Finding Clusters in Weighted Graphs,
Digraphs, and Hypergraphs:
A Game-Theoretic Perspective

Marcello Pelillo

Ca’ Foscari University, Venice

IWCSN’13, Vancouver, BC, December 12, 2013



The “Classical” Clustering Problem

Given:
v' aset of n “objects”

; = an edge-weighted graph G
v an n x n matrix A of pairwise similarities

Goal: Partition the vertices of the G into maximally homogeneous groups (i.e.,
clusters).

Usual assumption: symmetric and pairwise similarities (G is an undirected graph)
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What is a Cluster?

“In most cases, communities are algorithmically defined, i.e. they are just
the final product of the algorithm, without a precise a priori definition.”

S. Fortunato, “Community detection in graphs,” 2010

No universally accepted (formal) definition of a “cluster” but, informally, a
cluster should satisfy two criteria:

l//

Internal criterion: all “objects” inside a cluster should be highly similar to

each other

External criterion: all “objects” outside a cluster should be highly dissimilar to
the ones inside




A Special Case:
Binary Symmetric Similarities

Suppose the similarity matrix is a binary (0/1) matrix.

Given an unweighted undirected graph G=(V,E):

A clique is a subset of mutually adjacent vertices
A maximal clique is a clique that is not contained in a larger one

In the 0/1 case, a meaningful (though strict) notion of a cluster is that of a
maximal clique (Luce & Perry, 1949).




Advantages of the New Approach

v" No need to know the number of clusters in advance (since we extract
them sequentially)

v" Leaves clutter elements unassigned (useful, e.g., in figure/ground
separation or one-class clustering problems)

v" Allows extracting overlapping clusters

Need a partition?

Partition into clusters(V,6A)
repeat
Extract a cluster
remove it from V
until all vertices have been clustered




What is Game Theory?

“The central problem of game theory was posed by von
Neumann as early as 1926 in Goéttingen. It is the following:

If n players, P;,..., P, play a given game I', how must the it
player, P, play to achieve the most favorable result for himself?”

Harold W. Kuhn
Lectures on the Theory of Games (1953)

A few cornerstones in game theory

1921-1928: Emile Borel and John von Neumann give the first modern formulation of a
mixed strategy along with the idea of finding minimax solutions of normal-form games.

1944, 1947: John von Neumann and Oskar Morgenstern publish Theory of Games and
Economic Behavior.

1950-1953: In four papers John Nash made seminal contributions to both non-cooperative
game theory and to bargaining theory.

1972-1982: John Maynard Smith applies game theory to biological problems thereby
founding “evolutionary game theory.”

late 1990’s —: Development of algorithmic game theory...




“Solving” a Game

Player 2
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Basics of (Two-Player, Symmetric)
Game Theory

Assume:
— a (symmetric) game between two players
— complete knowledge

— a pre-existing set of pure strategies (actions) O={o;,...,0,} available
to the players.

Each player receives a payoff depending on the strategies selected by him
and by the adversary. Players’ goal is to maximize their own returns.

A mixed strategy is a probability distribution x=(x;,...,x,)" over the strategies.

“
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A={xER”: Vi=1...n:x,=0, and Exl:l}
i=1



Nash Equilibria
v Let A be an arbitrary payoff matrix: a; is the payoff obtained by playing i

while the opponent plays |.

v" The average payoff obtained by playing mixed strategy y while the
opponent plays x, is:

y'AX = Ezaijyixj
i

v A mixed strategy x is a (symmetric) Nash equilibrium if
X'AXx = y'Ax
for all strategies y. (Best reply to itself.)

Theorem (Nash, 1951). Every finite normal-form game admits a mixed-
strategy Nash equilibrium.




Evolution and the Theory of Games

“We repeat most emphatically that our theory is thoroughly static.
A dynamic theory would unquestionably be more complete and
therefore preferable.

