NETWORK SCIENCE

Random Networks

Prof. Marcello Pelillo
Ca’ Foscari University of Venice

a.y. 2016/17



The random network model



RANDOM NETWORK MODEL

Pal Erdos
(1913-1996)

Alfréd Rényi
(1921-1970)

Erdés-Rényi model (1960)

Connect with probability p

p=1/6 N=10
<k>~1.5



RANDOM NETWORK MODEL

Definition:

. , G(N, L) Model
A random graph is a graph of N nodes where each pair
of nodes is connected by probability p. N labeled nodes are connect-

ed with L randomly placed
links. Erd6és and Rényi used
this definition in their string

To construct a random network G(N, p):

of papers on random net-
1) Start with N isolated nodes works [2-9].

2) Select a node pair, and generate a
random number between 0 and 1. If the G(N, p) Model

random number exceeds p, connect the :
selected node pair with a link, otherwise Each pair of N labeled nodes
leave them disconnected is connected with probability

Repeat step (2) for each of the N(N-1)/2 p, a model introduced by Gil-
node pairs. bert [10].

Network Science: Random



RANDOM NETWORK MODEL

p=1/6
N=12

o 0
o
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L=10




RANDOM NETWORK MODEL

p=0.03
N=100




w= Erdés-Rényi 1960
== Erdés-Rényi 1959
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Network Science and Random Networks

While today we perceive the Erdés-Rényi model as the cornerstone of network theory, the model was hardly known
outside a small subfield of mathematics. This is illustrated by the yearly citations of the first two papers by Erdés
and Rényi, published in 1959 and 1960 [2,3]. For four decades after their publication the papers gathered less than
10 citations each year. The number of citations exploded after the first papers on scale-free networks [21, 31, 32]
have turned Erdés and Rényi’s work into the reference model of network theory.




MATH TUTORIAL | Binomial Distribution: The bottom line

Binomial Distribution: Mean and Variance

If we toss a fair coin N times, tails and heads occur with the same probability p = 1/2. The binomial
distribution provides the probability p, that we obtain exactly x heads in a sequence of N throws. In
general, the binomial distribution describes the number of successes in N independent experiments with
two possible outcomes, in which the probability of one outcome is p, and of the other is 1-p.

The binomial distribution has the form

Y :
Px = ( )p“(l -p"
X

The mean of the distribution (first moment) is

N
(x) = X xpx =Np (3.4)
x=(0)
Its second moment is

N

(x*) = ¥ x*p, = p(1 — p)N + p*N?
x=0

providing its standard deviation as

Oy = (<\:> - (.\')3)? = [p(1 — p)N]z (3.6)
Equations (3.4) - (3.6) are used repeatedly as we characterize random networks.

Network Science: Random Graphs




Number of links in a random network

P(L). the probability to have exactly L links in a network of N nodes and probability p:

The maximum number of links in a network of
N nodes = number of pairs of distinct nodes.

N " Binomial distribution...
L
PiL)=| { 2 | [pI-p)
\_'L_;
Number of different ways we can choose
L links among all potential links.
N | NHN-1
2 2

Network Science: Random Graphs



RANDOM NETWORK MODEL

P(L): the probability to have a network of exactly L links

N N
2
PIL)=| | 2 | [p"(-p)

L

*The average number of links <L>in a random graph
N(N-1)
2
N-1 <L>
<L>= Y 1py=pY¥D ck>=2552 _ p(N-1)
1=0 2 N
*The standard deviation
N(N -1
¢ =pll-

2

Network Science: Random Graphs



Degree distribution



DEGREE DISTRIBUTION OF A RANDOM GRAPH

P(K) :[ L pra=p

_— AN

probability of
missing N-1-k
probability of edges
K having k edges

P(K)

Select k
<K> nodes from N-1

<k>=p(N-1) 0, = p(l-p)(N -1)

1/2
d, _ll—p 1 ] R
<k> | p (N-) (N-1)"*

As the network size increases, the distribution becomes increasingly narrow—we are
increasingly confident that the degree of a node is in the vicinity of <k>.

Network Science: Random Graphs



DEGREE DISTRIBUTION OF A RANDOM GRAPH

N-1
P(k) = £(1 = )Mk o _ <k>
(k) [ L ]ﬂ( p) <k>=p(N-1) P= o)

For large N and small k, we can use the following approximations:

N-1)  (N-D!  (N-DWN-1-1)(N-1-2).(N-1-k+D)(N-1-k)! (N-D*
k | K(N-1-k)! k(N =1-k)! K

<k> <k> k
In[fd-p) " " M =(N-1-KHInl-—)=-N-1-k)——=—-<k>(1-—)=-<k >
n[(l1-p) 1=( )In( N—l) ( )N—l ( N—l)

(I-p)" = In(1+x)= 3 !

