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The power law distribution: Discrete vs. Continuous formalism

Discrete Formalism  
As node degrees are always positive 

integers, the discrete formalism captures the 
probability that a node has exactly k links: 

pk = Ck−γ .
∞
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C
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Continuous Formalism  
In analytical calculations it is often convenient to 

assume that the degrees can take up any 
positive real value: 

p(k) = Ck−γ .
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∞

∫
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k−γdk

= (γ − 1)kγ−1
min

p(k) = (γ − 1)kγ−1
min k−γ .

pkINTERPRETATION: 
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Riemann-Zeta 
function 



a)  Numbers of occurrences of words in the novel Moby 
Dick by Hermann Melville.  

b)  Numbers of citations to scientic papers published in 
1981, from time of publication until June 1997. 

c)  Numbers of hits on web sites by 60000 users of the 
America Online Internet service for the day of 1 
December 1997.  

d)  Numbers of copies of bestselling books sold in the US 
between 1895 and 1965.  

e)  Number of calls received by AT&T telephone customers 
in the US for a single day. 

f)  Magnitude of earthquakes in California between 
January 1910 and May 1992. Magnitude is proportional 
to the logarithm of the maximum amplitude of the 
earthquake, and hence the distribution obeys a power 
law even though the horizontal axis is linear.  

g)  Diameter of craters on the moon. Vertical axis is 
measured per square kilometre.  

h)  Peak gamma-ray intensity of solar ares in counts per 
second, measured from Earth orbit between February 
1980 and November 1989.  

i)  Intensity of wars from 1816 to 1980, measured as 
battle deaths per 10 000 of the population of the 
participating countries.  

j)  Aggregate net worth in dollars of the richest individuals 
in the US in October 2003.  

k)  Frequency of occurrence of family names in the US in 
the year 1990.  

l)  Populations of US cities in the year 2000. 

 From: Newman 2006 

Power law 
 
 



Vilfredo Pareto (1848 – 1923), Italian economist, political scientist and philosopher, who had 
important contributions to our understanding of income distribution and to the analysis of individuals choices. 
A number of fundamental principles are named after him, like Pareto efficiency, Pareto distribution (another 
name for a power-law distribution), the Pareto principle (or 80/20 law). 

“80% of the wealthis in the hands of the richest 20% of people.” 

The 80/20 rule 
 

Other examples 
•  80% of problems can be attributed to 20% of causes. 
•  80% of a company's profits come from 20% of its customers 
•  80% of a company's complaints come from 20% of its customers 
•  80% of a company's profits come from 20% of the time its staff spent 
•  80% of a company's revenue comes from 20% of its products 
•  80% of a company's sales are made by 20% of its sales staff 
•  … 



WORLD WIDE WEB

Snapshots of the World Wide Web sample mapped out by Hawoong Jeong in 1998 [1]. The sequence of images show an 
increasingly magnified local region of the network. The first panel displays all 325,729 nodes, offering a global view of the full 
dataset. Nodes with more than 50 links are shown in red and nodes with more than 500 links in purple. The closeups reveal the 
presence of a few highly connected nodes, called hubs, that accompany scale-free networks.  



Nodes: WWW documents 
Links:   URL links

Over 3 billion documents

ROBOT: collects all URL’s 
found in a document and 
follows them recursively

Expected

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

WORLD WIDE WEB

Network Science: Scale-Free Property



Hubs 

Section 3       
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Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (ਠ= 2.1) on a linear plot. 
Both distributions have ࢭk10  =ࢮ.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have compara-
ble degree k ࢭݍkࢮ. 

(d) A scale-free network with ਠ=2.1 and ࢭkࢮ= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 
thousand metabolites. This prompts us to ask: How does the network size 
affect the size of its hubs? To answer this we calculate the expected maxi-
mum degree, kmax, called the natural cutoff of the degree distribution pk. It 
represents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin, the normalization  condition                    

provides C = ਨeਨkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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The difference between a power law and an exponential distribution



The difference between a power law and an exponential distribution

Let us use the WWW to illustrate the properties of the high-k regime.  
The probability to have a node with k~100  is  
 
•  About                        if pk follows a Poisson distribution  

•  About                       if  pk follows a power law.  

Consequently, if the WWW were to be a random network, according to the 
Poisson prediction we would expect 10-18    k>100 degree nodes, or none. 

For a power law degree distribution, we expect about                           
k>100 degree nodes 

p100 ≃ 10−30

p100 ≃ 10−4

Nk>100 = 109
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(a) The degrees of a random network follow a 
Poisson distribution, rather similar to the Bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways connect-
ing them. There are no cities with hundreds of 
highways and no city is disconnected from the 
highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports to each other. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].

Figure 4.6
Random vs. Scale-free Networks
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All real networks are finite à  let us explore its consequences.  
à We have an expected maximum degree, kmax 
 
Estimating kmax  

P(k)dk
kmax

∞

∫ ≈ 1
N

kmax = kminN
1

γ −1

Why: we expect at most one node with degree > kmax 
(natural upper cutoff)  

P(k)dk
kmax

∞

∫ = (γ −1)kmin
γ −1 k−γ dk

kmax

∞

∫ = (γ −1)
(−γ +1)

kmin
γ −1 k−γ +1⎡⎣ ⎤⎦kmax

∞
= kmin

γ −1

kmax
γ −1 ≈

1
N

The size of the largest hub



kmax = kminN
1

γ −1

The size of the largest hub

To illustrate the difference in the maximum degree of an exponential and a scale-free 
network let us return to the WWW sample, consisting of N ≈ 3 × 105 nodes.  
 
