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The “Classical” Clustering Problem 

= an edge-weighted graph G 



“In most cases, communities are algorithmically defined, i.e. they are just 
the final product of the algorithm, without a precise a priori definition.” 

S. Fortunato, “Community detection in graphs,” 2010 



Suppose the similarity matrix is a binary (0/1) matrix. 

Given an unweighted undirected graph G=(V,E): 

A clique is a subset of mutually adjacent vertices 
A maximal clique is a clique that is not contained in a larger one 

In the 0/1 case, a meaningful (though strict) notion of a cluster is that of a 
maximal clique (Luce & Perry, 1949). 



!! No need to know the number of clusters in advance (since we extract 
them sequentially) 

!! Leaves clutter elements unassigned (useful, e.g., in figure/ground 
separation or one-class clustering problems) 

!! Allows extracting overlapping clusters 

Need a partition? 

Partition_into_clusters(V,A) 

  repeat 

     Extract_a_cluster 

     remove it from V 

  until all vertices have been clustered 



What is Game Theory? 

“The central problem of game theory was posed by von 
Neumann as early as 1926 in Göttingen. It is the following: 
If n players, P1,…, Pn, play a given game !, how must the ith 

player, Pi, play to achieve the most favorable result for himself?” 

Harold W. Kuhn 
Lectures on the Theory of Games (1953) 

A few cornerstones in game theory 

1921!1928: Emile Borel and John von Neumann give the first modern formulation of a 
mixed strategy along with the idea of finding minimax solutions of normal-form games. 

1944, 1947: John von Neumann and Oskar Morgenstern publish Theory of Games and 
Economic Behavior. 

1950!1953: In four papers John Nash made seminal contributions to both non-cooperative 
game theory and to bargaining theory. 

1972!1982: John Maynard Smith applies game theory to biological problems thereby 
founding “evolutionary game theory.” 

late 1990’s !: Development of algorithmic game theory… 



“Solving” a Game 

Player 2 

Left Middle Right 

Player 1 

Top 3 , 1 2 , 3 10 , 2 

High 4 , 5 3 , 0 6 , 4 

Low 2 , 2 5 , 4 12 , 3 

Bottom 5 , 6 4 , 5 9 , 7 



Assume: 
–! a (symmetric) game between two players  
–! complete knowledge  
–! a pre-existing set of pure strategies (actions) O={o1,…,on} available 

to the players. 

Each player receives a payoff depending on the strategies selected by him 
and by the adversary. Players’ goal is to maximize their own returns. 
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A mixed strategy is a probability distribution x=(x1,…,xn)T over the strategies. 



!! Let A be an arbitrary payoff matrix: aij is the payoff obtained by playing i 
while the opponent plays j. 

!! The average payoff obtained by playing mixed strategy y while the 
opponent plays x, is: 

!! A mixed strategy x is a (symmetric) Nash equilibrium if !

for all strategies y. (Best reply to itself.) 
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Theorem (Nash, 1951). Every finite normal-form game admits a mixed-
strategy Nash equilibrium. 



“We repeat most emphatically that our theory is thoroughly static. 
A dynamic theory would unquestionably be more complete and 
therefore preferable.  
But there is ample evidence from other branches of science that it 
is futile to try to build one as long as the static side is not 
thoroughly understood.” 

John von Neumann and Oskar Morgenstern  
Theory of Games and Economic Behavior (1944) 

“Paradoxically, it has turned out that game theory is more readily 
applied to biology than to the field of economic behaviour for 

which it was originally designed.”  

John Maynard Smith 
Evolution and the Theory of Games (1982) 



Assumptions: 

!! A large population of individuals belonging to the same species which 
compete for a particular limited resource 

!! This kind of conflict is modeled as a symmetric two-player game, the 
players being pairs of randomly selected population members 

!! Players do not behave “rationally” but act according to a pre-
programmed behavioral pattern (pure strategy) 

!! Reproduction is assumed to be asexual 

!! Utility is measured in terms of Darwinian fitness, or reproductive 
success 

A Nash equilibrium x is an Evolutionary Stable Strategy (ESS) if, for all 
strategies y: 

Note: Unlike Nash equilibria, existence of ESS’s is not guaranteed. 



ESS’s as Clusters 

We claim that ESS’s abstract well the main characteristics of a cluster: 

!! Internal coherency: High mutual support of all elements within the 
group. 

!! External incoherency: Low support from elements of the group to 
elements outside the group. 



Basic Definitions 

Let S  V be a non-empty subset of vertices, and i S. 

The (average) weighted degree of i w.r.t. S is defined as: 
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Moreover, if j  S, we define: 

 

"S (i, j) = aij #  awdegS (i)

Intuitively, S(i,j) measures the similarity between vertices j and i, with 
respect to the (average) similarity between vertex i and its neighbors in S. 



Assigning Weights to Vertices 

Let S  V be a non-empty subset of vertices, and i S. 