But there is ample evidence from other branches of science that it

is futile to try to build one as long as the static side is not
thoroughly understood.”

John von Neumann and Oskar Morgenstern

Theory of Games and Economic Behavior (1944)

“Paradoxically, it has turned out that game theory is more readily
applied to biology than to the field of economic behaviour for
which it was originally designed.”

John Maynard Smith
Evolution and the Theory of Games (1982)




Evolutionary Games and ESS’s

Assumptions:

v" A large population of individuals belonging to the same species which
compete for a particular limited resource

v" This kind of conflict is modeled as a symmetric two-player game, the
players being pairs of randomly selected population members

v" Players do not behave “rationally” but act according to a pre-
programmed behavioral pattern (pure strategy)

v" Reproduction is assumed to be asexual

v" Utility is measured in terms of Darwinian fitness, or reproductive
success

A Nash equilibrium x is an Evolutionary Stable Strategy (ESS) if, for all
strategies y:

vVAx =x'Ax = XAy >y'Ay

Note: Unlike Nash equilibria, existence of ESS’s is not guaranteed.




ESS’s as Clusters

We claim that ESS’s abstract well the main characteristics of a cluster:

v" Internal coherency: High mutual support of all elements within the
group.

v" External incoherency: Low support from elements of the group to
elements outside the group.




Basic Definitions

Let S & V be a non-empty subset of vertices, and i€S.

The (average) weighted degree of i w.r.t. S is defined as:

: 1
awdeg (i) = IS E a;

jES

Moreover, if j € S, we define:

¢s(i,)) = a; — awdeg, (i)

Intuitively, @ s(i,j) measures the similarity between vertices j and i, with
respect to the (average) similarity between vertex i/ and its neighbors in S.




Assigning Weights to Vertices

Let S & V be a non-empty subset of vertices, and i€S.

The weight of / w.r.t. S is defined as:

1 if |S]=1
wi(1) = Eqbs_{i}(j,i)ws_{i}(j) otherwise

jes-{i}

Further, the total weight of S is defined as:

W(S) =Y wy(i)

ISR




Interpretation

Intuitively, w(i) gives us a measure of the overall (relative) similarity between
vertex i and the vertices of S-{i} with respect to the overall similarity among the
vertices in S-{/}.

W{1/2/3/4}(1) <0 W{1/2/3/4}(1) >0




Dominant Sets

Definition (Pavan and Pelillo, 2003, 2007). A non-empty subset of vertices S S
V such that W(T) > O for any non-empty T € §, is said to be a dominant set if:

1. wgi)>0, forallies$S (internal homogeneity)
2. Wsyp() <0, foralli€s$ (external homogeneity)
(1)
15" 75 6{) 70 |
SI—720—12)
23 25 Dominant sets = clusters
20 90
4—5—3

The set {1,2,3} is dominant.



The Clustering Game

Consider the following “clustering game.”

v Assume a preexisting set of objects O and a (possibly asymmetric) matrix
of affinities A between the elements of O.

v" Two players play by simultaneously selecting an element of O.

v After both have shown their choice, each player receives a payoff
proportional to the affinity that the chosen element has wrt the element
chosen by the opponent.

Clearly, it is in each player’s interest to pick an element that is strongly
supported by the elements that the adversary is likely to choose.

Hence, in the (pairwise) clustering game:
v" There are 2 players (because we have pairwise affinities)

v" The objects to be clustered are the pure strategies
v" The (null-diagonal) affinity matrix coincides with the similarity matrix



Dominant Sets are ESS’s

Theorem (Torsello, Rota Bulo and Pelillo, 2006). Evolutionary stable strategies
of the clustering game with affinity matrix A are in a one-to-one
correspondence with dominant sets.

Note. Generalization of well-known Motzkin-Straus theorem from graph theory
(1965).

