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The Clustering Problem

Given:

* aset of n “objects” } = an edge-weighted graph

* an n x n matrix A of pairwise similarities

Goal: Group the the input objects (the vertices of the graph) into maximally
homogeneous classes (i.e., clusters).
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What Is a Cluster?

No universally accepted (formal) definition of a “cluster” but, informally, a
cluster should satisfy two criteria:

Internal criterion
all “objects” inside a cluster should be highly similar to each other

External criterion

all “objects” outside a cluster should be highly dissimilar to the ones inside




The Clustering Game

In the (pairwise) clustering game we have:
v Two players (because we have pairwise affinities)
v" Pure strategies = objects to be clustered

v' Payoff matrix = similarity matrix

It is in each player’s interest to pick an element that is similar to the one that
the adversary is likely to choose.

ESS’s abstract well the main characteristics of a cluster:

v" Internal coherency: High mutual support of all elements within the group

v" External incoherency: Low support from elements of the group to elements
outside the group

ESS’s are equivalent to dominant sets (Pavan and Pelillo, 2007).




Special Case #1:
Symmetric Affinities

Given a symmetric real-valued matrix A (with null diagonal), consider the
following Standard Quadratic Programming problem (StQP):

maximize f(x) = x’Ax
subjectto xE€EA

Note. The function f(x) provides a measure of cohesiveness of a cluster
(see Pavan and Pelillo, 2007; Sarkar and Boyer, 1998; Perona and
Freeman, 1998).




Special Case #2:
Binary Symmetric Affinities

Suppose the similarity matrix is a binary (0/1) matrix.

Given an unweighted undirected graph G=(V,E):

A cligue is a subset of mutually adjacent vertices
A maximal clique is a clique that is not contained in a larger one




A Toy Example:
Grouping Apples
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Measuring the Degree of Cluster
Membership

The components of the converged vector give us a measure of the
participation of the corresponding vertices in the cluster, while the value of
the objective function provides of the cohesiveness of the cluster.

See Rosch’s prototype theory of categorization (e.g., Lakoff, 1987).




Dealing with High-Order Similarities

A (weighted) hypergraph is a triplet H = (V, E, w), where

= Vs a finite set of vertices
= E S 2Vis the set of (hyper-)edges (where 2V is the power set of V)
= w:E— Risareal-valued function assigning a weight to each edge

We will focus on a particular class of hypergraphs, called k-graphs,
whose edges have fixed cardinality k > 2.

United States

Germany v
Sweden

A hypergraph where the vertices are flag colors and the hyperedges are flags.




The Hypergraph Clustering Game

Given a weighted k-graph representing an instance of a hypergraph
clustering problem, we cast it into a k-player (hypergraph) clustering
game where:

v" There are k players
v" The objects to be clustered are the pure strategies

v" The payoff function is proportional to the similarity of the objects/
strategies selected by the players

Definition (ESS-cluster). Given an instance of a hypergraph clustering
problem H = (VEw), an ESS-cluster of H is an ESS of the
corresponding hypergraph clustering game.

As in the k=2 case, ESS-clusters do incorporate both internal and
external cluster criteria (see PAMI 2013)



An exampe: Line Clustering
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Fig. 3. Results of clustering two, three, and four lines with an increasing number of clutter points (0, 10, 20, 40). (a) Example of two 5D lines (projected
in 2D) with 40 clutter points. (b) Two lines. (c) Three lines. (d) Four lines.




In a nutshell...

The game-theoretic/dominant-set approach:

v

makes no assumption on the structure of the affinity matrix, being it able to
work with asymmetric and even negative similarity functions

does not require a priori knowledge on the number of clusters (since it extracts
them sequentially)

leaves clutter elements unassigned (useful, e.g., in figure/ground separation or
one-class clustering problems)

allows principled ways of assigning out-of-sample items (N/IP5'04)
allows extracting overlapping clusters (ICPR’08)

generalizes naturally to hypergraph clustering problems, i.e., in the presence
of high-order affinities, in which case the clustering game is played by more
than two players (PAMI’13)

extends to hierarchical clustering (ICCV’03: EMMCVPR’09)

allows using multiple affinity matrices using Pareto-Nash notion (SIMBAD’15)
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Graph Partitioning

