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What is Game Theory? 

“The central problem of game theory was posed by von 
Neumann as early as 1926 in Göttingen. It is the following: 
If n players, P1,…, Pn, play a given game Γ, how must the ith 

player, Pi, play to achieve the most favorable result for himself?” 
 

Harold W. Kuhn 
Lectures on the Theory of Games (1953) 

 
A few cornerstones of game theory 

1921−1928: Emile Borel and John von Neumann give the first modern formulation of a 
mixed strategy along with the idea of finding minimax solutions of normal-form games. 

1944, 1947: John von Neumann and Oskar Morgenstern publish Theory of Games and 
Economic Behavior. 

1950−1953: In four papers John Nash made seminal contributions to both non-cooperative 
game theory and to bargaining theory. 

1972−1982: John Maynard Smith applies game theory to biological problems thereby 
founding “evolutionary game theory.” 

late 1990’s −: Development of algorithmic game theory… 



Normal-form Games 

We shall focus on finite, non-cooperative, simultaneous-move games in 
normal form, which are characterized by: 

ü  A set of players: I = {1, 2, …, n} (n ≥ 2)  

ü  A set of pure strategy profiles: S = S1 × S2 × … × Sn where each Si = {1, 
2, …, mi} is the (finite) set of pure strategies (actions) available to the 
player i 

ü  A payoff function: π : S → ℜn, π(s) = (π1(s),…,πn(s)), where πi(s) 
(i=1…n) represents the “payoff” (or utility) that player i receives when 
strategy profile s is played 

 
Each player is to choose one element from his strategy space in the 
absence of knowledge of the choices of the other players, and “payments” 
will be made to them according to the function πi(s). 

Players’ goal is to maximize their own returns. 



Two Players 

In the case of two players, payoffs can be represented as two m1 x m2 
matrices (say, A for player 1 and B for player 2): 

€ 

A = (ahk )

€ 

B = (bhk )€ 

ahk = π1(h,k)

€ 

bhk = π 2(h,k)

Special cases: 
 
ü   Zero-sum games: A + B = 0 (ahk = −bhk for all h and k) 

ü   Symmetric games: BT = A 

ü   Doubly-symmetric games: A = AT = BT 



 
Prisoner 2 

 
Confess 
(defect) 

 
Deny 

(cooperate) 

 
 
 

Prisoner 1 

 
Confess 
(defect) 

 
-10 , -10 

 
-1 , -25 

 
Deny 

(cooperate) 

 
-25 , -1 

 
-3 , -3 

Example 1:�
Prisoner’s Dilemma 



 
Prisoner 2 

 
Confess 
(defect) 

 
Deny 

(cooperate) 

 
 
 

Prisoner 1 

 
Confess 
(defect) 

 
-10 , -10 

 
-1 , -25 

 
Deny 

(cooperate) 

 
-25 , -1 

 
-3 , -3 

What Would You Do? 



Example 2:�
Battle of the Sexes 

 
Wife 

 
Soccer 

 
Ballet 

 
 
 

Husband 

 
Soccer 

 
2 , 1 

 
0 , 0 

 
Ballet 

 
0 , 0 

 
1 , 2 



Example 3:�
Rock-Scissors-Paper 

 
You 

 
Rock 

 
Scissors 

 
Paper 

 
 
 
 
 

Me 

 
Rock 

 
0 , 0 

 

 
1 , -1 

 
-1 , 1 

 
Scissors 

 
-1 , 1 

 

 
0 , 0 

 
1 , -1 

 
Paper 

 
1 , -1 

 

 
-1 , 1 

 

 
0 , 0 

 



Mixed Strategies 

  

€ 

Δ i = xi ∈ Rmi :  ∀h =1…mi : xih ≥ 0, and xih =1
h=1

mi

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

A mixed strategy for player i is a probability distribution over his set Si 
of pure strategies, which is a point in the standard simplex: 

The set of pure strategies that is assigned positive probability by mixed 
strategy xi∈Δi is called the support of xi: 

€ 

σ(xi) = h ∈ Si : xih > 0{ }

A mixed strategy profile is a vector x = (x1,…,xn) where each 
component xi∈∆i is a mixed strategy for player i∈I. 
 
