronic, digital computer capable of being
reprogrammed to solve a full range of computing problems, although
earlier computers had been built with some of these properties.

ENIAC was developed and built by the U.S. Army for their Ballistics
Research Laboratory in 1942, with the purpose of calculating ballistic
firing tables.

The computer was commissioned on May 17, 1943 as Project PX and
constructed at Penn's Moore School of Electrical Engineering from
mid-1944. It was unveiled on February 14, 1946 at the University of
Pennsylvania, having cost almost $500,000.

ENIAC was shut down on November 9, 1946 for a refurbishment and a
memory upgrade, and was transferred to the Aberdeen Proving
Ground, Maryland in 1947. There, on July 29 of that year, it was turned
on and would be in continuous operation until 11:45 p.m. on Oct. 2,
1955.

The ENIAC

John Presper Eckert Jr. and
John Mauchly

Physically, ENIAC was a monster. It contained 17,468 vacuum tubes,
7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors
and around 5 million hand-soldered joints.

It weighed 30 short tons (27 t), was roughly 8 feet (2.4 m) by 3 feet (0.9
m) by 100 feet (30 m), took up 1800 square feet (167 m2), and
consumed 150 kW of power.

Input was possible from an IBM card reader, while an IBM card punch
was used for output. These cards could be used to produce printed
output offline using an IBM accounting machine, probably the IBM 405.

ENIAC

Some electronics experts predicted that tube failures would occur so frequently
that the machine would never be useful. This prediction turned out to be partially
correct: several tubes burned out almost every day, leaving it nonfunctional
about half the time. (According to a 1989 interview with Eckert the continuously
failing tubes story was a myth: "We had a tube fail about every two days and we
could locate the problem within 15 minutes.") Special high-reliability tubes were
not available until 1948.

Most of these failures, however, occurred during the warm-up and cool-down
periods, when the tube heaters and cathodes were under the most thermal
stress. By the simple (if expensive) expedient of never turning the machine off,
the engineers reduced ENIAC's tube failures to the more acceptable rate of one
tube every two days.

In 1954, the longest continuous period of operation without a failure was 116
hours (close to five days). Given the technology available at the time, this failure
rate was remarkably low, and stands as a tribute to the precise engineering of
ENIAC

EDVAC

EDVAC (Electronic Discrete Variable Automatic Computer) was
one of the earliest electronic computers. Unlike the ENIAC, it was
binary rather than decimal.

The design for the EDVAC was developed before the ENIAC was
even operational. It was intended to resolve many of the problems
created by the ENIAC's design. Like the ENIAC, the EDVAC was
built for the U.S. Army's Ballistics Research Laboratory at the
Aberdeen Proving Ground by the University of Pennsylvania. The
ENIAC designers Eckert & Mauchly were joined by John von
Neumann and some others and the new design was based on von
Neumann's 1945 report.
A contract to build the new computer was signed in April 1946 with
an initial budget of US$100,000 and the contract named the device
the Electronic Discrete Variable Automatic Calculator. A major
concern in construction was to balance reliability and economy. The
final cost of EDVAC, however, ended up similar to the ENIAC's at
just under $500,000; five-fold the initial estimate

John von Neumann (1903-1957)

John von Neumann was a Hungarian
mathematician and polymath of Jewish
ancestry who made important contributions
in quantum physics, functional analysis, set
theory, economics, computer science,
numerical analysis, hydrodynamics (of
explosions), statistics and many other
mathematical fields.

Most notably, von Neumann was a pioneer
of the modern digital computer and the
application of operator theory to quantum
mechanics, a member of the Manhattan
Project Team, and creator of game theory
and the concept of cellular automata.

Along with Edward Teller and Stanislaw Ulam, von Neumann worked out key steps
in the nuclear physics involved in thermonuclear reactions and the hydrogen bomb.

Eckert was delighted that von Neumann was so keenly interested
in the logical problems surrounding the new idea, and these meetings
were scenes of greatest intellectual activity.
This work on the logical plan for the new machine was exactly
to von Neumann’s liking and precisely where his previous work on
formal logics came to play a decisive role. Prior to his appearance on
the scene, the group at the Moore School concentrated primarily on
the technological problems, which were very great; after his arrival he
took over leadership on the logical problems.

H. Goldstine

During the latter part of 1944, and continuing to the present time, Dr.
John von Neumann . . . has fortunately been available for consultation.
He has contributed to many discussions on the logical controls of the
EDVAC, has prepared certain instruction codes, and has tested these
proposed systems by writing out the coded instructions for specific
problems. Dr. von Neumann has also written a preliminary report
in which most of the results of earlier discussions are summarized.
. . . In his report, the physical structures and devices . . . are replaced by
idealized elements to avoid raising engineering problems which might
distract attention from the logical considerations under discussion.