* Represent tokens using a weighted graph.
— affinity matrix

e Cut up this graph to get subgraphs with strong interior
links









Eigenvector-based clustering

Simplest idea: we want a
vector a giving the association
between each element and a
cluster

We want elements within this
cluster to, on the whole, have
strong affinity with one another

We could maximize
T
a Aa
But need the constraint

This is an eigenvalue problem -
choose the eigenvector of A
with largest eigenvalue



Example eigenvector
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More than two segments

e Two options

— Recursively split each side to get a tree, continuing till the
eigenvalues are too small

— Use the other eigenvectors



AN O A W N

Clustering by eigenvectors: Algorithm

Construct (or take as input) the affinity matrix A
Compute the eigenvalues and eigenvectors of A
Repeat
Take the eigenvector corresponding to the largest unprocessed eigenvalue
Zero all components corresponding to elements that have already been clustered

Threshold the remaining components to determine which elements belong to
this cluster

If all elements have been accounted for, there are sufficient clusters

Until there are sufficient clusters



Clustering as graph partitioning

cut(A, B) = Z w(w,v).

ucAvelB
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Fig. 1. A case where minimum cut gives a bad patrtition.



Normalized Cut

' ut(A, B ut(A. B
Neut(A, B) = — (4,B)  _cutl4, 5)

assoc(A, V) assoc(B,V)’

assoc(A, V) =" aey wu,t)



Cut vs Association

Neut(A, ) = A D) cul(4, B)
" oassoc(A V) assoc(B.V)

assoc(A, V) — assoc(A, A)

assoc(A, V)

assoc(B, V) — assoc(B, B)

N assoc(B, V)
_ 9 assoc(A, A) assoc(B, B)
o assoc(A, V) assoc(B,V)

2 — Nassoc(A, B).



Normalized cuts

e Current criterion evaluates e Maximize
within cluster similarity, but not
across cluster difference

e Instead, wed like to maximize (aSSOC(A’A)) N (aSSOC (B,B ))

the within cluster similarity assoc(A,V) assoc(B,V)
compared to the across cluster

difference
* Write graph as V, one clusteras o« je construct A, B such that
A and the other as B their within cluster similarity is

high compared to their
association with the rest of the
graph



+ Letybe aP =|V|dimensional vector where . if nodeie A

y —
,"i_{

’ — 1, otherwise
Ll d)=2w,
J
define the affinity of node i with all other nodes
+ Let D =P x P diagonal matrix:
_dl 0 -
0 d, ..
D= “degree matrix”




Let A =P x P symmetric matrix: B

L TELP! Wip
. . . ‘1.-\1 ""‘)q e "1‘\.])
“affinity matrix A= ~ - i
It can be shown that Wi Wpo e Wop |

y = arg min, ncut(x)

"
y (D-A)y . T

( - A subject toy' D1=0
y Dy

= argming -

Relaxing the constraint on y so as to allow it to have real
values means that we can approximate the solution by
solving an equation of the form: (D-A)y = .Dy




* The solution, y, is an eigenvector of (D — A)

* An eigenvector is a characteristic vector of a matrix
and specifies a segmentation based on the values of
its components; similar points will hopefully have
similar eigenvector components.

 Theorem: If Mis any real, symmetric matrix and x is
orthogonal to the j-1 smallest eigenvectors x, ..., X4,
then x"Mx / x"x is minimized by the next smallest
eigenvector x; and its minimum value is the
eigenvalue A,



Smallest eigenvector is always 0
because A=V, B={} means ncut(A,B)=0

Second smallest eigenvector is the real-valued y that
minimizes ncut

Third smallest eigenvector is the real-valued y that
optimally sub-partitions the first two regions

Etc.

Note: Converting from the real-valued y to a binary-

valued y introduces errors that will propagate to each
sub-partition



Comments on the Algorithm

* Recursively bi-partitions the graph instead of using the
3rd 4th etc. eigenvectors for robustness reasons (due
to errors caused by the binarization of the real-valued

eigenvectors)

+ Solving standard eigenvalue problems takes O(P?)
time

« Can speed up algorithm by exploiting the “locality” of
affinity measures, which implies that A is sparse (non-
zero values only near the diagonal) and (D — A) is
sparse. This leads to a O(PVP) time algorithm
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Normalized cuts algorithm

Given an image or image sequence, set up a
weighted graph G = (V,E) and set the weight on
the edge connecting two nodes to be a measure of
the similarity between the two nodes.