As kmin = 1, if the degree distribution were to follow an exponential, (4.17) predicts 
that the maximum degree should be kmax ≈ 14 for λ=1. In a scale-free network of 
similar size and γ = 2.1, (4.18) predicts kmax ≈ 95,000, a remarkable difference.  
 
Note that the largest in-degree of the WWW map of Image 4.1 is 10,721, which is 
comparable to kmax predicted by a scale-free network.  
 
This reinforces our conclusion that in a random network hubs are effectivelly 
forbidden, while in scale-free networks they are naturally present.  



Expected maximum degree, kmax 

kmax = kminN
1

γ −1

kmax  increases with the size of the network  
 the larger a system is, the larger its biggest hub 

 
γ > 2:   kmax increases slower than N 

  The largest hub will contain a decreasing fraction of links as N increases. 
 

γ = 2:      kmax~ N  
 The size of the biggest hub is O(N) 

γ < 2:   kmax increases faster than N: condensation phenomena 
  The largest hub will grab an increasing fraction of links.  Anomaly! 

 
   

The size of the largest hub



kmax = kminN
1

γ −1
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The expected degree of the largest node (natu-
ral cutoff) in scale-free and random networks 
with the same average degree ࢭk3 =ࢮ. For the 
scale-free network we chose ਠ�= 2.5. For com-
parison, we also show the linear behavior, 
kmax Ȯ N − 1, expected for a complete network. 
Overall, hubs in a scale-free network are sev-
eral orders of magnitude larger than the big-
gest node in a random network with the same 
N and ࢭkࢮ.

Figure 4.5
Hubs are Large in Scale-free Networks

(4.18)γ −k k N~ .max min

1
1

Equation (4.16) yields

As lnN is a slow function of the system size, (4.17) tells us that the max-
imum degree will not be significantly different from kmin. For a Poisson 
degree distribution the calculation is a bit more involved, but the obtained 
dependence of kmax on N is even slower than the logarithmic dependence 
predicted by (4.17) (ADVANCED TOPICS 3.B).

For a scale-free network, according to (4.12) and (4.16), the  natural cutoff 
follows

Hence the larger a network, the larger is the degree of its biggest hub.
The polynomial dependence of kmax on N implies that in a large scale-free 
network there can be orders of magnitude differences in size between the 
smallest node, kmin, and the biggest hub, kmax (Figure 4.5).

To illustrate the difference in the maximum degree of an exponential 
and a scale-free network let us return to the WWW sample of Figure 4.1, 
consisting of N 105 × 3 ݍ nodes. As kmin = 1, if the degree distribution were to 
follow an exponential, (4.17) predicts that the maximum degree should be 
kmax13 ݍ�. In a scale-free network of similar size and ਠ�= 2.1, (4.18) predicts 
kmax 85,000 ݍ, a remarkable difference. Note that the largest in-degree of 
the WWW map of Figure 4.1 is 10,721, which is comparable to kmax predicted 
by a scale-free network. This reinforces our conclusion that in a random 
network hubs are effectivelly forbidden, while in scale-free networks they 
are naturally present.

In summary the key difference between a random and a scale-free net-
work is rooted in the different shape of the Poisson and of the power-law 
function: In a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected 
in scale-free networks (Figure 4.6). Furthermore, the more nodes a scale-
free network has, the larger are its hubs. Indeed, the size of the hubs grows 
polynomially with the network size, hence they can grow quite large in 
scale-free networks. In contrast in a random network the size of the larg-
est node grows logarithmically or slower with N, implying that hubs will be 
tiny even in a very large random network.

kmax
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(N - 1)
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lnN
�
. (4.17)

The size of the largest hub

The estimated degree 
of the largest node in 
scale-free and random 
networks with the 
same average degree 
〈k〉= 3.  
 
For the scale-free 
network we chose γ = 
2.5. For comparison, 
we also show the 
linear behavior, kmax ~ 
N − 1, expected for a 
complete network.  
 
Overall, hubs in a 
scale-free network are 
several orders of 
magnitude larger than 
the biggest node in a 
random network with 
the same N and 〈k〉 



The meaning of scale-free 
 
 

For many scale-free networks the degree exponent ਠ�is between 2 and 3 
(Table 4.1). Hence for these in the N ̹ ∞ limit the first moment ࢭkࢮ is finite, 
but the second and higher moments, ࢭk2ࢭ ,ࢮk3ࢮ, go to infinity. This diver-
gence helps us understand the origin of the “scale-free” term. Indeed, if  
the degrees follow a normal distribution, then the degree of a randomly 
chosen node is

Yet, the average degree <k> and the fluctuations ık have rather different 
magnitude in random and in scale-free networks:
 

• Random Networks Have a Scale
For a random network with a Poisson degree distribution�ık = <k>1/2 
which is always smaller than ࢭkࢮ. Hence the network’s nodes have de-
grees in the range k = ࢭkࢭ ± ࢮk1/2ࢮ. In other words nodes in a random 
network have comparable degrees. Therefore the average degree ࢭkࢮ 
serves as the “scale” of a random network.

