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The power law distribution: Discrete vs. Continuous formalism

Discrete Formalism
As node degrees are always positive
integers, the discrete formalism captures the
probability that a node has exactly k links:
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Continuous Formalism
In analytical calculations it is often convenient to
assume that the degrees can take up any
positive real value:
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Power law
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o R @ a) Numbers of occurrences of words in the novel Moby
= Dick by Hermann Melville.

10" b) Numbers of citations to scientic papers published in

1981, from time of publication until June 1997.

c) Numbers of hits on web sites by 60000 users of the
America Online Internet service for the day of 1
December 1997.

d) Numbers of copies of bestselling books sold in the US
between 1895 and 1965.

e) Number of calls received by AT&T telephone customers
in the US for a single day.
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f) Magnitude of earthquakes in California between
January 1910 and May 1992. Magnitude is proportional
to the logarithm of the maximum amplitude of the
earthquake, and hence the distribution obeys a power
law even though the horizontal axis is linear.

105 ™. ® 10 (h) 100 » g) Diameter of craters on the moon. Vertical axis is
e measured per square kilometre.
10° i 10 “-\' h) Peak gamma-ray intensity of solar ares in counts per
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~ G) 0. ®) 10° 6)) i) Aggregate net worth in dollars of the richest individuals
100- \ in the US in October 2003.

N, 5 10° k) Frequency of occurrence of family names in the US in
10~ N . the year 1990.
s [)  Populations of US cities in the year 2000.
1=y T 10° ey T T 10"y T T
10° 10" 100 100 10° 10° 10° 10’

net worth in US dollars name frequency population of city From: Newman 2006



The 80/20 rule

“80% of the wealthis in the hands of the richest 20% of people.”

Other examples
* 80% of problems can be attributed to 20% of causes.
$ * 80% of a company's profits come from 20% of its customers
* 80% of a company's complaints come from 20% of its customers
* 80% of a company's profits come from 20% of the time its staff spent
* 80% of a company's revenue comes from 20% of its products
* 80% of a company's sales are made by 20% of its sales staff

Profits

| N —
20% of the Products

Vilfredo Pareto (1848 — 1923), italian economist, political scientist and philosopher, who had
important contributions to our understanding of income distribution and to the analysis of individuals choices.
A number of fundamental principles are named after him, like Pareto efficiency, Pareto distribution (another
name for a power-law distribution), the Pareto principle (or 80/20 law).



WORLD WIDE WEB

Snapshots of the World Wide Web sample mapped out by Hawoong Jeong in 1998 [1]. The sequence of images show an
increasingly magnified local region of the network. The first panel displays all 325,729 nodes, offering a global view of the full
dataset. Nodes with more than 50 links are shown in red and nodes with more than 500 links in purple. The closeups reveal the
presence of a few highly connected nodes, called hubs, that accompany scale-free networks.



WORLD WIDE WEB

Nodes: WWW documents

Links: URL links s im
X
| '3
Over 3 billion documents 2 Q
&l 1@
o
ROBOT: collects all URL’s [ l
found in a document and - <f> .
follows them recursively I -
k
100 g T 1 10° r T . i
£\ ] N\
/“ “{‘J‘z
o 1 02y 1
._!-.\. ',_‘“"
e | N8
104 ““. . ) 104 | “.‘. .
- 10° [ o. . = 10° [ l‘a .
; i .
108 F i) . 108 F z, 3 .
ot | :.
1010 Lt oy A N Y 1010 L—uut d oo o A
10 100 102 100 10 10° 100 100 102 108 108 10°
kin ]‘:out.

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).
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The difference between a power law and an exponential distribution
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The difference between a power law and an exponential distribution

Let us use the WWW to illustrate the properties of the high-k regime.
The probability to have a node with k~100 is

« About pyyo =10 if p, follows a Poisson distribution

« About pipy = 107" if p, follows a power law.

Consequently, if the WWW were to be a random network, according to the
Poisson prediction we would expect 108 k>100 degree nodes, or none.

For a power law degree distribution, we expect about N,. ,, = 10’
k>100 degree nodes



The difference between a power law and an exponential distribution
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The size of the largest hub

All real networks are finite = let us explore its consequences.
- We have an expected maximum degree, k

max

Estimating k
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The size of the largest hub

1

kmax — kminNﬁ

To illustrate the difference in the maximum degree of an exponential and a scale-free
network let us return to the WWW sample, consisting of N = 3 x 10° nodes.