N-1 _1)\¥ V& k i
P(k) :[ k ]pk(l_p)(Nl)—k :%pke—do — (N 1) (< k >] e_<k> :e_<k> < k >

Network Science: Random Graphs



POISSON DEGREE DISTRIBUTION

N-1
P(k) = £(1 = )Nk o _ <k>
(k) [ 1 ]ﬂ( P) <k>=p(N-1) P= D

For large N and small k, we arrive to the Poisson distribution:

k
s <k >
k!

Pk)=e—"

Network Science: Random Graphs



DEGREE DISTRIBUTION OF A RANDOM GRAPH

<k>
S P(k) — e—<k>
0.1 T T T T I k!

Poisson --

Binomial =

(%
R ol N =102 Af
‘i A N =10°

N = 10"
N =10°

.
S, 0.05

g EH © P

0.025

Network Science: Random Graphs



DEGREE DISTRIBUTION OF A RANDOM NETWORK

Exact Result Large N limit
-binomial distribution- -Poisson distribution-
T | T | I N | T
0.14
Binomial distribution Poisson distribution
c 12 - N _1 D —(k 'lt
5 0 P pk(l_p)N 1—k B (k>(_‘>
g k k!
- 0.1
é g 0.08 Peak at: /—\ " Peak at:
8> k= (k) =p(N-1) k= (k)
2 006 F Width: Width (dispersion):
= ok = p(1-p)(N -1) o = (k)'/*
0.04 p
0.02




Real Networks are not Poisson



NO OUTLIERS IN A RANDOM SOCIETY

Sociologists estimate that a typical person knows about 1,000 individuals on a first name
basis, prompting us to assume that <k> = 1,000.

- The most connected individual has degree k ..,~1,185

max

Pk)=e<* <k>'

k! - The least connected individual has degree k...~ 816

min

The probability to find an individual with degree k > 2,000 is 10-%’. Hence the chance of
finding an individual with 2,000 acquaintances is so tiny that such nodes are virtually
inexistent in a random society.

—> a random society would consist of mainly average individuals, with everyone with
roughly the same number of friends.

—> It would lack outliers, individuals that are either highly popular or recluse.

This suprising conclusion is a consequence of an important property of random networks:
In a large random network the degree of most nodes is in the narrow vicinity of <k



Box 3.4

Why are Hubs Missing?

We first note that the 1/k! term in (3.8) significantly decreases the chances of observing large degree
nodes. Indeed, the Stirling approximation

o ~ [V (£)"

allows us rewrite (3.8) as

k
—(k) e(k
pkzjm(y) (3.9)
For degrees k > e<k> the term in the parenthesis is smaller than one, hence for large k both k-dependent

terms in (3.9), i.e. 1/vk and (e<k>/k)* decrease rapidly with increasing k. Overall (3.9) predicts that in a
random network the chance of observing a hub decreases faster than exponentially.



FACING REALITY: Degree distribution of real networks

k
s <k>
P(k) —e <k>
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The evolution of a random network



EVOLUTION OF A RANDOM NETWORK

disconnected nodes = NETWORK.

0.8

0.6

0.4

0.2

0)

<k>

How does this transition happen?



EVOLUTION OF A RANDOM NETWORK

disconnected nodes = NETWORK.

<k_>=1 (Erdos and Renyi, 1959)

The fact that at least one link per node is necessary to have a giant component is
not unexpected. Indeed, for a giant component to exist, each of its nodes must be
linked to at least one other node.

It is somewhat unexpected, however that one link is sufficient for the emergence
of a giant component.

It is equally interesting that the emergence of the giant cluster is not gradual, but
follows what physicists call a second order phase transition at <k>=1.



Let us denote with u =1 - N_/N the fraction of nodes that are not in the
giant component (GC), whose size we take to be N_. If node i is part of the
GC, it must link to another node j, which must also be part of the GC. Hence
if i is not part of the GC, that could happen for two reasons:

o There is no link between i and j (probability for this is 1- p).

o There is a link between i and j, but j is not part of the GC (probability
for this is pu).

Therefore the total probability that i is not part of the GC via node j is
1- p + pu. The probability that i is not linked to the GC via any other node is
therefore (1- p + pu)¥-%, as there are N - 1 nodes that could serve as potential S = I —_ e_<k>s .
links to the GC for node i. As u is the fraction of nodes that do not belong to
the GC, for any p and N the solution of the equation

u=(-p+pu)* (330

provides the size of the giant component via N, = N(1 - u). Using p = <k>/
(N - 1) and taking the log of both sides, for <k> « N we obtain

(k)
lnu =(N=1)In|I-—=(1-u)]|. (3.31)
nu =(N-I) n[ No] (I-u)

Taking an exponential of both sides leads to u = exp[- <k>(1 - u)]. If we
denote with S the fraction of nodes in the giant component, S= N,/ N, then

S=1-uand (3.31) results in
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EVOLUTION OF A RANDOM NETWORK

disconnected nodes = NETWORK.