The mixed strategy space is the multi-simplex Θ = ∆1 × ∆2 × … × ∆n 



mi = 2 mi = 3 

Note: Corners of standard simplex correspond to pure strategies. 

Standard Simplices 



Mixed-Strategy Payoff Functions 

€ 

x(s) = xisi
i=1

n

∏

ui (x) = x(s)π i (s)
s∈S
∑

In the standard approach, all players’ randomizations are assumed to 
be independent. 
 
Hence, the probability that a pure strategy profile s = (s1,…,sn) will be 
used when a mixed-strategy profile x is played is: 

and the expected value of the payoff to player i is: 

€ 

u1(x) = x1hahk x2k = x1
T Ax2

k=1

m2

∑
h=1

m1

∑

€ 

u2(x) = x1hbhk x2k = x1
TBx2

k=1

m2

∑
h=1

m1

∑

In the special case of two-players games, one gets: 

where A and B are the payoff matrices of players 1 and 2, respectively. 



Best Replies 

Player i‘s best reply to the strategy profile x−i is a mixed strategy xi
*∈∆i such 

that  

ui(xi
*,x−i) ≥ ui(xi,x−i) 

for all strategies xi ∈∆i. 

Notational shortcut. If z∈Θ and xi∈∆i, the notation (xi,z−i) stands for the 
strategy profile in which player i∈I plays strategy xi, while all other players 
play according to z. 

Note. The best reply is not necessarily unique. Indeed, except in the extreme 
case in which there is a unique best reply that is a pure strategy, the number 
of best replies is always infinite.  
 



Nash Equilibria 

A strategy profile x∈Θ is a Nash equilibrium if it is a best reply to itself, 
namely, if: 

ui(xi,x−i) ≥ ui(zi,x−i) 

for all i = 1…n and all strategies zi ∈∆i. 

 

If strict inequalities hold for all zi ≠ xi then x is said to be a strict Nash 
equilibrium. 

Theorem. A strategy profile x∈Θ is a Nash equilibrium if and only if for 
every player i∈I, every pure strategy in the support of xi is a best reply to x−i. 
 
It follows that every pure strategy in the support of any player’s equilibrium 
mixed strategy yields that player the same payoff. 



Finding Pure-strategy Nash Equilibria 

 
Player 2 

 
Left 

 
Middle 

 
Right 

 
 
 
 
 
 
 

Player 1 

 
Top 

 
3 , 1 

 

 
2 , 3 

 
10 , 2 

 
High 

 
4 , 5 

 

 
3 , 0 

 
6 , 4 

 
Low 

 
2 , 2 

 

 
5 , 4 

 

 
12 , 3 

 

 
Bottom 

 
5 , 6 

 
4 , 5 

 

 
9 , 7 

 



 
Wife 

 
Soccer 

 
Ballet 

 
 
 

Husband 

 
Soccer 

 
2 , 1 

 
0 , 0 

 
Ballet 

 
0 , 0 

 
1 , 2 

Multiple Equilibria in Pure Strategies 



No Equilibrium in Pure Strategies 

 
You 

 
Rock 

 
Scissors 

 
Paper 

 
 
 
 
 

Me 

 
Rock 

 
0 , 0 

 

 
1 , -1 

 
-1 , 1 

 
Scissors 

 
-1 , 1 

 

 
0 , 0 

 
1 , -1 

 
Paper 

 
1 , -1 

 

 
-1 , 1 

 

 
0 , 0 

 

Nash equilibrium! 



Existence of Nash Equilibria  

Theorem (Nash, 1951). Every finite normal-form game admits a mixed-
strategy Nash equilibrium. 

Idea of proof.  

1.  Define a continuous map T on Θ such that the fixed points of T 
are in one-to-one correspondence with Nash equilibria. 

2.  Use Brouwer’s theorem to prove existence of a fixed point. 

Note. For symmetric games, Nash proved that there always exists a 
symmetric Nash equilibrium, namely a Nash equilibrium where all 
players play the same (possibly mixed) strategy. 