• Scale-free Networks Lack a Scale
For a network with a power-law degree distribution with ਠ < 3 the first 
moment is finite but the second moment is infinite. The divergence 
of ࢭk2ࢮ (and of�ਯk) for large N indicates that the fluctuations around 
the average can be arbitrary large. This means that when we random-
ly choose a node, we do not know what to expect: the selected node’s 
degree could be tiny or arbitrarily large. Hence networks with ਠ < 3 do 
not have a meaningful internal scale. They are “scale-free” (Figure 4.7). 

For example the average degree of the WWW sample is ࢭk4.60 = ࢮ (Ta-
ble 4.1). Given that ਠ �2.1ݍ, the second moment diverges, which means 
that our expectation for the in-degree of a randomly chosen WWW 
document is ࢭk4.60=ࢮ ± ∞ in the N ̹ ∞ limit. That is, a randomly 
chosen web document could easily yield a document of degree one 
or two, as 74.02% of nodes have in-degree less than ࢭkࢮ. Yet, it could 
also yield a node with hundreds of millions of links, like google.com 
or facebook.com.

Strictly speaking ࢭk2ࢮ diverges only in the N ̹ ∞ limit. Yet, the diver-
gence is relevant for finite networks as well. To illustrate this, Table 4.1 lists 
�ࢮk2ࢭ and Figure 4.8 shows the standard deviation    for ten real networks. 
For most of these networks ਯ�is significantly larger than ࢭkࢮ, documenting 
large variations in node degrees. For example, the degree of a randomly 
chosen node in the WWW sample is kin = 4.60 ± 1545, indicating once again 
that the average is not informative. 

In summary, the scale-free name captures the lack of an internal scale, 
a consequence of the fact that nodes with widely different degrees coexist 
in the same network. This feature distinguishes scale-free networks from 
lattices, in which all nodes have exactly the same degree (ਯ�= 0), or from 
random networks, whose degrees vary in a narrow range (ਯ = ࢭk1/2ࢮ). As we 
will see in the coming chapters, this divergence is the origin of some of the 

(4.21)
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For any bounded distribution, like a Poisson 
or a Gaussian, the degree of a randomly cho-
sen node is in the vicinity of ࢭkࢮ. Hence ࢭkࢮ 
serves as the network’s scale. For a power law 
distribution the second moment can diverge, 
and the degree of a randomly chosen node can 
be significantly different from�  Hence .ࢮkࢭ
 �does not serve as an intrinsic scale. As aࢮkࢭ
network with a power law degree distribution 
lacks an intrinsic scale, we call it scale-free.

Figure 4.7
Lack of an Internal Scale
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For a random network the standard 
deviation follows σ = ‹k›1/2 shown as a 
green dashed line on the figure. The 
symbols show σ for nine of the ten 
reference networks, calculated using the 
values shown in Table 4.1. The actor 
network has a very large 〈k〉 and σ, 
hence it omitted for clarity. For each 
network σ is larger than the value 
expected for a random network with the 
same 〈k〉. The only exception is the 
power grid, which is not scale-free. 
While the phone call network is scale-
free, it has a large γ, hence it is well 
approximated by a random network.  



universality 
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(Faloutsos, Faloutsos and Faloutsos, 1999)

Nodes: computers, routers 
Links:   physical lines

INTERNET BACKBONE

Network Science: Scale-Free Property
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(γ = 3)

(S. Redner, 1998)

P(k) ~k-γ

1736 PRL papers (1988)

SCIENCE CITATION INDEX

Nodes: papers
Links:   citations

578... 

      25 

 H.E. Stanley,... 

Network Science: Scale-Free Property



SCIENCE COAUTHORSHIP

M: math
NS: neuroscience

Nodes: scientist (authors) 
Links: joint publication

(Newman, 2000, Barabasi et al 2001)
Network Science: Scale-Free Property



Nodes: online user  
Links:  email contact

Ebel, Mielsch, Bornholdtz, PRE 2002.

Kiel University log files 
112 days, N=59,912 nodes

Pussokram.com online community; 
512 days,  25,000 users.

Holme, Edling, Liljeros, 2002.

ONLINE COMMUNITIES



ONLINE COMMUNITIES



Not all networks are scale-free 
 

Networks appearing in material science, 
like the network describing the bonds 
between the atoms in crystalline or 
amorphous materials, where each node 
has exactly the same degree. 

The neural network of the C.elegans 
worm.  

The power grid, consisting of generators 
and switches connected by transmission 
lines 



Ultra-small property 
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DISTANCES IN RANDOM GRAPHS

Random graphs tend to have a tree-like topology with almost constant node degrees.

•  nr. of first neighbors:

•  nr. of second neighbors:

• nr. of neighbours at distance d: 

•  estimate maximum distance:

klog
Nloglmax =∑

=

=+
maxl

1l

i Nk1

kN1 ≅
2

2 kN ≅

€ 

Nd ≅ k d

Network Science: Scale-Free Property



Distances in scale-free networks 

Size of the biggest hub is of order O(N). Most nodes can be connected within two layers 
of it, thus the average path length will be independent of the system size. 

The average path length increases slower than logarithmically. In a random network all 
nodes have comparable degree, thus most paths will have comparable length. In a 
scale-free network the vast majority of the path go through the few high degree hubs, 
reducing the distances between nodes. 