The weight of i w.r.t. S is defined as: 
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Further, the total weight of S is defined as: 

 

W (S) = wS (i)
i"S
#



Interpretation 

Intuitively, wS(i) gives us a measure of the overall (relative) similarity between 
vertex i and the vertices of S-{i} with respect to the overall similarity among the 
vertices in S-{i}.  

w{1,2,3,4}(1) < 0 w{1,2,3,4}(1) > 0 



Dominant Sets 

Definition (Pavan and Pelillo, 2003, 2007). A non-empty subset of vertices S  
V such that W(T) > 0 for any non-empty T  S, is said to be a dominant set if: 

1.! wS(i) > 0, for all i  S  (internal homogeneity) 

2.! wS {i}(i) < 0, for all i  S  (external homogeneity) 

The set {1,2,3} is dominant. 

Dominant sets  clusters 



The Clustering Game 

Consider the following “clustering game.”  

!! Assume a preexisting set of objects O and a (possibly asymmetric) matrix 
of affinities A between the elements of O.  

!! Two players play by simultaneously selecting an element of O.  

!! After both have shown their choice, each player receives a payoff 
proportional to the affinity that the chosen element has wrt the element 
chosen by the opponent. 

Clearly, it is in each player’s interest to pick an element that is strongly 
supported by the elements that the adversary is likely to choose. 

Hence, in the (pairwise) clustering game: 

!! There are 2 players (because we have pairwise affinities)  
!! The objects to be clustered are the pure strategies 
!! The (null-diagonal) affinity matrix coincides with the similarity matrix 



Dominant Sets are ESS’s 

Dominant-set clustering 

!! To get a single dominant-set cluster use, e.g., replicator dynamics (but see 
Rota Bulò, Pelillo and Bomze, CVIU 2011, for faster dynamics) 

!! To get a partition use a simple peel-off strategy: iteratively find a dominant 
set and remove it from the graph, until all vertices have been clustered 

!! To get overlapping clusters, enumerate dominant sets (see Bomze, 1992; 
Torsello, Rota Bulò and Pelillo, 2008) 



Special Case: 
Symmetric Affinities 

Given a symmetric real-valued matrix A (with null diagonal), consider the 
following Standard Quadratic Programming problem (StQP): 

                 maximize   ƒ(x) = xTAx 
             subject to   x " 

Note. The function ƒ(x) provides a measure of cohesiveness of a cluster (see 
Pavan and Pelillo, 2003, 2007; Sarkar and Boyer, 1998; Perona and Freeman, 
1998). 

ESS’s are in one-to-one correspondence  
to (strict) local solutions of StQP 

Note. In the 0/1 (symmetric) case, ESS’s are in one-to-one correspondence to 
(strictly) maximal cliques (Motzkin-Straus theorem). 



Replicator Dynamics 

Let xi(t) the population share playing pure strategy i at time t. The state of the 
population at time t is: x(t)= (x1(t),…,xn(t)) ". 

Replicator dynamics (Taylor and Jonker, 1978) are motivated by Darwin’s 
principle of natural selection: 

 

˙ x i
xi

"  payoff of pure strategy i #  average population payoff

 

˙ x i = xi (Ax)i " xT Ax[ ]

which yields: 

Theorem (Nachbar, 1990; Taylor and Jonker, 1978). A point x!" is a Nash 
equilibrium if and only if x is the limit point of a replicator dynamics 
trajectory starting from the interior of ". 
Furthermore, if x!! is an ESS, then it is an asymptotically stable equilibrium 
point for the replicator dynamics. 



In a doubly symmetric (or partnership) game, the payoff matrix A is 
symmetric (A = AT). 

Fundamental Theorem of Natural Selection (Losert and Akin, 1983).  
For any doubly symmetric game, the average population payoff ƒ(x) = 
xTAx is strictly increasing along any non-constant trajectory of replicator 
dynamics, namely, d/dtƒ(x(t)) # 0 for all t # 0, with equality if and only if 
x(t) is a stationary point. 

Characterization of  ESS’s (Hofbauer and Sigmund, 1988) 

For any doubly simmetric game with payoff matrix A, the following 
statements are equivalent: 

a)! x  "ESS 

b)! x  " is a strict local maximizer of ƒ(x) = xTAx over the standard 
simplex " 

c)! x  " is asymptotically stable in the replicator dynamics 



 

xi(t +1) = xi(t)
A x(t)( )i
x(t)T Ax(t)

MATLAB implementation 

A well-known discretization of replicator dynamics, which assumes non-
overlapping generations, is the following (assuming a non-negative A): 

which inherits most of the dynamical properties of its continuous-time 
counterpart (e.g., the fundamental theorem of natural selection). 



Measuring the Degree of Cluster 
Membership 

The components of the converged vector give us a measure of the participation of 
the corresponding vertices in the cluster, while the value of the objective function 
provides of the cohesiveness of the cluster. 



An image is represented as an edge-weighted undirected graph, where 
vertices correspond to individual pixels and edge-weights reflect the 
“similarity” between pairs of vertices. 