The Complexity of  
Finding Nash Equilibria 

“Together with factoring, the complexity of finding a Nash 
equilibrium is in my opinion the most important concrete open 

question on the boundary of P today.” 
 

Christos Papadimitriou  
Algorithms, games, and the internet (2001) 

At present, no known reduction exists from our problem to a decision 
problem that is NP-complete, nor has it been shown to be easier.  
 

Theorem (Daskalakis et al. 2005; Chen and Deng, 2005, 2006). The 
problem of finding a sample Nash equilibrium of a general-sum finite game 
with two or more players is PPAD-complete. 



Variations on Theme 

Theorem (Gilboa and Zemel, 1989). The following are NP-complete 
problems, even for symmetric games. 

Given a two-player game in normal form, does it have: 

1.  at least two Nash equilibria? 

2.  a Nash equilibrium in which player 1 has payoff at least a given 
amount? 

3.  a Nash equilibrium in which the two players have a total payoff at 
least a given amount? 

4.  a Nash equilibrium with support of size greater than a give number? 

5.  a Nash equilibrium whose support contains a given strategy? 

6.  a Nash equilibrium whose support does not contain a given strategy? 

7.  etc. 



Evolution and the Theory of Games 

“We repeat most emphatically that our theory is thoroughly static. 
A dynamic theory would unquestionably be more complete and 
therefore preferable.  
But there is ample evidence from other branches of science that it 
is futile to try to build one as long as the static side is not 
thoroughly understood.” 
 
John von Neumann and Oskar Morgenstern  
Theory of Games and Economic Behavior (1944) 

“Paradoxically, it has turned out that game theory is more readily 
applied to biology than to the field of economic behaviour for 

which it was originally designed.”  
 

John Maynard Smith 
Evolution and the Theory of Games (1982) 

 



Evolutionary Games 

Introduced by John Maynard Smith and Price (1973) to model the evolution 
of behavior in animal conflicts. 
 
Assumptions: 
 
ü  A large population of individuals belonging to the same species which 

compete for a particular limited resource 

ü  This kind of conflict is modeled as a symmetric two-player game, the 
players being pairs of randomly selected population members 

ü  Players do not behave “rationally” but act according to a pre-programmed 
behavioral pattern (pure strategy) 

ü  Reproduction is assumed to be asexual 

ü  Utility is measured in terms of Darwinian fitness, or reproductive success 



Evolutionary Stability 

A strategy is evolutionary stable if it is resistant to invasion by new strategies. 
 
Formally, assume: 

ü  A small group of “invaders” appears in a large populations of individuals, 
all of whom are pre-programmed to play strategy x∈∆ 

ü  Let y∈∆ be the strategy played by the invaders 

ü  Let ε be the share of invaders in the (post-entry) population (0 < ε < 1) 

 

The payoff in a match in this bimorphic population is the same as in a match 
with an individual playing mixed strategy: 

w = εy + (1 – ε)x ∈ ∆  

and the (post-entry) payoffs got by the incumbent and the mutant strategies 
are u(x,w) and u(y,w), respectively. 



Evolutionary Stable Strategies 

Definition. A strategy x∈∆ is said to be an evolutionary stable strategy 
(ESS) if for all y∈∆–{x} there exists δ∈(0,1), such that for all ε∈(0, δ) 
we have: 

u[x, εy + (1 – ε)x]  >  u[y, εy + (1 – ε)x] 

Theorem. A strategy x∈Δ is an ESS if and only if it meets the following 
first- and second-order best-reply conditions: 

1.  u(y,x) ≤ u(x,x)    for all y∈∆  (Nash equilibrium) 

2.  u(y,x) = u(x,x) ⇒ u(y,y) < u(x,y)     for all y∈∆–{x} 

Note. From the conditions above, we have:  

ü  ∆ESS ⊆ ∆NE 

ü  If x∈∆ is a strict Nash equilibrium, then x is an ESS 

incumbent mutant 



Existence of ESS’s 

Unlike Nash equilibria existence of ESS’s is not guaranteed. 

