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The Clustering Problem 

Given: 

•  a set of n “objects” 
•  an n × n matrix A of pairwise similarities  
 
 
Goal: Group the the input objects (the vertices of the graph) into maximally 
homogeneous classes (i.e., clusters). 

= an edge-weighted graph 



No universally accepted (formal) definition of a “cluster” but, informally, a 
cluster should satisfy two criteria: 
 
Internal criterion 

 all “objects” inside a cluster should be highly similar to each other 
 
External criterion 

 all “objects” outside a cluster should be highly dissimilar to the ones inside 

An answer from game theoy 
 
The classical notion of ESS equilibrium 
provides a general and elegant answer 
to the question above. 

What Is a Cluster? 



The Clustering Game 

ESS’s abstract well the main characteristics of a cluster: 

ü  Internal coherency: High mutual support of all elements within the group 

ü  External incoherency: Low support from elements of the group to elements 
outside the group 

ESS’s are equivalent to dominant sets (Pavan and Pelillo, 2007). 

In the (pairwise) clustering game we have: 

ü  Two players (because we have pairwise affinities)   
ü  Pure strategies = objects to be clustered 
ü  Payoff matrix = similarity matrix 

It is in each player’s interest to pick an element that is similar to the one  that 
the adversary is likely to choose. 



Special Case #1: 
Symmetric Affinities 

Given a symmetric real-valued matrix A (with null diagonal), consider the 
following Standard Quadratic Programming problem (StQP): 
 

                 maximize   ƒ(x) = xTAx 
             subject to   x∈∆ 

 
Note. The function ƒ(x) provides a measure of cohesiveness of a cluster 
(see Pavan and Pelillo, 2007; Sarkar and Boyer, 1998; Perona and 
Freeman, 1998). 
 
 
 
 ESS’s are in one-to-one correspondence  

to (strict) local solutions of StQP 



 
Suppose the similarity matrix is a binary (0/1) matrix. 
 
Given an unweighted undirected graph G=(V,E): 
 
A clique is a subset of mutually adjacent vertices 
A maximal clique is a clique that is not contained in a larger one 
 
 
 
 

Special Case #2: 
Binary Symmetric Affinities 

ESS’s are in one-to-one correspondence  
to maximal cliques of G 



A Toy Example: 
Grouping Apples 

Payoffs between apples is computed using a distance between RGB histograms 



Measuring the Degree of Cluster 
Membership 

The components of the converged vector give us a measure of the 
participation of the corresponding vertices in the cluster, while the value of 
the objective function provides of the cohesiveness of the cluster. 

See Rosch’s prototype theory of categorization (e.g., Lakoff, 1987). 
 



 Dealing with High-Order Similarities 

A (weighted) hypergraph is a triplet H = (V, E, w), where 

§  V is a finite set of vertices 

§  E ⊆ 2V is the set of (hyper-)edges (where 2V is the power set of V)  

§  w : E → R is a real-valued function assigning a weight to each edge  

We will focus on a particular class of hypergraphs, called k-graphs, 
whose edges have fixed cardinality k ≥ 2. 

A hypergraph where the vertices are flag colors and the hyperedges are flags. 



The Hypergraph Clustering Game 

Given a weighted k-graph representing an instance of a hypergraph 
clustering problem, we cast it into a k-player (hypergraph) clustering 
game where: 
 
ü  There are k players 

ü  The objects to be clustered are the pure strategies 

ü  The payoff function is proportional to the similarity of the objects/
strategies selected by the players 

Definition (ESS-cluster). Given an instance of a hypergraph clustering 
problem H = (V,E,w), an ESS-cluster of H is an ESS of the 
corresponding hypergraph clustering game. 
 
As in the k=2 case, ESS-clusters do incorporate both internal and 
external cluster criteria (see PAMI 2013) 



 An exampe: Line Clustering 



In a nutshell… 

The game-theoretic/dominant-set approach: 

ü  makes no assumption on the structure of the affinity matrix, being it able to 
work with asymmetric and even negative similarity functions 

ü  does not require a priori knowledge on the number of clusters (since it extracts 
them sequentially) 

ü  leaves clutter elements unassigned (useful, e.g., in figure/ground separation or 
one-class clustering problems) 

ü  allows principled ways of assigning out-of-sample items (NIPS’04) 

ü  allows extracting overlapping clusters (ICPR’08) 

ü  generalizes naturally to hypergraph clustering problems, i.e., in the presence 
of high-order affinities, in which case the clustering game is played by more 
than two players (PAMI’13) 

ü  extends to hierarchical clustering (ICCV’03: EMMCVPR’09) 

ü  allows using multiple affinity matrices using Pareto-Nash notion (SIMBAD’15) 



References 
Evolutionary game theory 

J. Weibull. Evolutionary Game Theory. MIT Press (1995). 

J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge 
University Press (1998). 