Solve (D — W)z = ADxz for eigenvectors with the
smallest eigenvalues.

Use the eigenvector with the second smallest
eigenvalue to bipartition the graph.

Decide if the current partition should be subdivided
and recursively repartition the segmented parts if
necessary.
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Fig. 5. (a) Point set generated by two Poisson processes, with densities of 2.5 and 1.0 on the left and right clusters respectively, (b) /. and x indicate
the partition of point set in (a). Parameter settings: ox = 5, r = 3.



Application to Image Segmentation

An image is represented as an edge-weighted undirected graph, where
vertices correspond to individual pixels and edge-weights reflect the
“similarity” between pairs of vertices.

For the sake of comparison, in the experiments we used the same similarities
used in Shi and Malik’s normalized-cut paper (PAMI 2000).

To find a hard partition, the following peel-off strategy was used:

Partition into dominant sets (G)
Repeat
find a dominant set
remove 1t from graph
until all vertices have been clustered

To find a single dominant set we used replicator dynamics (but see Rota
Bulo, Pelillo and Bomze, CVIU 2011, for faster game dynamics).



Intensity Segmentation Results

Dominant sets Ncut



Intensity Segmentation Results

Dominant sets




Results on the Berkeley Dataset

Dominant sets Ncut
GCE — 0.05. LCE — 0.04 GCE — 003, LCE —0.05
}
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GCE —0.11. LCE — 0.09

GCE — 036, LCE —0.27

GCE — 0.09, LCE —0.08 GCE — 0.31. LCE

0.22



Color Segmentation Results
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Results on the Berkeley Dataset

Dominant sets Ncut

GCE —0.12. LCE —0.12 GCE — 0.19. LCE —0.13

GCE — 031, LCE —0.26 GCE — 035, LCE —0.29

0.09. LCE — 0.06 GCE

GCE 016, LCE —0.16



Texture Segmentation Results
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Texture Segmentation Results
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Modularity

Define modularity to be

Q = (number of edges within groups) —

(expected number within groups).

* Modularity is measured relative to a null model

~ Defined by P; = probability of an edge between

vertices 7 and |
— Examples:
>P; =p (Erdos-Rényi random graph)

> pi]. = kik]./Zm (“configuration model”)



Modularity

adjacency
matrix

normalization
4m —
1,
m same
module

|
(-

S

kik;
2m

Consider the case of only 2 modules.
Letsi =1 if node i is in module 1; -1 if node i is in module 2

1
Q = -3 (4

2,

1

Aj;
4m..< ’

2,

_ kik;
2m

2m

probability a random
edge would go

between i and j

m = # edges in graph
ki = degree(i)

(s;8; +1)

S¢S

From: Carl Kingsford (2009)



Modularity

Q = 1 A.._k’ikﬂ' 5.
— 7 7
4m “— J 2m J
1,]
I 5 :
— —s Bs. | sisaf{l1]
4dm T membership
“modularity” vector
matrix

Let u; (i =1,...,n) be the eigenvectors of matrix B with eigenvalue
Bi for vector u;. (Assume 1= 2= 3= fa=...= fn)

Write s as: where:
S = E A5 Uj a; = uiTs
i

From: Carl Kingsford (2009)




Modularity

1
Q = —s'Bs

4m

drop the (1/4m)—— — (Z am?) B Z ;U
t J
— (Z am?B) z a;u;

i J
= E E a;a;u] Bu;
J

7

Note:
1. Buj = fiu;
2. When i # j, u;TBu; = 0 because u; L u;

Q= Z(U?SV@

From: Carl Kingsford (2009)



Modularity

Maximize () = Z(UZ-TS)Q@

e [f we were allowed to choose any s we’d pick the one
that is parallel to u;.

e But:s; must be +1 or -1.
This is a severe restriction.

e So: maximize u;'s, the projection of s along vector ;.

® To do this: chooses;=11ifu; >0, and s;=-11if u; <0.

From: Carl Kingsford (2009)



Newman, 2006

Zachary’s Karate Club