 
You 

 
Rock 

 
Scissors 

 
Paper 

 
 
 
 
 

Me 

 
Rock 

 
0 , 0 

 

 
1 , -1 

 
-1 , 1 

 
Scissors 

 
-1 , 1 

 

 
0 , 0 

 
1 , -1 

 
Paper 

 
1 , -1 

 

 
-1 , 1 

 

 
0 , 0 

 

ü  Unique Nash equilibrium is x=(1/3,1/3,1/3)T 

ü  Hence, all y∈∆ are best replies to x 

ü  Let the “mutant” be y=(1,0,0)T 

ü  But u(y,y) = u(x,y), hence ∆ESS = Ø 



Complexity Issues 

Two questions of computational complexity naturally present themselves: 
 
ü  What is the complexity of determining whether a given game has an 

ESS (and of finding one)?  

ü  What is the complexity of recognizing whether a given x is an ESS for a 
given game? 

Theorem (Etessami and Lochbihler, 2004). Determining whether a given 
two-player symmetric game has an ESS is both NP-hard and coNP-hard. 
 
 
Theorem (Nisan, 2006). Determining whether a (mixed) strategy x is an ESS 
of a given two-player symmetric game is coNP-hard. 



Replicator Dynamics 

Let xi(t) the population share playing pure strategy i at time t. The state of 
the population at time t is: x(t)= (x1(t),…,xn(t))∈∆. 
 
Replicator dynamics (Taylor and Jonker, 1978) are motivated by Darwin’s 
principle of natural selection: 

€ 

˙ x i
xi

∝  payoff of pure strategy i −  average population payoff

€ 

˙ x i = xi u(ei,x) − u(x, x)[ ]
= xi (Ax)i − xT Ax[ ]

Notes. 
ü  Invariant under positive affine transformations of payoffs 

ü  Standard simplex ∆ is invariant under replicator dynamics, namely, 
x(0)∈∆ ⇒ x(t)∈∆, for all t > 0 (so is its interior and boundary) 

which yields: 



Theorem (Nachbar, 1990; Taylor and Jonker, 1978). A point x∈∆ is a Nash 
equilibrium if and only if x is the limit point of a replicator dynamics 
trajectory starting from the interior of ∆. 
Furthermore, if x∈∆ is an ESS, then it is an asymptotically stable equilibrium 
point for the replicator dynamics. 

The opposite need not be true. 

€ 

A =

0 6 −4
−3 0 5
−1 3 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

ü  The point m=(1/3,1/3,1/3)T is asymptotically 
stable (its eigenvalues have negative parts). 

ü  But e1=(1,0,0)T is an ESS. 
ü  Hence m cannot be an ESS (being in the 

interior, it would have to be the unique ESS). 

Replicator Dynamics and ESS’s 



Doubly Symmetric Games 

In a doubly symmetric (or partnership) game, the payoff matrix A is 
symmetric (A = AT). 

Fundamental Theorem of Natural Selection (Losert and Akin, 1983).  
For any doubly symmetric game, the average population payoff  

ƒ(x) = xTAx  
is strictly increasing along any non-constant trajectory of replicator 
dynamics, namely, d/dtƒ(x(t)) ≥ 0 for all t ≥ 0 (with equality if and only if 
x(t) is a stationary point). 

Characterization of  ESS’s (Hofbauer and Sigmund, 1988) 

For any doubly simmetric game with payoff matrix A, the following 
statements are equivalent: 

a)  x ∈ ∆ESS 

b)  x ∈ ∆ is a strict local maximizer of ƒ(x) = xTAx over the standard 
simplex ∆ 

c)  x ∈ ∆ is asymptotically stable under the replicator dynamics 



Discrete-time Replicator Dynamics 

€ 

xi(t +1) = xi(t)
A x(t)( )i
x(t)T Ax(t)

MATLAB implementation 

A well-known discretization of replicator dynamics, which assumes non-
overlapping generations, is the following (assuming a non-negative A): 

which inherits most of the dynamical properties of its continuous-time 
counterpart (e.g., the fundamental theorem of natural selection). 
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