Some key models produce γ=3, so the result is of particular importance for them. This 
was first derived by Bollobas and collaborators for the network diameter in the context of  
a dynamical model, but it holds for the average path length as well.

The second moment of the distribution is finite, thus in many ways the network behaves 
as a random network. Hence the average path length follows the result that we derived 
for the random network model earlier.
 
 

Cohen, Havlin   Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and 
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas, 
1985; Newman, 2001
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ULTRA-SMALL WORLD PROPERTY
SECTION 4.6

The  presence of hubs in scale-free networks raises an interesting ques-
tion: Do hubs affect the small world property? Figure 4.4  suggests that they 
do: Airlines build hubs precisely to decrease the number of hops between 
two airports. The calculations support this expectation, finding that dis-
tances in a scale-free network are smaller than the distances observed in an 
equivalent random network. 

The dependence of the average distance ࢭdࢮ on the system size N and 
the degree exponent�ਠ are captured by the formula [29, 30] 

Next we discuss the behavior of ࢭdࢮ in the four regimes predicted by 
(4.22), as summarized in Figure 4.11:

%RSQEPSYW�6IKMQI��̓�!���
According to (4.18) for ਠ = 2 the degree of the biggest hub grows linearly 
with the system size, i.e. kmax Ȯ N. This forces the network into a hub and 
spoke configuration in which all nodes are close to each other because 
they all connect to the same central hub. In this regime the average 
path length does not depend on N.

9PXVE�7QEPP�;SVPH����� ��̓� ����
Equation (4.22) predicts that in this regime the average distance increas-
es as lnlnN, a significantly slower growth than the lnN derived for ran-
dom networks. We call networks in this regime ultra-small, as the hubs 
radically reduce the path length [29]. They do so by linking to a large 
number of small-degree nodes, creating short distances between them. 

(4.22)
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The scaling of the average path length in the 
four scaling regimes characterizing a cale-free 
network: constant (γ = 2), lnlnN (2 ‹ γ ‹ 3), lnN/
lnlnN (γ = 3), lnN (γ › 3 and random networks). 
The dotted lines mark the approximate size of 
several real networks. Given their modest size, 
in biological networks, like the human protein-
protein interaction network (PPI), the 
differences in the node-to-node distances are 
relatively small in the four regimes. The 
differences in 〈d〉 is quite significant for 
networks of the size of the social network or 
the WWW. For these the small-world formula 
significantly underestimates the real 〈d〉. 
 
(b)-(d) Distance distribution for networks of size 
N = 102, 104, 106, illustrating that while for 
small networks (N = 102) the distance 
distributions are not too sensitive to γ, for large 
networks (N = 106) pd and 〈d〉 change visibly 
with γ. 
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Distances in scale-free networks Graphicality: No large networks for γ<2

kmax = kminN
1

γ −1In scale-free networks: For γ<2:   1/(γ-2)>1 

Networks With γ ‹ 2 are Not Graphical 
Degree distributions and the corresponding degree sequences for two small networks. The difference between 
them is in the degree of a single node. While we can build a simple network using the degree distribution (a), it is 
impossible to build one using (b), as one stub always remains unmatched. Hence (a) is graphical, while (b) is not. 
Fraction of networks, g, for a given γ that are graphical. A large number of degree sequences with degree 
exponent γ and N = 105 were generated, testing the graphicality of each network. The figure indicates that while 
virtually all networks with γ › 2 are graphical, it is impossible to find graphical networks in the 0 ‹ γ ‹ 2 range 



Generating networks with predefined degree seq: Configuration model 
 

(1)  Degree sequence: Assign a degree to each 
node, represented as stubs or half-links. The 
degree sequence is either generated 
analytically from a preselected  distribution, 
or it is extracted from the adjacency matrix of 
a real network. We must start from an even 
number of stubs, otherwise we will be left 
with unpaired stubs. 
 

(2)  Network assembly: Randomly select a stub 
pair and connect them. Then randomly 
choose another pair from the remaining  
stubs and connect them. This procedure is 
repeated until all stubs are paired up. 
Depending on the order in which the stubs 
were chosen, we obtain different networks.  

 
Some networks include cycles (2b), others self-
loops (2c) or multi-edges (2d).  
 
Yet, the expected number of self- and multi-edges 
goes to zero in the  limit. pij =

kikj

2L − 1
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GENERATING NETWORKS
WITH ARBITRARY
DEGREE DISTRIBUTION

SECTION 4.8

The networks generated by the ErdĘs-Rényi model have a Poisson de-
gree distribution. The empirical results discussed in this chapter indicate, 
however, that the degree distribution of real networks significantly devi-
ates from a Poisson form, raising an important question: How do we gen-
erate networks with an arbitrary pk? In the following we discuss three fre-
quently used algorithms designed for this purpose.

Configuration Model
The configuration model, described in Figure 4.15, helps us build a network 
with a pre-defined degree sequence. In the network generated by the 
model each node has a pre-defined degree ki, but otherwise the network 
is wired randomly. Consequently the obtained network is often called a 
random network with a pre-defined degree sequence. By repeatedly apply-
ing this procedure to the same degree sequence we can generate different 
networks with the same pk (Figure 4.15b-d). A couple of caveats to consider:

• The probability to have a link between nodes of degree ki and kj is

                                                                                    .