As k., = 1, if the degree distribution were to follow an exponential, (4.17) predicts
that the maximum degree should be k., = 14 for A=1. In a scale-free network of
similar size and y = 2.1, (4.18) predicts k., = 95,000, a remarkable difference.

Note that the largest in-degree of the WWW map of Image 4.1 is 10,721, which is
comparable to kmax predicted by a scale-free network.

This reinforces our conclusion that in a random network hubs are effectivelly
forbidden, while in scale-free networks they are naturally present.



The size of the largest hub

Expected maximum degree, k.,

1
k =k N

Kmax increases with the size of the network

the larger a system is, the larger its biggest hub
Yy>2: K, increases slower than N

The largest hub will contain a decreasing fraction of links as N increases.
y=2: Kpu~N

The size of the biggest hub is O(N)

Y <2: K. increases faster than N: condensation phenomena
The largest hub will grab an increasing fraction of links. Anomaly!



The size of the largest hub
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The estimated degree
of the largest node in
scale-free and random
networks with the
same average degree
(k)= 3.

For the scale-free
network we chose y =
2.5. For comparison,
we also show the
linear behavior, k., ~

N - 1, expected for a
complete network.

Overall, hubs in a
scale-free network are
several orders of
magnitude larger than
the biggest node in a
random network with
the same N and <k)



The meaning of scale-free

Random Network "
Randomly chosen node: k = (k) £ (k)
Scale: (k)

Scale-Free Network
Randomly chosen node: k = (k) £ o0
Scale: none



The meaning of scale-free
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For a random network the standard
deviation follows o = <k»'2 shown as a
green dashed line on the figure. The
symbols show o for nine of the ten
reference networks, calculated using the
values shown in Table 4.1. The actor
network has a very large <k) and o,
hence it omitted for clarity. For each
network o is larger than the value
expected for a random network with the
same {k). The only exception is the
power grid, which is not scale-free.
While the phone call network is scale-
free, it has a large y, hence it is well
approximated by a random network.



universality



INTERNET BACKBONE

Nodes: computers, routers
Links: physical lines
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(Faloutsos, Faloutsos and Faloutsos, 1999)



Network Science: Scale-Free Property



SCIENCE CITATION INDEX

Nodes: papers
Links:citations
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(S. Redner, 1998)



SCIENCE COAUTHORSHIP

Nodes: scientist (authors)
Links: joint publication
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ONLINE COMMUNITIES

Nodes: online user Pussokram.com online community;
Links: email contact 512 days, 25,000 users.
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ONLINE COMMUNITIES

Network N L k) Kin2) Kout?? k2 Vin Yout Y
Internet 192,244 609,066 6.34 - - 240.1 - - 3.42*
WWw 325,729 1,497,134 4.60 1546.0 482.4 - 2.00 2.31 -
Power Grid 4,941 6,594 2.67 - - 10.3 - - EXp.
Mobile-Phone Calls 36,595 91,826 2.51 12.0 n.7 - 4.69* 5.01* -
Email 57,194 103,731 1.81 94.7 1163.9 - 3.43* 2.03* -
Science Collaboration 23,133 93,437 8.08 - - 178.2 - - 3.35*
Actor Network 702,388 29,397,908 83.71 - - 47,353.7 - - 2.12*
Citation Network 449,673 4,689,479 10.43 971.5 198.8 - 3.03* 4.00* -

E. Coli Metabolism 1,039 5,802 5.58 535.7 396.7 - 2.43* 2.90* -
Protein Interactions 2,018 2,930 290 - - 32.3 - - 2.89*-
Table 4.1

Degree Fluctuations in Real Networks

The table shows the first & and the second moment &2 (kj,2> and kg2 » for directed networks) for ten
reference networks. For directed networks we list k)= &kjp)= koy>. We also list the estimated degree exponent, y(,
for each network, determined using the procedure discussed in ADVANCED TOPICS 4.A. The stars next to the
reported values indicate the confidence of the fit to the degree distribution. That is, * means that the fit shows
statistical confidence for a power-law (k~Y); while ** marks statistical confidence for a fit (4.39) with an
exponential cutoff. Note that the power grid is not scalefree. For this network a degree distribution of the form
e~?k offers a statistically significant fit, which is why we placed an “Exp” in the last column.



Not all networks are scale-free

Networks appearing in material science,
like the network describing the bonds
between the atoms in crystalline or
amorphous materials, where each node
has exactly the same degree.

The neural network of the C.elegans
worm.