John Presper Eckert Jr. e John Mauchly

General-purpose Computers

In order to test the general applicability of the EDVAC, von Neumann
wrote his first serious program, not for the kind of number crunching
application for which the machine was mainly developed, but rather to
simply sort data efficiently. The success of this program helped to
convince von Neumann that

``… it is legitimate to conclude already on the basis of the now
available evidence, that the EDVAC is very nearly an `all purpose‘
machine, and that the present principles for the logical controls
are sound.'‘

John von Neumann

The von Neumann Architecture

The term von Neumann
architecture refers to a computer
design model that uses a single
storage structure to hold both
instructions and data. The term von
Neumann machine can be used to
describe such a computer, and
remember that it implements a
Turing machine.

The separation of storage from the
processing unit is implicit in the von
Neumann architecture.

The term "stored-program computer"
is generally used to mean a
computer of this design.

In October 1973 Judge Earl Larson of the U.S.
District Court in Minnesota rendered a
decision invalidating the ENIAC patent. But
rather than being a clear judgement as to who
invented the electronic computer, this decision
and the law suit, Honeywell v. Sperry-Rand,
have done more to polarize opinions with
respect to the varied contributions of many
different individuals. In fact, this decision
points to some of the limitations of the U.S.
patent system with respect to complex
technologies. Namely, the U.S. patent system
sets forth certain pressures to name a sole
inventor when invention itself is a often a
highly collaborative process. We hope that this
exhibition reveals something of the
complexities involved in the process of
invention. We hope also that in approaching
the fifty-year mark of modern computing, we
can recognize the diverse contributions of
individuals, regardless of what we individually
consider to be its origins.

The ACE

The ACE (Automatic Computing Engine) was the first computer designed in
Britain; it was designed by Alan Turing in 1946.

On February 19, 1946 Turing presented a paper to the National Physical
Laboratory (NPL) Executive Committee, giving the first complete design of a
stored-program computer.

Unlike most other early computers, it owed nothing to EDVAC; it was a
completely independent design which was contemporaneous with EDVAC.

The ACE had a 48-bit word. It used delay line main memory, and contained
about 7000 vacuum tubes. Its multiplication time was about 448 microseconds.

Due to various difficulties, the first version of the ACE actually built was the Pilot
ACE, a smaller version of Turing's original complete design.

The full-scale version was constructed later, in the late 1950s; it was working by
late 1957, but was already obsolete, due to its reliance on delay-line main
memory.

[It] is … very contrary to the line of development here, and much
more in the American tradition of solving one's difficulties by
means of much equipment rather than by thought.
… Furthermore certain operations which we regard as more
fundamental than addition and multiplication have been omitted.

Alan Turing

By the end of 1945, Turing had produced his remarkable ACE
(Automatic Computing Engine) Report. One detailed
comparison of the ACE Report with von Neumann's EDVAC
Report, notes that whereas the latter ``is a draft and is
unfinished … more important … is incomplete …'' the ACE
Report ``is a complete description of a computer, right
down to the logical circuit diagrams'' and even including ``a
cost estimate of £11,200.''

La macchina ACE di Turing era molto diversa dall’EDVAC di von
Neumann's (come lo erano I due matematici!).

Sebbene von Neumann volesse una macchina “all purpose” era molto
piu’ portato a pensare a una grossa calcolatrice (number
crunching).

L’idea di Turing era di costruire una macchina piu’ semplice e piu’
indipendente dalle possibli applicazioni.

[…] An opposing paradigm, the so-called RISC (reduced instruction set
computing) architecture, adopted by a number of computer
manufacturers, uses a minimal instruction set on the chip, with
needed functionality supplied by programming, again very much in
line with the ACE philosophy.

In discussions of this period, the new computers that were being developed
are usually referred to as embodying “the stored program concept” because
for the first time the programs to be executed were being stored within
the computer. Unfortunately this terminology has served to obscure the fact
that what was really revolutionary about these machines was their universal
all-purpose character, while the stored program aspect was only a means to
an end. The point of view of Turing and von Neumann is conceptually so
simple and has so much become part of our intellectual climate, that it is
diffcult to understand how radically new it was.

ENIAC (e UNIVAC):
l’impresa ingegneristica (e commerciale)

IBM 701 around 1954

Punched Cards

Programs in the 1950s
to 1970s are coded on
a piece of paper card
with punched holes.

They are read by
electromechanical or
optical reader into the
computer.