   Indeed, a stub starting from node i can connect to 2L - 1 other stubs. Of 
these, kj are attached to node j. So the probability that a particular stub 
is connected to a stub of node j is kj /(2L - 1). As node i has ki stubs, it has 
kj attempts to link to j, resulting in (4.24).

• The obtained network contains self-loops and multi-links, as there is 
nothing in the algorithm to forbid a node connecting to itself, or to 
generate multiple links between two nodes. We can choose to reject 
stub pairs that lead to these, but if we do so, we may not be able to 
complete the network. Rejecting self-loops or multi-links also means 
that not all possible matchings appear with equal probability. Hence 
(4.24) will not be valid, making analytical calculations difficult. Yet, the 
number of self-loops and multi-links goes to zero for large networks, 
as the number of choices to connect to increases with N, so typically 
we do not need to exclude them [42]. 

Figure 4.15

The Configuration Model

(4.24)

The configuration model builds a network 
whose nodes have pre-defined degrees [40, 41]. 
The algorithm consists of the following steps:

(a) Degree Sequence
Assign a degree to each node, represented 
as stubs or half-links. The degree sequence 
is either generated analytically from a 
preselected pk distribution (BOX 4.5), or it is 
extracted from the adjacency matrix of a 
real network. We must start from an even 
number of stubs, otherwise we are left with 
unpaired stubs.

(b, c, d) Network Assembly
Randomly select a stub pair and connect 
them. Then randomly choose another pair 
from the remaining 2L - 2 stubs and con-
nect them. This procedure is repeated until 
all stubs are paired up. Depending on the 
order in which the stubs were chosen, we 
obtain different networks. Some networks 
include cycles (b), others self-loops (c) or 
multi-links (d). Yet, the expected number 
of self-loops and multi-links goes to zero in 
the N ̹ ∞ limit.

(a)

(b)

(c)

(d)

k1=3 k2=2 k3=2 k4=1

=
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Section 1       
 

Hubs represent the most striking difference between a random and a scale-
free network. Their emergence in many real systems raises several 
fundamental questions:

•  Why does the random network model of Erdős and Rényi fail to reproduce the 
hubs and the power laws observed in many real networks? 

•   Why do so different systems as the WWW or the cell converge to a similar 
scale-free architecture?  



networks expand through the addition 
of new nodes 

Barabási & Albert, Science 286, 509 (1999)

BA MODEL: Growth 

BA	model:	Growth	
	

ER model:  
the number of nodes, N, is fixed (static models) 
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Nodes Prefer to Link to the More Connected Nodes
The random network model assumes that we randomly choose the in-
teraction partners of a node. Yet, most real networks new nodes prefer 
to link to the more connected nodes, a process called preferential attach-
ment (Figure 5.2). 

Consider a few examples:

• We are familiar with only a tiny fraction of the trillion or more docu-
ments available on the WWW. The nodes we know are not entirely ran-
dom: We all heard about Google and Facebook, but we rarely encoun-
ter the billions of less-prominent nodes that populate the Web. As our 
knowledge is biased towards the more popular Web documents, we 
are more likely to link to a high-degree node than to a node with only 
few links.

• No scientist can attempt to read the more than a million scientific pa-
pers published each year. Yet, the more cited is a paper, the more likely 
that we hear about it and eventually read it. As we cite what we read, 
our citations are biased towards the more cited publications, repre-
senting the high-degree nodes of the citation network.

• The more movies an actor has played in, the more familiar is a casting 
director with her skills. Hence, the higher the degree of an actor in the 
actor network, the higher are the chances that she will be considered 
for a new role.

In summary, the random network model differs from real networks in 
two important characteristics:

(A) Growth
Real networks are the result of a growth process that continuously 
increases N. In contrast the random network model assumes that the 
number of nodes, N, is fixed. 

(B) Preferential Attachment
In real networks new nodes tend to link to the more connected nodes. 
In contrast nodes in random networks randomly choose their inter-
action partners. 

There are many other differences between real and random networks, 
some of which will be discussed in the coming chapters. Yet, as we show 
next, these two, growth and preferential attachment, play a particularly im-
portant role in shaping a network’s degree distribution.

Networks are not static, but grow via the 
addition of new nodes:

(a) The evolution of the number of WWW 
hosts, documenting the Web’s rapid 
growth. After http://www.isc.org/solu-
tions/survey/history.

(b) The number of scientific papers published 
in Physical Review since the journal’s 
funding. The increasing number of papers 
drives the growth of both the science col-
laboration network as well as of the cita-
tion network shown in the figure. 

(c) Number of movies listed in IMDB.com, 
driving the growth of the actor network.

Figure 5.1

The Growth of Networks

(a)

(b)

(c)
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New nodes prefer to connect to  the more connected nodes 

Barabási & Albert, Science 286, 509 (1999) Network Science: Evolving Network Models 

BA MODEL: Preferential attachment

BA	model:	Growth	
	

ER model: links are added randomly to the network 
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Section 2: Growth and Preferential Sttachment

BA	model:	Growth	
	

The random network model differs from real networks in two important 
characteristics:  
 
Growth: While the random network model assumes that the number of 
nodes is fixed (time invariant), real networks are the result of a growth 
process that continuously increases. 
 
Preferential Attachment: While nodes in random networks randomly choose 
their interaction partner, in real networks new nodes prefer to link to the more 
connected nodes. 