Dominant-set clustering

v To get a single dominant-set cluster use, e.g., replicator dynamics (but see
Rota Bulo, Pelillo and Bomze, CVIU 2011, for faster dynamics)

v To get a partition use a simple peel-off strategy: iteratively find a dominant
set and remove it from the graph, until all vertices have been clustered

v" To get overlapping clusters, enumerate dominant sets (see Bomze, 1992;
Torsello, Rota Bulo and Pelillo, 2008)



Special Case:
Symmetric Affinities

Given a symmetric real-valued matrix A (with null diagonal), consider the
following Standard Quadratic Programming problem (StQP):

maximize f(x) = x"Ax
subjectto x€A

Note. The function f(x) provides a measure of cohesiveness of a cluster (see
Pavan and Pelillo, 2003, 2007; Sarkar and Boyer, 1998; Perona and Freeman,
1998).

Note. In the 0/1 (symmetric) case, ESS’s are in one-to-one correspondence to
(strictly) maximal cliques (Motzkin-Straus theorem).



Replicator Dynamics

Let x/(t) the population share playing pure strategy i at time t. The state of the
population at time t is: x(£)= (x,(t),...,x,(t) EA.

Replicator dynamics (Taylor and Jonker, 1978) are motivated by Darwin’s
principle of natural selection:

Xi o payoff of pure strategy i — average population payoff
X.

l

which yields:

%, = x| (Ax), - x" Ax]|

Theorem (Nachbar, 1990; Taylor and Jonker, 1978). A point x€A is a Nash
equilibrium if and only if x is the limit point of a replicator dynamics
trajectory starting from the interior of A.

Furthermore, if xeA is an ESS, then it is an asymptotically stable equilibrium
point for the replicator dynamics.



Doubly Symmetric Games

In a doubly symmetric (or partnership) game, the payoff matrix A is
symmetric (A = AT).

Fundamental Theorem of Natural Selection (Losert and Akin, 1983).

For any doubly symmetric game, the average population payoff f(x) =
xTAx is strictly increasing along any non-constant trajectory of replicator
dynamics, namely, d/dtf(x(t)) > O for all t > 0, with equality if and only if
X(t) Is a stationary point.

Characterization of ESS’s (Hofbauer and Sigmund, 1988)

For any doubly simmetric game with payoff matrix A, the following
statements are equivalent:

b) x € Ais a strict local maximizer of f(x) = x"Ax over the standard
simplex A

c) x € Ais asymptotically stable in the replicator dynamics



Discrete-time Replicator Dynamics

A well-known discretization of replicator dynamics, which assumes non-
overlapping generations, is the following (assuming a non-negative A):

A(x(t))l_
x(1)" Ax(¢)

x(t+1)=x,(1)

which inherits most of the dynamical properties of its continuous-time
counterpart (e.g., the fundamental theorem of natural selection).

MATLAB implementation

distance=inf;

while distance>epsilon
old x=Xx;
X = X.*(A*X);
X = X./sum(x);

distance=pdist ([x,01ld.x]"');

end




Measuring the Degree of Cluster
Membership
The components of the converged vector give us a measure of the participation of

the corresponding vertices in the cluster, while the value of the objective function
provides of the cohesiveness of the cluster.




Application to Image Segmentation

An image is represented as an edge-weighted undirected graph, where
vertices correspond to individual pixels and edge-weights reflect the
“similarity” between pairs of vertices.

For the sake of comparison, in the experiments we used the same similarities
used in Shi and Malik’s normalized-cut paper (PAMI 2000).

To find a hard partition, the following peel-off strategy was used:

Partition into dominant sets (G)
Repeat

find a dominant set

remove 1t from graph

until all vertices have been clustered

To find a single dominant set we used replicator dynamics (but see Rota
Bulo, Pelillo and Bomze, CVIU 2011, for faster game dynamics).