Each card can hole
only one line of
information.

The standard IBM card
is 80 characters long.

Transistors

Integrated circuits
placed all components
in one chip, drastically
reducing the size.

In 1947, John Bardeen and Walter Brattain
invented the transistor, which quickly replaced
the vacuum tube technology. Initially, electronic
devices are made of individual components.

Vax-11 from Digital Equipment

Vax-11 is popular in universities in the early 1980s.

Cray Supercomputer

One of the first so-called supercomputer
built around 1976. It was the fastest and
also most expensive.

IBM PCs (1981)

The IBM Personal
Computer started a
revolution for computing
by the common folks.

The “PC” comes with
64kilobyte of memory,
5.25 inch floppy disk
drive. It runs at
4.7mega-Hertz.

The whole operating
system, the Microsoft’s
DOS, is on one floppy.

Very Large Scale Integrated (VLSI) Circuits

Modern computers are based on
technology of very large number of
components on a small silicon chip.

Portable Computing

Nowadays in 2006,
laptop of 1.2kg in
weight is common
place.

It runs at 1.8
GegaHertz speed
with 512 MegaByte
of RAM and 40
Gbyte of internal
hard disk, plus DVD
drive etc.

Characteristics of Commercial
Computers

$1,900512,0001,000,000,00020ThinkPad T43
notebook

2006

$7,40016,38450,000,000500HP 90001991

$3,000256240,000150IBM PC1981

$4,000,00032,768166,000,00060,000Cray-11976

$16,0004330,000500PDP-81965

$1,000,00064500,00010,000IBM S3601964

$1,000,000481,900124,500UNIVAC I1951

Price (US
dollars)

Memory (kByte)Performance
(adds/sec)

Power (Watts)Computer NameYear

TIME on Turing and von Neumann

Alan Turing’s name was on the list of the twenty greatest “scientists
and thinkers” of the twentieth century as proposed by TIME magazine
(in its March 29, 1999 issue). Said TIME:

“So many ideas and technological advances converged to create the modern
computer that it is foolhardy to give one person the credit for inventing it. But the
fact remains that everyone who taps at a keyboard, opening a spreadsheet or a

word-processing program, is working on an incarnation of a Turing machine.”

And here is what TIME had to say about von Neumann:

“Virtually all computers today from $10 million supercomputers to the tiny chips
that power cell phones and Furbies, have one thing in common: they are all

“von Neumann machines,” variations on the basic computer architecture that
John von Neumann, building on the work of Alan Turing, laid out in the 1940s.”

Per approfondire….

Su Turing e von Neumann

	Storia dell’informatica
	The Entscheidungsproblem
	Church and Turing
	Alan M. Turing (1912-1954)
	Turing’s Contributions
	
	On Computable Numbers, with an Application to the Entscheidungsproblem (1936)
	On Computable Numbers, with an Application to the Entscheidungsproblem (1936)
	The Turing Machine
	Turing Machine Details
	Notes on Turing Machine
	Turing Machine to Recognize a Symbol b in the Second Cell
	Execution of the Turing Machine Example
	Execution of the Turing Machine Example (different input)
	Adding 1 to a Binary Number
	Running of the Adding-1-program:Add 1 to 1011
	Another Way to Represent Turing Machine Programs
	What Does This Program Do?
	The Halting Problem
	The Halting Problem: Sketch of Proof / 1
	The Halting Problem: Sketch of Proof / 2
	The Halting Problem: Sketch of Proof / 3
	Back to the Entscheidungsproblem
	Universal Turing Machine
	The Church-Turing Thesis
	Can Machines Think? The Turing Test(From, A. M. Turing, Computer Machinery and Intelligence, 1950)
	The Imitation Game
	
	
	ELIZA
	An Example (Real) Conversation with ELIZA / 1
	An Example (Real) Conversation with ELIZA / 2
	Who Invented the First Computer?ACE vs EDVAC
	A Step Back: The ENIAC
	The ENIAC
	John Presper Eckert Jr. and John Mauchly
	
	ENIAC
	EDVAC
	John von Neumann (1903-1957)
	
	General-purpose Computers
	The von Neumann Architecture
	The ACE
	
	
	
	
	ENIAC (e UNIVAC): l’impresa ingegneristica (e commerciale)
	IBM 701 around 1954
	Punched Cards
	Transistors
	Vax-11 from Digital Equipment
	Cray Supercomputer
	IBM PCs (1981)
	Very Large Scale Integrated (VLSI) Circuits
	Portable Computing
	Characteristics of Commercial Computers
	TIME on Turing and von Neumann
	Per approfondire….
	Su Turing e von Neumann