Barabási & Albert, Science 286, 509 (1999)

P(k) ~k-3

(1) Networks continuously expand by the 
addition of new nodes

WWW :  addition of new documents

GROWTH:  
add a new node with m links

PREFERENTIAL ATTACHMENT: 
the probability that a node connects to a node 
with k links is proportional to k.

(2) New nodes prefer to link to highly 
connected nodes.

WWW :  linking to well known sites

Network Science: Evolving Network Models 

Origin of SF networks: Growth and preferential attachment
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Section 4       
 

The degree distribution of a network generated by the Barabási-Albert model.  
The figure shows pk for a single network of size N=100,000 and m=3. It shows both the linearly-binned 
(purple) and the log-binned version (green) of pk. The straight line is added to guide the eye and has slope 
γ=3, corresponding to the network’s predicted degree exponent. 



 γ = 3 

Network Science: Evolving Network Models 

Degree distribution

� 
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 (i) The degree exponent is independent of m. 
 
(ii) As the power-law describes systems of rather different ages and sizes, it is 
expected that a correct model should provide a time-independent degree 
distribution. Indeed, asymptotically the degree distribution of the BA model is 
independent of time (and of the system size N)  
 

 à the network reaches a stationary scale-free state.  
 
(iii) The coefficient of the power-law distribution is proportional to m2. 

� 

P(k) =
2m(m +1)

k(k +1)(k + 2)

� 

P(k) ~ k −3 for large k



� 

P(k) =
2m(m +1)

k(k +1)(k + 2)

NUMERICAL SIMULATION OF THE BA MODEL
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DEGREE DISTRIBUTION
SECTION 5.4

The distinguishing feature of the networks generated by the Barabá-
si-Albert model is their power-law degree distribution (Figure 5.4). In this 
section we calculate the functional form of pk, helping us understand its 
origin. 

We can use a number of analytical tools to calculate the degree distri-
bution of the Barabási-Albert network. The simplest is the continuum theo-
ry that we started developing in the previous section [1, 11]. It predicts that 
the degree distribution follows (BOX 5.3),

with

Therefore the degree distribution follows a power law with degree ex-
ponent Ȗ=3, in agreement with the numerical results (Figures 5.4 and 5.7). 
Moreover (5.10) links the degree exponent, Ȗ, a quantity characterizing the 
network topology, to the dynamical exponent ȕ that characterizes a node’s 
temporal evolution, revealing a deep relationship between the network's 
topology and dynamics. 

While the continuum theory predicts the correct degree exponent, it 
fails to accurately predict the pre-factors of (5.9). The correct pre-factors 
can be obtained using a master [12] or rate equation [13] approach or cal-
culated exactly using the LCD model [10] (BOX 5.2). Consequently the exact 
degree distribution of the Barabási-Albert model is (ADVANCED TOPICS 5.A)

Equation (5.11) has several implications:

• For large k (5.11) reduces to pk~ k-3, or Ȗ = 3, in line with (5.9) and (5.10).

• The degree exponent Ȗ is independent of m, a prediction that agrees 

(5.9)

(5.10)

(5.11)

p k m k( ) ~ 2 1/β γ−

1 1 3.γ
β

= + =

p m m
k k k

2 ( 1)
( 1)( 2)k =

+
+ +

(a) We generated networks with N=100,000 
and m0=m=1 (blue), 3 (green), 5 (grey), and 7 
(orange). The fact that the curves are parallel 
to each other indicates that�Ȗ� is independent 
of m and m0. The slope of the purple line is -3, 
corresponding to the predicted degree expo-
nent Ȗ �.  Inset: (5.11) predicts pk~2m2, hence 
pk/2m2 should be independent of m. Indeed, 
by plotting pk/2m2 vs. k, the data points shown 
in the main plot collapse into a single curve.

(b) The Barabási-Albert model predicts that 
pk is independent of N. To test this we plot pk 
for N = 50,000 (blue), 100,000 (green), and 
200,000 (grey), with m0=m=3. The obtained pk 
are practically indistinguishable, indicating 
that the degree distribution is stationary, i.e. 
independent of time and system size.

Figure 5.7
Probing the Analytical Predictions
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absence of growth and preferential 
attachment 

Section 6       
 



Limiting cases
 

Model A: retains growth but does not include preferential attachment.  
 
The probability of a new node connecting to any pre-existing node is equal. 
The resulting degree distribution in this limit is geometric. 
 
 
 
Model B: retains preferential attachment but eliminates growth.  
 
The model begins with a fixed number of disconnected nodes and adds links, 
preferentially choosing high degree nodes as link destinations.  
Though the degree distribution early in the simulation looks scale-free, the 
distribution is not stable, and it eventually becomes nearly Gaussian as the 
network nears saturation.  
 
 
 

Growth and preferential attachment are needed simultaneously to 
reproduce the stationary power-law distribution observed in real networks. 



Diameter and clustering coefficient 

Section 10       
 



Section 10     Diameter   
 

D ∼ logN
loglogN

The average distance 
〈d〉 scales in a similar 
fashion.  
 
Indeed, for small N the 
ln N term captures the 
scaling of 〈d〉 with N, 
but for large N(≥104) the 
impact of the logarithmic 
correction ln ln N 
becomes noticeable.  



Clustering coefficient   
 

� 

Crand =
< k >
N

~ N −1

What is the functional form of C(N)?