The power grid, consisting of generators
and switches connected by transmission
lines
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Ultra-small property



DISTANCES IN RANDOM GRAPHS

Random graphs tend to have a tree-like topology with almost constant node degrees.

* nr. of first neighbors: Nl o <k>
* nr. of second neighbors: 2
N,= <k>
-nr. of neighbours at distance d: J
N, = <k>
« estimate maximum distance:
log N
1 + =N [> -



SMALL WORLD BEHAVIOR IN SCALE-FREE NETWORKS

( _ 2 Size of the biggest hub is of order O(N). Most nodes can be connected within two layers
const. }/ - of it, thus the average path length will be independent of the system size.
The average path length increases slower than logarithmically. In a random network all
Ultra 11'1 h'lN nodes have comparable degree, thus most paths will have comparable length. In a
Small E— 2 < ‘}/ < 3 scale-free network the vast majority of the path go through the few high degree hubs,
World In(v -1 reducing the distances between nodes.
Y
<[>~
ln N Some key models produce y=3, so the result is of particular importance for them. This
_ 3 was first derived by Bollobas and collaborators for the network diameter in the context of
}/ - a dynamical model, but it holds for the average path length as well.
InlnN
Small The second moment of the distribution is finite, thus in many ways the network behaves
World h'lN }/ > 3 as a random network. Hence the average path length follows the result that we derived
\

for the random network model earlier.

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas,
1985; Newman, 2001



SMALL WORLD BEHAVIOR IN SCALE-FREE NETWORKS

30 -

(d)

20 -

10

OK'A 1 1 1 1

HUMAN PPI

INTERNET
(2011)

SOCIETY

WWw

InN
(y > 3 and random)

InN
(y=3)
ps |0 |INN
InNInN(2<y<3)

N =102
05 r I 1 1
0.4 F
Py
03 F
0.2 F
0.1 -
0 L 1 ' |
0 5 d 10 15
®y=21 @y=30

y=50 @ RN

5 d 10 15 20

const.

InInN
In(y —1)
InN

InInN
InN

Y=2,

2<y <3,
(d) ~
7=3,

y > 3.

The scaling of the average path length in the
four scaling regimes characterizing a cale-free
network: constant (y = 2), InInN (2 <y < 3), InN/
InInN (y = 3), InN (y » 3 and random networks).
The dotted lines mark the approximate size of
several real networks. Given their modest size,
in biological networks, like the human protein-
protein interaction network (PPI), the
differences in the node-to-node distances are
relatively small in the four regimes. The
differences in {d) is quite significant for
networks of the size of the social network or
the WWW. For these the small-world formula
significantly underestimates the real {d).

(b)-(d) Distance distribution for networks of size
N =102, 104, 106, illustrating that while for
small networks (N = 102) the distance
distributions are not too sensitive to v, for large
networks (N = 106) pd and {d) change visibly
with y.



The role of the degree exponent

ANOMALOUS SCALE-FREE RANDOM
REGIME REGIME REGIME
No large network Indistinguishable
can exist here from a random network
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Graphicality: No large networks for y<2

a. Graphical b. Not Graphical C.

1 »

2/3 ¢ 2/3 F N = 10°
" Il
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Networks With y < 2 are Not Graphical
Degree distributions and the corresponding degree sequences for two small networks. The difference between

them is in the degree of a single node. While we can build a simple network using the degree distribution (a), it is
impossible to build one using (b), as one stub always remains unmatched. Hence (a) is graphical, while (b) is not.
Fraction of networks, g, for a given y that are graphical. A large number of degree sequences with degree
exponent y and N = 105 were generated, testing the graphicality of each network. The figure indicates that while
virtually all networks with y » 2 are graphical, it is impossible to find graphical networks in the 0 <y < 2 range

1

In scale-free networks:  — g N7 For y<2: 1/(y-2)>1



Generating networks with predefined degree seq: Configuration model

k=3 k=2 k=2 k=1

R ’ ‘ (1) Degree sequence: Assign a degree to each

(a) * * * , node, represented as stubs or half-links. The
degree sequence is either generated
analytically from a preselected distribution,
or it is extracted from the adjacency matrix of

(b) a real network. We must start from an even
number of stubs, otherwise we will be left
with unpaired stubs.

(2) Network assembly: Randomly select a stub

pair and connect them. Then randomly
(C) O_._‘_. choose another pair from the remaining
M stubs and connect them. This procedure is
repeated until all stubs are paired up.