Experimental Setup

The similarity between pixels 7 and ;7 was measured by:

F (i) — F(j)\l%)
2

a

w(i,j) = exp (_I

where o is a positive real number which affects the decreasing rate of w,
and:

e F (i) = (normalized) intensity of pixel i, for intensity segmentation

e F(i) = [v,vssin(h),vscos(h)](i), where h, s, v are the HSV values
of pixel ¢, for color segmentation

o F(i) = [|Ixf1],..., |1+ f;.|](2) is a vector based on texture information
at pixel 7, the f; being DOOG filters at various scales and orientations,
for texture segmentation



Intensity Segmentation Results

Dominant sets Ncut




Intensity Segmentation Results

Dominant sets




Color Segmentation Results

Original image Dominant sets Ncut




Texture Segmentation Results
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Texture Segmentation Results
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Other Applications of Dominant-Set
Clustering

Bioinformatics
Identification of protein binding sites (Zauhar and Bruist, 2005)
Clustering gene expression profiles (Li et al, 2005)
Tag Single Nucleotide Polymorphism (SNPs) selection (Frommlet, 2010)

Security and video surveillance
Detection of anomalous activities in video streams (Hamid et al., CVPR’05; Al’09)
Detection of malicious activities in the internet (Pouget et al., ). Inf. Ass. Sec. 2006)

Content-based image retrieval
Wang et al. (Sig. Proc. 2008); Ciacinto and Roli (2007)

Analysis of fMRI data
Neumann et al (Neurolmage 2006); Muller et al (J. Mag Res Imag. 2007)

Video analysis, object tracking, human action recognition
Torsello et al. (EMMCVPR’05); Gualdi et al. IWVS’08); Wei et al. (ICIP’07)

Multiple instance learning
Erdem and Erdem (SIMBAD’11)

Feature selection
Hancock et al. (GbR’11; ICIAP’11; SIMBAD’11)

Image matching and registration
Torsello et al. (IJICV 2011, ICCV’'09, CVPR’10, ECCV’10)



Community Detection in Networks:

First Results

Methods INFO

DataSet Algo 1 | Algo 2 | GTrans No Nods | Directed | Weighted | No Com | GroundTruth
Karateh /R 0.9794 +0.0142 | 0.9441 +0.0292 | 0.9794 £0.0142 34 UD UwW 2 Provided
Karateh /C 0.9706+0.00 0.9118+0.00 0.9706+0.00 34 UD Uw 2 Provided
American Football /R 0.8574+0.0310 | 0.8626+0.0317 | 0.8443+0.0421 115 UD UwW 12 Provided
American Football /C 0.8696+0.00 0.8783+0.00 0.8609+0.00 115 UD Uw 12 Provided
Food /R 0.8444+0.0 0.8844+0.0141 0.8444-0.00 45 UD W 7 Decided
Food /C 0.8444+0.00 0.8889+0.00 0.8444+0.00 45 UuD W 7 Decided
K55 /R 1+0.0 1+0.0 1+0.0 10 UD UWwW 2 Decided
K55 /C 1+0.00 1+0.00 1+0.00 10 uD Uw 2 Decided
Journals /R 0.3056+£0.0239 | 0.3137+0.0273 | 0.3040+0.0235 124 UD W 14 Provided
Journals /C 0.3347+0.0109 | 0.3500+0.0078 | 0.3371+0.0083 124 uD W 14 Provided
Politic Book /R 0.8105+£0.0313 | 0.8048+0.0321 | 0.8229+0.0327 105 UD UwW 3 Provided
Politic Book /C 0.7714+0.00 0.7619+0.00 0.7905+0.00 105 UD Uw 3 Provided
Women /R 0.8031+0.1293 0.80+0.1415 0.8094+0.1330 32 UD UwW 2 Decided
Women /C 0.8438 +0.00 0.8438+0.00 0.8438+0.00 32 UD Uw 2 Decided
Adjnoun /R 0.5384+0.0174 | 0.5286+0.0162 | 0.5116+0.0085 112 uD Uw 2 Provided
Adjnoun /C 0.5536+0.00 0.5000+0.00 0.5179+0.00 112 UuD Uw 2 Provided
PolBlogs 0.5644 0.5644 0.5087 1490 D UwW 2 Provided
School Grade /R 0.7362+0.0787 | 0.7580+0.0837 | 0.8029+0.0993 69 D W 6 Provided
School Grade /C 0.7391+0.1170 0.8406+0.0 0.8261 +0.1170 69 D W 6 Provided
Synthetic Newman /R || 0.9133+0.1195 | 0.9273+0.1009 | 0.9414+0.1235 128 UD W = Provided
Synthetic Newman /C 0.9609+0. 0.9453+0.0 1.0000+0. 128 UuD W 4 Provided
Synthetic 2 /R 1.04+0.0 1.0+0.0 1.04+0.0 90 UuD W 3 Provided
Synthetic 2 /C 1.04+0.0 1.0+0.0 1.0+0.0 920 UuD W 3 Provided
Synthetic 3 /R 1.0+0.0 1.0£0.0 1.0+0.0 128 UD W 8 Provided
Synthetic 3 /C 1.0+0.0 1.0+0.0 1.0+0.0 128 UuD W 8 Provided
Synthetic 4 /R 0.7443+0.0596 | 0.7583+0.0549 | 0.8389+0.0682 1000 UD W 13 Provided
Synthetic 4 /C 0.7700 +0.1170 0.7630+0.0 0.8670+0.0 1000 UuD W 13 Provided