Reminder: for a random graph we have: 

� 

C =
m
8
(lnN)2

N



The network grows,  but the degree distribution is stationary.

Section 11: Summary 
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ment function build into them, yet they do lead to a scale-free network. 
Upon closer inspection it turns out that they in fact generate a linear Ȇ(k). 
This finding illustrates a more general pattern: To date all known models 
and real systems that are scale-free have been found to generate preferen-
tial attachment. Hence the basic mechanisms of the Barabasi-Albert model 
appear to capture the origin of their scale-free topology.

The Barabási-Albert model is unable to describe many characteristics 
of real systems:

• The model predicts Ȗ=3 while the degree exponent of real networks 
varies between 2 and 5 (Table 4.2).

• Many networks, like the WWW or citation networks, are directed, 
while the model generates undirected networks.

• Many processes observed in networks, from linking to already exist-
ing nodes to the disappearance of links and nodes, are absent from 
the model.

• The model does not allow us to distinguish between nodes based on 
some intrinsic characteristics, like the novelty of a research paper or 
the utility of a webpage. 

• While the Barabási-Albert model is occasionally used as a model of the 
Internet or the cell, in reality it is not designed to capture the details of 
any particular real network. It is a minimal, proof of principle model 
whose main purpose is to capture the basic mechanisms responsible 
for the emergence of the scale-free property. Therefore, if we want to 
understand the evolution of systems like the Internet, the cell or the 
WWW, we need to incorporate the important details that contribute 
to the time evolution of these systems, like the directed nature of the 
WWW, the possibility of internal links and node and link removal. 

As we show in CHAPTER 6, these limitations can be systematically re-
solved. 
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SUMMARY
SECTION 5.10

The most important message of the Barabási-Albert model is that net-
work structure and evolution are inseparable. Indeed, in the ErdĘs-Rényi, 
Watts-Strogatz, the configuration and the hidden parameter models the 
role of the modeler is to cleverly place the links between a fixed number of 
nodes. Returning to our earlier analogy, the networks generated by these 
models relate to real networks like a photo of a painting relates to the 
painting itself: It may look like the real one, but the process of generating 
a photo is drastically different from the process of painting the original 
painting. The aim of the Barabási-Albert model is to capture the process-
es that assemble a network in the first place. Hence, it aims to paint the 
painting again, coming as close as possible to the original brush strokes. 
Consequently, the modeling philosophy behind the model is simple: to un-
derstand the topology of a complex system, we need to describe how it came 
into being. 

Random networks, the configuration and the hidden parameter models 
will continue to play an important role as we explore how certain network 
characteristics deviate from our expectations. Yet, if we want to explain 
the origin of a particular network property, we will have to use models that 
capture the system’s genesis. 

The Barabasi-Albert model raises a fundamental question: Is the com-
bination of growth and preferential attachment the true answer to the 
scale-free nature of real networks? We offered a necessary and sufficient 
argument to address this question. First, we showed that growth and pref-
erential attachment are jointly needed to generate scale-free networks, in 
the sense that if one of them is absent, either the scale-free property or 
stationarity is lost. Second, we showed that if they are both present, they do 
lead to scale-free networks. This argument does leave one possibility open, 
however: Do these two mechanisms explain the scale-free nature of all net-
works, or perhaps there are some networks who are scale-free thanks to 
some other completely different mechanisms? The answer is partially pro-
vided in SECTION 5.9, where we did encountered the link selection, the copy-
ing and the optimization models that do not have a preferential attach-



Section 11: Summary 

32THE BARABÁSI-ALBERT MODEL SUMMARY

ment function build into them, yet they do lead to a scale-free network. 
Upon closer inspection it turns out that they in fact generate a linear Ȇ(k). 
This finding illustrates a more general pattern: To date all known models 
and real systems that are scale-free have been found to generate preferen-
tial attachment. Hence the basic mechanisms of the Barabasi-Albert model 
appear to capture the origin of their scale-free topology.

The Barabási-Albert model is unable to describe many characteristics 
of real systems:

• The model predicts Ȗ=3 while the degree exponent of real networks 
varies between 2 and 5 (Table 4.2).

• Many networks, like the WWW or citation networks, are directed, 
while the model generates undirected networks.

• Many processes observed in networks, from linking to already exist-
ing nodes to the disappearance of links and nodes, are absent from 
the model.

• The model does not allow us to distinguish between nodes based on 
some intrinsic characteristics, like the novelty of a research paper or 
the utility of a webpage. 

• While the Barabási-Albert model is occasionally used as a model of the 
Internet or the cell, in reality it is not designed to capture the details of 
any particular real network. It is a minimal, proof of principle model 
whose main purpose is to capture the basic mechanisms responsible 
for the emergence of the scale-free property. Therefore, if we want to 
understand the evolution of systems like the Internet, the cell or the 
WWW, we need to incorporate the important details that contribute 
to the time evolution of these systems, like the directed nature of the 
WWW, the possibility of internal links and node and link removal. 

As we show in CHAPTER 6, these limitations can be systematically re-
solved. 