For the sake of comparison, in the experiments we used the same similarities 
used in Shi and Malik’s normalized-cut paper (PAMI 2000). 

To find a hard partition, the following peel-off strategy was used: 

Partition_into_dominant_sets(G) 
Repeat 

   find a dominant set 

   remove it from graph 

until all vertices have been clustered 

To find a single dominant set we used replicator dynamics (but see Rota 
Bulò, Pelillo and Bomze, CVIU 2011, for faster game dynamics). 





Dominant sets Ncut   



Dominant sets                                                     Ncut   



Original image             Dominant sets                    Ncut   



Dominant sets 
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Other Applications of Dominant-Set 
Clustering 





FCD = Fast algorithm for detecting community structure in networks (M. Newman, Phys. 
Rev. E, 2004) 
BCD = Bayesian community detection (M. Mrup and M. Schmidt, Neural Comp., 2012) 



Extensions 





Can be computed in linear time wrt the size of S 
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 Path-Based Distances 

B. Fischer and J. M. Buhmann. Path-based clustering for grouping of smooth curves and texture 
segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 25(4):513–518, 2003. 













First idea: run replicator dynamics from different starting points in the 
simplex. 
Problems: computationally expensive and no guarantee to find them all. 







We use the previous result to enumerate the dominant sets in the 
following way:  

We iteratively find new dominant sets by looking for an asymptotically 
stable point using the replicator dynamics.  

After that, we extend the graph by adding the newly extracted set to !, 
hence rendering its associated strategy unstable, and reiterate the 
procedure until we have enumerated all the groups and hence are 
unable to find new dominant sets. 

Idea for future work: Dominant-set percolation? 









The effects of ! 











 Dealing with High-Order Similarities 

A (weighted) hypergraph is a triplet H = (V, E, w), where 

"! V is a finite set of vertices 

"! E  2V is the set of (hyper-)edges (where 2V is the power set of V)  

"! w : E  R is a real-valued function assigning a weight to each edge  

We will focus on a particular class of hypergraphs, called k-graphs, 
whose edges have fixed cardinality k # 2. 

A hypergraph where the vertices are flag colors and the hyperedges are flags. 



 An Example Application: 
Folksonomy 

“Folksonomy” is the name given to the common on-line process by which 
a group of individuals collaboratively annotate a data set to create 
semantic structure. Typically mark-up is performed by labeling pieces of 
data with tags. 

Examples: 

!! Flickr 
!! CiteUlike 

The fundamental building block in a folksonomy is a triple consisting of a 
resource, such as a photograph, a tag, usually a short text phrase, and a 
user, who applies the tag to the resource. Any full network representation 
of folksonomy data needs to capture this three-way relationship between 
resource, tag, and user, and this leads us to the consideration of 
hypergraphs. 

From: G. Ghoshal and Newman, Random hypergraphs and their applications, 2009. 



The Hypergraph Clustering Game 

Given a weighted k-graph representing an instance of a hypergraph 
clustering problem, we cast it into a k-player (hypergraph) clustering 
game where: 

!! There are k players 

!! The objects to be clustered are the pure strategies 

!! The payoff function is proportional to the similarity of the objects/
strategies selected by the players 

Definition (ESS-cluster). Given an instance of a hypergraph clustering 
problem H = (V,E,w), an ESS-cluster of H is an ESS of the 
corresponding hypergraph clustering game. 

Like the k=2 case, ESS-clusters do incorporate both internal and 
external cluster criteria (see PAMI 2013) 



ESS’s and Polynomial Optimization 



Baum-Eagon Inequality 



 Line Clustering 

Problem: to clustering lines in spaces of dimension greater than 
two, i.e., given a set of points in IRd, to extract subsets of collinear 
points. 

An obvious ternary similarity measure for this problem can be 
defined as follows: Given a triplet of points {i,j,k} and its best fitting 
line l, calculate the mean distance d(i, j, k) between each point and 
and l.  

Then we obtain a similarity function using a standard Gaussian 
kernel:  

where is a properly tuned precision parameter. 



 Line Clustering 



 Line Clustering 



Illumination-Invariant Face Clustering 



Illumination-Invariant Face Clustering 

Average classification error and corresponding standard deviation. 



In a nutshell… 

The game-theoretic/dominant-set approach: 

!! makes no assumption on the structure of the affinity matrix, being it able to 
work with asymmetric and even negative similarity functions 

!! does not require a priori knowledge on the number of clusters (since it extracts 
them sequentially) 

!! leaves clutter elements unassigned (useful, e.g., in figure/ground separation or 
one-class clustering problems) 

!! allows principled ways of assigning out-of-sample items (NIPS’04) 

!! allows extracting overlapping clusters (ICPR’08) 

!! generalizes naturally to hypergraph clustering problems, i.e., in the presence 
of high-order affinities, in which case the clustering game is played by more 
than two players (NIPS’09; PAMI’13) 

!! extends to hierarchical clustering (ICCV’03: EMMCVPR’09) 
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