Community Detection in Networks:
First Results

DataSet FCD | BCD GT
Karateh /R 0.9706+0.0 | 0.8118 £0.1049 0.9706+0.0
American Football /R || 0.6783+0.0 | 0.8661 £0.0491 0.8609+0.0
Food /R 0.6222+0.0 | 0.3689 £0.0155 (0.8444+0.1170
K55 /R 1.0000£0.0 1.0000 +£0.0 1.0£0.0
Journals /R 0.2016%0.0 — 0.3371+£0.0083
Politic Book /R 0.8286+0.0 | 0.5248 +0.0445 0.7905+0.0
Women /R 0.93754+0.0 | 0.8438 +0.0833 0.8438+0.0
Adjnoun /R 0.5268+0.0 | 0.5357 £0.0339  0.5179+0.00
PolBlogs  — — —
School Grade /R 0.2754+0.0 | 0.7478 £0.0343 0.8261+0.1170
Synthetic Newman /R || 0.6641+0.0 1.000 £0. 1.0£0.0
Synthetic 2 /R 0.8333+0.0 1.0000 +0. 1.0+0.0
Synthetic 3 /R 0.6328+0.0 1.0000 +0. 1.0+0.0
Synthetic 4 /R — 0.8203 £0.0790 0.8670+0.0

FCD = Fast algorithm for detecting community structure in networks (M. Newman, Phys.
Rev. E, 2004)

BCD = Bayesian community detection (M. Mrup and M. Schmidt, Neural Comp., 2012)



Extensions




Dealing with Large Data Sets

We address the problem of grouping out-of-sample (i.e., unseen)
examples after the clustering process has taken place.

T his may serve to:

1. substantially reduce the computational burden associated to
the processing of very large data sets, by extrapolating the
complete grouping solution from a small number of samples,

2. deal with dynamic situations whereby data sets need to be
updated continually.



Grouping Out-of-Sample Data

Recall that the sign of wg (i) provides an indication as to
whether i is tightly or loosely coupled with the vertices in S.

Accordingly, we use the following rule for predicting cluster mem-
bership of unseen data z:

IT Wgi (7) > 0, then assign vertex i to cCluster S .

Can be computed in linear time wrt the size of S




Figure 4: Segmentation results on a 115 x 97 weather radar image. From left to right: original
image, the two regions found on the sampled image (sampling rate = 0.5%), and the two regions
obtained on the whole image (sampling rate = 100%).