BOX 5.5 
AT A GLANCE:
BARABÁSI-ALBERT MODEL

Number of Nodes

N = t

Number of Links

N = mt

Average Degree

2m = ࢮkࢭ

Degree Dynamics

ki(t) = m (t/ti�
ȕ

Dynamical Exponent

ȕ�= 1/2

Degree Distribution

pk Ȯ�k-Ȗ

Degree Exponent

Ȗ = 3

Average Distance

�Ȯ�logN/log logNࢮdࢭ

Clustering Coefficient

�Ȯ (lnN)2/NࢮCࢭ

32THE BARABÁSI-ALBERT MODEL SUMMARY

ment function build into them, yet they do lead to a scale-free network. 
Upon closer inspection it turns out that they in fact generate a linear Ȇ(k). 
This finding illustrates a more general pattern: To date all known models 
and real systems that are scale-free have been found to generate preferen-
tial attachment. Hence the basic mechanisms of the Barabasi-Albert model 
appear to capture the origin of their scale-free topology.

The Barabási-Albert model is unable to describe many characteristics 
of real systems:

• The model predicts Ȗ=3 while the degree exponent of real networks 
varies between 2 and 5 (Table 4.2).

• Many networks, like the WWW or citation networks, are directed, 
while the model generates undirected networks.

• Many processes observed in networks, from linking to already exist-
ing nodes to the disappearance of links and nodes, are absent from 
the model.

• The model does not allow us to distinguish between nodes based on 
some intrinsic characteristics, like the novelty of a research paper or 
the utility of a webpage. 

• While the Barabási-Albert model is occasionally used as a model of the 
Internet or the cell, in reality it is not designed to capture the details of 
any particular real network. It is a minimal, proof of principle model 
whose main purpose is to capture the basic mechanisms responsible 
for the emergence of the scale-free property. Therefore, if we want to 
understand the evolution of systems like the Internet, the cell or the 
WWW, we need to incorporate the important details that contribute 
to the time evolution of these systems, like the directed nature of the 
WWW, the possibility of internal links and node and link removal. 

As we show in CHAPTER 6, these limitations can be systematically re-
solved. 

BOX 5.5 
AT A GLANCE:
BARABÁSI-ALBERT MODEL

Number of Nodes

N = t

Number of Links

N = mt

Average Degree

2m = ࢮkࢭ

Degree Dynamics

ki(t) = m (t/ti�
ȕ

Dynamical Exponent

ȕ�= 1/2

Degree Distribution

pk Ȯ�k-Ȗ

Degree Exponent

Ȗ = 3

Average Distance

�Ȯ�logN/log logNࢮdࢭ

Clustering Coefficient

�Ȯ (lnN)2/NࢮCࢭ



Can latecomers make it?     
 



The Bianconi-Barabasi Model   
 

4EVOLVING NETWORKS

THE BIANCONI-BARABÁSI
MODEL

SECTION 6.2

Some people have a knack for turning each random encounter into a 
lasting social link; some companies turn each consumer into a loyal part-
ner; some webpages turn visitors into addicts. A common feature of these 
successful nodes is some intrinsic property that propels them ahead of the 
pack. We will call this property fitness. 

Fitness is an individual’s gift to turn a random encounter into a last-
ing friendship; it is a company’s knack to acquire consumers relative to 
its competition; it is a webpage’s ability to bring us back on a daily basis 
despite the many other pages that compete for our attention. Fitness may 
have genetic roots in people, it may be related to innovativeness and man-
agement quality in companies and may depend on the content offered by 
a website. 

In the Barabási-Albert model we assumed that a node’s growth rate is 
determined solely by its degree. To incorporate the role of fitness we as-
sume that preferential attachment is driven by the product of a node’s fit-
ness, Ș, and its degree k. The resulting model, called the Bianconi-Barabási 
or the fitness model, consists of the following two steps [2, 3]:

• Growth 
In each timestep a new node j with m links and fitness Șj is added to 
the network, where Șj is a random number chosen from a fitness dis-
tribution ȡ�Ș�. Once assigned, a node’s fitness does not change.

• Preferential Attachment 
The probability that a link of a new node connects to node i is propor-
tional to the product of node i’s degree ki and its fitness Și,

In (6.1) the dependence of Ȇi on ki captures the fact that higher-de-
gree nodes have more visibility, hence we are more likely to link to them. 

EVOLVING NETWORKS

The movie shows a growing network in which 
each new node acquires a randomly chosen fit-
ness parameter at birth, indicated by the color 
of the node. Each new node chooses the nodes 
it links to following generalized preferential 
attachment (6.1), making a node’s growth rate 
proportional to its fitness. The node size is pro-
portional to its degree, illustrating that with 
time the nodes with the highest fitness turn 
into the largest hubs. Video courtesy of Dashun 
Wang.

Online Resource 6.1
The Bianconi-Barabási Model
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Degree distribution of the Bianconi–Barabási model depends on the fitness distribution.  
 
Two scenarios: 
•  If the fitness distribution has a finite domain, then the degree distribution will have a power-law just like 

the BA model. 
•  If the fitness distribution has an infinite domain, then the node with the highest fitness value will attract a 

large number of nodes and show a winners-take-all scenario (monopoly dominance).  



1.   There is no universal exponent characterizing all networks.

2.  Growth and preferential attachment are responsible for the emergence 
of the scale-free property.

3.  The origins of the preferential attachment is system-dependent.

4.  Modeling real networks:
•  identify the microscopic processes that take place in the 

system
•  measure their frequency from real data
•  develop dynamical models that capture these 
       processes.  

Network Science: Evolving Network Models 

LESSONS LEARNED: evolving network models