Depending on the order in which the stubs
were chosen, we obtain different networks.

(d) o0 00
Some networks include cycles (2b), others self-
loops (2c¢) or multi-edges (2d).

k-k- Yet, the expected number of self- and multi-edges
) goes to zero in the limit.

Pi=or-T



summary
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The Barabasi-Albert model



Hubs represent the most striking difference between a random and a scale-
free network.Their emergence in many real systems raises several

fundamental questions:

*  Why does the random network model of Erd6s and Rényi fail to reproduce the
hubs and the power laws observed in many real networks?

*  Why do so different systems as the WWW or the cell converge to a similar
scale-free architecture?



BA MODEL: Growth

ER model:
the number of nodes, N, is fixed (static models)

networks expand through the addition
of new nodes

Barabasi & Albert, Science 286, 509 (1999)
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BA MODEL.: Preferential attachment

ER model: links are added randomly to the network

New nodes prefer to connect to the more connected nodes

Barabasi & Albert, Science 286, 509 (1999) Network Science: Evolving Network Models



Section 2: Growth and Preferential Sttachment

The random network model differs from real networks in two important
characteristics:

Growth: While the random network model assumes that the number of

nodes is fixed (time invariant), real networks are the result of a growth
process that continuously increases.

Preferential Attachment: \While nodes in random networks randomly choose
their interaction partner, in real networks new nodes prefer to link to the more
connected nodes.

Barabasi & Albert, Science 286, 509 (1999)



Origin of SF networks: Growth and preferential attachment

(1) Networks continuously expand by the GROWTH:

addition of new nodes add a new node with m links

WWW : addition of new documents
PREFERENTIAL ATTACHMENT:

(2) New nodes prefer to link to highly the probability that a node connects to a node
connected nodes. with k links is proportional to k.
WWW : linking to well known sites k
M(k,) =
>k
JJ

: St

Barabasi & Albert, Science 286’ 509 (1 999) Network Science: Evolving Network Models
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The degree distribution of a network generated by the Barabasi-Albert model.

The figure shows p, for a single network of size N=100,000 and m=3. It shows both the linearly-binned
(purple) and the log-binned version (green) of p,. The straight line is added to guide the eye and has slope
y=3, corresponding to the network’s predicted degree exponent.



Degree distribution

_ t _1 B 2m(m+1) fy=
k@y=m | B=3 P =k Dk +2) Lr=3)

1

P(k) ~ k=3 for large k

(i) The degree exponent is independent of m.

(i) As the power-law describes systems of rather different ages and sizes, it is
expected that a correct model should provide a time-independent degree
distribution. Indeed, asymptotically the degree distribution of the BA model is
independent of time (and of the system size N)

- the network reaches a stationary scale-free state.

(iii) The coefficient of the power-law distribution is proportional to m2.



NUMERICAL SIMULATION OF THE BA MODEL

P(k) =

2m(m+1)

 k(k+1D)(k+2)

Py
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(a) We generated networks with N=100,000
and m,=m=1 (blue), 3 (green), 5 (grey), and 7
(orange). The fact that the curves are parallel
to each other indicates that y is independent
of m and m,,. The slope of the purple line is -3,
corresponding to the predicted degree expo-
nent y=3. Inset: (5.11) predicts p,~2m?, hence
p,/2m? should be independent of m. Indeed,
by plotting p,/2m?vs. k, the data points shown
in the main plot collapse into a single curve.

(b) The Barabasi-Albert model predicts that
p, is independent of N. To test this we plot p,
for N = 50,000 (blue), 100,000 (green), and
200,000 (grey), with m ;=m=3. The obtained p,
are practically indistinguishable, indicating
that the degree distribution is stationary, i.e.
independent of time and system size.



absence of growth and preferential
attachment



Model A: retains growth but does not include preferential attachment.

The probability of a new node connecting to any pre-existing node is equal.
The resulting degree distribution in this limit is geometric.

Model B: retains preferential attachment but eliminates growth.

The model begins with a fixed number of disconnected nodes and adds links,
preferentially choosing high degree nodes as link destinations.

Though the degree distribution early in the simulation looks scale-free, the
distribution is not stable, and it eventually becomes nearly Gaussian as the
network nears saturation.

Growth and preferential attachment are needed simultaneously to
reproduce the stationary power-law distribution observed in real networks.



Diameter and clustering coefficient



logN
loglogN

The average distance
(d) scales in a similar
fashion.