Results on the Berkeley Dataset
(321 x 481) — sampling rate 0.5%

Dominant sets

Ncut
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Results on the Berkeley Dataset
(321 x 481) — sampling rate 0.5%

Dominant sets Ncut

GCE =012, LCE —0.12 GCE — 0,19, LCE —0.13
—.;m\ b
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Capturing Elongated Structures / 2
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“Closing” the Similarity Graph

Basic idea: Trasform the original similarity graph G into a “closed”
version thereof (G ,scq), Whereby edge-weights take into account
chained (path-based) structures.

Unweighted (0/1) case:

G = Transitive Closure of G

closed

Note: G .4 Can be obtained from:

A+ A%+ . +AD




Weighted Closure of G

Observation: When G is weighted, the jj-entry of AK represents the sum
of the total weights on the paths of length k between vertices j and j.

Hence, one choice is:

A =A+A2+ . + A"

closed




Path-Based Distances

Path-based measure: Given a distance (dissimilarity) matrix D,
the path-based distance measure between objects 1 and j is com-
puted by [FBo3]

DPAh —  min {max D }, 1
YT pepy(o) Lisiglp PPHED (19)

where P;;(0) is the set of all paths from 1 to j. Thereby, the
effective distance between 1 and j is the largest gap of the path
p*, where p* is the path with minimum largest gap among all
admissible paths between 1 and .

B. Fischer and J. M. Buhmann. Path-based clustering for grouping of smooth curves and texture
segmentation. [EEE Trans. Pattern Anal. Mach. Intell., 25(4):513-518, 2003.




Example: Without Closure (o = 2)
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Figura 4.11: Cluster senza chiusura: o = 2




Example: Without Closure (o = 4)
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Example: Without Closure (o = 8)
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Example: With Closure (o = 0.5)
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Allowing Overlapping Classes:
2-extensions (the Binary Case)

First idea: run replicator dynamics from different starting points in the
simplex.
Problems: computationally expensive and no guarantee to find them all.

Fiocure 4.2: On the left we have an undirected eraph . On the riecht we have the
o o o

Y-extension G=, where ¥ = {{A. B, C}.{A.D.E}}.




2-extensions: The General Case

Let 2 be a tuple of ESSs of a game with payoff ma-
trix A. So for example if  and y are ESSs of a doubly
symmetric game then ¥ = («, y) and with 3; we select

the 2-th ESS.

S-extension A¥ = (ag) of the payoff matrix A is de-
fined as follows.

(i ifi,j € [1,n]
oY% lt] > n and 7 € U(ZJ—I))
) 3 ifi,7 >nandi = j
a;; =<7 .
'] T > ap; ifi>nandj € o(3;-,,)
~“r1—n AEZ,_”
L0 otherwise.

where o > [ and [ = max; ; a;;.



Main Result

Theorem 1 Let ® be a two-player doubly symmetric
game with pavoff matrix A and let X2 be a tuple of ESSs
of ®. Furthermore let ®* be a two-player game with
payoff matrix A>. Then x is an ESS of ® not in ¥ if
and only if & is an ESS of ®>.




Enumerating Dominant Sets

We use the previous result to enumerate the dominant sets in the
following way:

We iteratively find new dominant sets by looking for an asymptotically
stable point using the replicator dynamics.

After that, we extend the graph by adding the newly extracted set to Z,
hence rendering its associated strategy unstable, and reiterate the
procedure until we have enumerated all the groups and hence are
unable to find new dominant sets.

Idea for future work: Dominant-set percolation?






Building a Hierarchy:
A Family of Quadratic Programs

Consider the following family of StQP’s:

maximize fo(x) = x'(A — al)x
subjectto x & A

where a > 0O is a parameter and [ is the identity matrix.