Dominant sets 

S. Rota Bulò and M. Pelillo. Dominant set clustering: A review. EJOR (under reveiw). 

M. Pavan and M. Pelillo. A new graph-theoretic approach to clustering and segmentation. 
CVPR 2003. 

M. Pavan and M. Pelillo. Dominant sets and hierarchical clustering. ICCV 2003. 

M. Pavan and M. Pelillo. Efficient out-of-sample extension of dominant-set clusters. NIPS 2004. 

A. Torsello, S. Rota Bulò and M. Pelillo. Grouping with asymmetric affinities: A game-theoretic 
perspective. CVPR 2006. 

M. Pavan and M. Pelillo. Dominant sets and pairwise clustering. PAMI 2007. 

A. Torsello, S. Rota Bulò and M. Pelillo. Beyond partitions: Allowing overlapping groups in 
pairwise clustering. ICPR 2008. 

S. Rota Bulò and M. Pelillo. A game-theoretic approach to hypergraph clustering. PAMI’13. 

S. Rota Bulò, M. Pelillo and I. M. Bomze. Graph-based quadratic optimization: A fast 
evolutionary approach. CVIU 2011. 



Graph Partitioning

•  Represent tokens using a weighted graph.
–  affinity matrix

•  Cut up this graph to get subgraphs with strong interior 
links







Eigenvector-based clustering

•  Simplest idea:  we want a 
vector a giving the association 
between each element and a 
cluster

•  We want elements within this 
cluster to, on the whole, have 
strong affinity with one another

•  We could maximize  

•  But need the constraint 
                                     

•  This is an eigenvalue problem - 
choose the eigenvector of A 
with largest eigenvalue

€ 

aTAa

€ 

aTa = 1



Example eigenvector

points

matrix

eigenvector



More than two segments

•  Two options
–  Recursively split each side to get a tree, continuing till the 

eigenvalues are too small
–  Use the other eigenvectors



Clustering by eigenvectors: Algorithm

1. Construct (or take as input) the affinity matrix A 
2. Compute the eigenvalues and eigenvectors of A
3. Repeat
4. Take the eigenvector corresponding to the largest unprocessed eigenvalue
5. Zero all components corresponding to elements that have already been clustered
6. Threshold the remaining components to determine which elements belong to 

this cluster
7. If all elements have been accounted for, there are sufficient clusters
8. Until there are sufficient clusters



Clustering as graph partitioning



Normalized Cut



Cut vs Association



Normalized cuts

•  Current criterion evaluates 
within cluster similarity, but not 
across cluster difference

•  Instead, wed like to maximize 
the within cluster similarity 
compared to the across cluster 
difference

•  Write graph as V, one cluster as 
A and the other as B

•  Maximize

•  i.e. construct A, B such that 
their within cluster similarity is 
high compared to their 
association with the rest of the 
graph
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Normalized cuts algorithm

€ 

D −W( )y = λDy





Application to Image Segmentation 

An image is represented as an edge-weighted undirected graph, where 
vertices correspond to individual pixels and edge-weights reflect the 
“similarity” between pairs of vertices. 
 
For the sake of comparison, in the experiments we used the same similarities 
used in Shi and Malik’s normalized-cut paper (PAMI 2000). 
 
To find a hard partition, the following peel-off strategy was used: 

Partition_into_dominant_sets(G) 
Repeat 

   find a dominant set 

   remove it from graph 

until all vertices have been clustered 

To find a single dominant set we used replicator dynamics (but see Rota 
Bulò, Pelillo and Bomze, CVIU 2011, for faster game dynamics). 



Intensity Segmentation Results 

Dominant sets Ncut   



Intensity Segmentation Results 

Dominant sets                                                     Ncut   



Results on the Berkeley Dataset 
Dominant sets                     Ncut   



Color Segmentation Results 

Original image             Dominant sets                    Ncut   



Dominant sets                     Ncut   

Results on the Berkeley Dataset 



Texture Segmentation Results 

Dominant sets 



Texture Segmentation Results 

NCut 



Modularity 



Modularity 

From: Carl Kingsford (2009)



Modularity 

From: Carl Kingsford (2009)



Modularity 

From: Carl Kingsford (2009)



Modularity 

Maximize

From: Carl Kingsford (2009)



Zachary’s Karate Club 

Newman, 2006