Indeed, for small N the
In N term captures the
scaling of {(d) with N,
but for large N(=104) the
impact of the logarithmic
correction InIn N
becomes noticeable.

mage 5.18

Average Distance

The dependence of the average distance on the system size in the Barabasi-Albert model. The continuous line
corresponds to the exact result (5.29), while the dotted line corresponds to the prediction (3.19) for a random network.
The analytical predictions do not provide the exact perfactors, hence the lines are not fits, but indicate only the predicted
N-dependent trends. The results were averaged for ten independent runs form = 2.




Clustering coefficient

Reminder: for a random graph we have:

rand ~—

C —<k>~N—1 10’}
N :
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C— m (InN)*

8 N The dependence of the average clustering coefficient on the system size N for the Barabasi-Albert model. The continuous
line corresponds to the analytical prediction (5.30), while the dotted line corresponds to the prediction for a random
network, for which (C» ~ 1/N. The results are averaged for ten independent runs for m = 2. The dashed and continuous
curves are not fits, but are drawn to indicate the predicted N dependent trends.

Clustering Coefficient



Section 11: Summary

Number of Nodes
N=t

Number of Links
N=mt

Average Degree
(k)=2m

Degree Dynamics
k(t) =m (t/t)?

Dynamical Exponent
B=1/2

Degree Distribution

pk~ k—y

Degree Exponent
y=3

Average Distance
(d) ~ logN/log logN
The network grows, but the degree distribution is stationary.
Clustering Coefficient
(C) ~ (InN)>/N



Section 11: Summary

Number of Nodes
N=t

Number of Links
N=mt

Average Degree
(k)=2m

Degree Dynamics

G4 SR (g Consequently, the modeling philosophy behind the model is simple: to un-
derstand the topology of a complex system, we need to describe how it came

Dynamical Exponent
p=1/2 into being.

Degree Distribution

pk~ k—y

Degree Exponent
y=3

Average Distance
(d) ~ logN/log logN
The network grows, but the degree distribution is stationary.
Clustering Coefficient
() ~ (InN)?/N



Section 11: Summary

Number of Nodes + The model predicts y=3 while the degree exponent of real networks
N=t varies between 2 and 5 (Table 4.2).
Number of Links

» Many networks, like the WWW or citation networks, are directed,

N=mt . .
while the model generates undirected networks.
Average Degree
& =2m » Many processes observed in networks, from linking to already exist-

ing nodes to the disappearance of links and nodes, are absent from

Degree Dynamics the model.
k(t)=m (t/t)

i

o The model does not allow us to distinguish between nodes based on

Z{n:/rzlcal S some intrinsic characteristics, like the novelty of a research paper or
the utility of a webpage.

Degree Distribution

p,~ k¥ o+ While the Barabasi-Albert model is occasionally used as a model of the
Internet or the cell, in reality it is not designed to capture the details of

Degree Exponent any particular real network. It is a minimal, proof of principle model

y=3 whose main purpose is to capture the basic mechanisms responsible

—— for the emergence of the scale-free property. Therefore, if we want to

(@ - logN/log log understand the evolution of systems like the Internet, the cell or the
WWW, we need to incorporate the important details that contribute
Clustering Coefficient to the time evolution of these systems, like the directed nature of the

(C) ~ (InN)>/N WWW, the possibility of internal links and node and link removal.



Can latecomers make it?

Google



The Bianconi-Barabasi Model

» Growth
In each timestep a new node j with m links and fitness , is added to
the network, where n, is a random number chosen from a fitness dis-
tribution p(n). Once assigned, a node’s fitness does not change.

o Preferential Attachment
The probability that a link of a new node connects to node i is propor-
tional to the product of node i's degree k.and its fitness n,

k.
Hl_ = MK (6.1)
21k
J

Degree distribution of the Bianconi—Barabasi model depends on the fithess distribution.

Two scenarios:

« If the fitness distribution has a finite domain, then the degree distribution will have a power-law just like
the BA model.

« If the fitness distribution has an infinite domain, then the node with the highest fithess value will attract a
large number of nodes and show a winners-take-all scenario (monopoly dominance).



LESSONS LEARNED: evolving network models

1. There is no universal exponent characterizing all networks.

2. Growth and preferential attachment are responsible for the emergence
of the scale-free property.

3. The origins of the preferential attachment is system-dependent.

4. Modeling real networks:
« identify the microscopic processes that take place in the
system
«  measure their frequency from real data
- develop dynamical models that capture these

processes.