The objective function f, consists of:
e adata term (x’ Ax) which favors solutions with high internal coherency

e a regularization term (—ax’x) which acts as an entropic factor: it is
concave and, on the simplex A, it is maximized at the barycenter and
it attains its minimum value at the vertices of A



An Observation

The solutions of the StQP remain the same if the matrix A — a/ is replaced
with A — ol 4+ ree’, where « is an arbitrary constant, since

x' (A —al + ree)x=x'"(A—-—al)x+ &

forall x € A.

In particular, if 1 = « the resulting matrix is nonnegative and has a null
diagonal.

Hence all (strict) solutions of the StQP correspond to dominant sets for
the scaled similarity matrix A + a(ee’ — I') having the off-diagonal entries
equal to a;; + «.



The effects of a
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The Landscape of f,

Key observation: For any fixed «, the energy landscape of f. is populated
by two kinds of solutions:

e solutions which correspond to dominant sets for the original matrix A

e solutions which do not correspond to any dominant set for the original
matrix A, although they are dominant for the scaled matrix A+ a(ee’ —
I)

The latter represent large subsets of points that are not sufficiently coher-
ent to be dominant with respect to A, and hence they should be spilit.



Sketch of the Hierarchical Clustering Algorithm

Basic idea: start with a sufficiently large o« and adaptively decrease it
during the clustering process:

1) let o be a large positive value (e.g., a > |V | — 1)

2) find a partition of the data into a-clusters

3) for all the a-clusters that are not O-clusters recursively repeat step 2)
with decreased a




Results on the IRIS dataset / 1

This data set. attributed to Fisher (1936). is a classic benchmark in the machine learning
literature. The data set contains 3 classes of 50 instances each. where each class refers
to a type of iris plant. The three classes are Iris Setosa (IS), Iris Versicolour (IVe), and
Iris Virginica (IVi). Each data item is a 4-dimensional real vector representing as many
measurements of an Iris Hower. Class IS is lill(‘;ll'l_\' ht.*[)ell';ll)l(' from the other two l:]\'l" and

IVi). but IVe and IVi are not linearly separable.
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Results on the IRIS dataset / 2
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Dealing with High-Order Similarities

A (weighted) hypergraph is a triplet H = (V, E, w), where

= Vs a finite set of vertices
= E S 2Vis the set of (hyper-)edges (where 2V is the power set of V)

= w:E— Ris areal-valued function assigning a weight to each edge

We will focus on a particular class of hypergraphs, called k-graphs,
whose edges have fixed cardinality k > 2.

United States

' Sweden

A hypergraph where the vertices are flag colors and the hyperedges are flags.

Germany



An Example Application:
Folksonomy

“Folksonomy” is the name given to the common on-line process by which
a group of individuals collaboratively annotate a data set to create
semantic structure. Typically mark-up is performed by labeling pieces of
data with tags.

Examples:

v" Flickr
v CiteUlike

The fundamental building block in a folksonomy is a triple consisting of a

resource, such as a photograph, a tag, usually a short text phrase, and a
user, who applies the tag to the resource. Any full network representation
of folksonomy data needs to capture this three-way relationship between
resource, tag, and user, and this leads us to the consideration of
hypergraphs.

From: G. Ghoshal and Newman, Random hypergraphs and their applications, 2009.



The Hypergraph Clustering Game

Given a weighted k-graph representing an instance of a hypergraph
clustering problem, we cast it into a k-player (hypergraph) clustering
game where:

v" There are k players
v" The objects to be clustered are the pure strategies

v" The payoff function is proportional to the similarity of the objects/
strategies selected by the players

Definition (ESS-cluster). Given an instance of a hypergraph clustering
problem H = (VEw), an ESS-cluster of H is an ESS of the
corresponding hypergraph clustering game.

Like the k=2 case, ESS-clusters do incorporate both internal and
external cluster criteria (see PAMI 2013)



ESS’s and Polynomial Optimization

Theorem 3. Let H = (V,E,w) be a hypergraph clustering
problem, I" = (P,V,m) the corresponding clustering game,
and f(x) a function defined as

f(x) = u(x[k]) =Y w(e) [Tz (11)

ec ¥ JjE€e

Nash equilibria of T' are in one-to-one correspondence with
the critical points® of f(x) over A, while ESSs of T' are in
one-to-one correspondence with strict local maximizers of
f(x) over A.




Baum-Eagon Inequality

Theorem 4 (Baum-Eagon). Let Q(x) be a homogeneous
polynomial in the variables x; with nonnegative coefficients,
and let x € A. Define the mapping z = M(x) from A to itself
as follows:

0Q0) /5, 2Q(

=1,...,n. 12
B:EJ B:C[ b .7 ? ﬂn ( )

Zj =T

=1

Then, Q(M(x)) > Q(x), unless M(x) = x.



Line Clustering

Problem: to clustering lines in spaces of dimension greater than
two, i.e., given a set of points in IRY, to extract subsets of collinear
points.

An obvious ternary similarity measure for this problem can be
defined as follows: Given a triplet of points {i,j,k} and its best fitting
line |, calculate the mean distance d(i, j, k) between each point and
and |.

Then we obtain a similarity function using a standard Gaussian
kernel:

w({i,j, k}) = exp(—Bd(i, j, k)?)

where B is a properly tuned precision parameter.



Line Clustering
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Fig. 2. Results of clustering three, four, and five lines perturbed locally with increasing levels of Gaussian local noise (o = 0, 0.01,0.02,0.04, 0.08).
(a) Example of three 5D lines (projected in 2D), perturbed with o = (.04. (b) Three lines. (c) Four lines. (d) Five lines.




Line Clustering
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Fig. 3. Results of clustering two, three, and four lines with an increasing number of clutter points (0, 10, 20, 40). (a) Example of two 5D lines (projected
in 2D) with 40 clutter points. (b) Two lines. (c) Three lines. (d) Four lines.
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Fig. 8. Example of dataset for illuminant-invariante face clustering with
four individuals (first four rows) and 10 outlier faces (last row).




Illlumination-Invariant Face Clustering

n. of classes:

n. of outliers: 0 10 0 10
CAVERAGE K=3 || 0.26+0.09 | 0.40%+0.10 - -
CAVERAGE K=4 || 0.03+0.04 | 0.24+0.07 || 0.21+0.11 | 0.65+0.12
CAVERAGE K=5 || 0.13+0.05 | 0.124+0.05 || 0.07+£0.07 | 0.41+0.09
CAVERAGE K=6 - - 0.13+0.08 | 0.37+0.11

SNTF K=3 || 0.2940.10 | 0.3940.09 - -
SNTF K=4 || 0.14+0.06 | 0.264+0.09 || 0.284+0.11 | 0.51+0.12
SNTF K=5 || 0.19+0.09 | 0.25+0.13 || 0.11£0.09 | 0.43%0.11
SNTF K=6 - - 0.14+£0.09 | 0.39£0.13
HoCluGame || 0.06+0.03 | 0.07+0.02 || 0.06+0.02 | 0.07+0.03

Average classification error and corresponding standard deviation.




In a nutshell...

The game-theoretic/dominant-set approach:

v

makes no assumption on the structure of the affinity matrix, being it able to
work with asymmetric and even negative similarity functions

does not require a priori knowledge on the number of clusters (since it extracts
them sequentially)

leaves clutter elements unassigned (useful, e.g., in figure/ground separation or
one-class clustering problems)

allows principled ways of assigning out-of-sample items (NIPS'04)
allows extracting overlapping clusters (ICPR’08)

generalizes naturally to hypergraph clustering problems, i.e., in the presence
of high-order affinities, in which case the clustering game is played by more
than two players (NIPS’09; PAMI’13)

extends to hierarchical clustering (ICCV’03: EMMCVPR’09)
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