0.8

0.6

0.4

0.2

0)

<k>

How does this transition happen?



Phase transitions in complex systems: liquids

Water

Pressure (atm) ——— =

o
(==

(0.01°C, 0.00603 atm)
I I

I I
0°C  100°C

Temperature

Ice



0.6 |: Il II:

Subcritical Critical Supercritical
<k> < 1 <k> =1 <k> > 1

V: =
Connected
<k>> In N

N=100

ll“\\
,:,;N




i ! )

0.8
]
0.6 |:
Subcritical
<k> < 1

0.4  p<p=1N
0.2

0 ()

<k>
No giant component.
N-L isolated clusters, cluster size distribution is exponential p(s) ~ (312 =({k)Ds+(s=DIn(k)

The largest cluster is a tree, its size ~In N



i ! )
0.8
0.6 Il
Critical
<k> =1
0.4 | p=p.~=1/N
0.2
0

<k>

Unique giant component: Ng~ N2/3
->contains a vanishing fraction of all nodes, Ng/N~N-1/3
->Small components are trees, GC has loops.

Cluster size distribution: p(s)~s-3/2

A jump in the cluster size:
N=1,000 > In N~ 6.9; N23~95
N=7 10° = In N~22; N23~3,659,250
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0.2
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<k>>1
p>p~1/N

I
rcritical

<k>

Unique giant component: Ng~ (p-p.)N
—->GC has loops.

Cluster size distribution: exponential

p(s) ~s

-3/2

e—(

(k)=1)s+(s—)In{k)
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[V:
Connected
<k>> In N
p > (In N)/N

<k>

Only one cluster: Ng=N
—->GC is dense.
Cluster size distribution: None




kel

(b) Subcritical Regime

+ No giant component

o Cluster size distribution: p - g7 ¢
+ Size of the largest cluster: N_- InN
* The clusters are trees

k=1

(c) Critical Point

+ No giant component

» Cluster size distribution: p -s **

» Size of the largest cluster: N, - N**
» The clusters may contain loops

ki1

(d) Supercritical Regime

+ Single giant component

* Cluster size distribution: p - s*7 e

+ Size of the giant component: N~ (p - p )N
* The small clusters are trees

+ Glant component has loops

k= InN

(¢) Connected Regime

+ Single glant component

* No isolated nodes or clusters

+ Size of the giant component: N_ = N
« Glant component has loops
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Real networks are supercritical



Internet

Power Grid

Science
Collaboration

Actor Network

Yeast Protein

Interactions
1 1 >
1 10 <k>
Network N L <k> InN
Internet 192,244 609,066 634 1217
Power Grid 4941 6594 267 85
Scence Colloboration 23,133 186936 |8.08 10.04
Actor Network 212,250 3,054,278|28.78 12.27
Yeast Protein Interactions 2,018 2,930 290 761




Small worlds
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Frigyes Karinthy, 1929
Stanley Milgram, 1967




“The worker knows the manager in
the shop, who knows Ford; Ford is
on friendly terms with the general

director of Hearst Publications, who

last year became good friends with
Arpad Pdsztor, someone I not only

know, but to the best of my

knowledge a good friend of mine.”

MILESTONES

PUBLICATION _.—.—.+.

DATE

1929 1935

Frigyes Karinthy (1887-1938)

Hungarian writer, journalist and
playwright, the first to describe the
small world property. In his short
story entitled 'Lancszemek’ (Chains)
he links a worker in Ford's factory

to himself [23, 24].

Karinthy, 1929

Wwil

1945

“Everybody on this planet is separated by only six other people.
Six degrees of separation. Between us and everybody else on this
planet. The president of the United States. A gondolier in Venice.
It's not just the big names. It's anyone. A native in a rain forest.
A Tierra del Fuegan. An Eskimo. I am bound to everyone on this
planet by a trail of six people. It's a profound thought. How
every person is a new door, opening up into other worlds.”

| Guare, 1991
SixDegecs of
Separglion
Ak
Manfred Kochen  Ithiel de Sola Pool n
: o . 4-DEGREE OF
............... John Guare Duncan J. Watts  Steven Strogatz ~ SEPARATION
6-DEGREE OF .
SEPARATION

PUBLISHED 20 YEARS LATER

. XXl .
o—'o—o—o—.#o—'
1950 1958 1960 1967 1970 1978 1980 1985 1991 1998 2000 2005 2011

A A

Manfred Kochen (1928-1989),

Ithiel de Sola Pool (1917-1984)
Scientific interest in small worlds
started with a paper by political
scientist Ithiel de Sola Pool and

Stanley Milgram (1933-1984)
American social psychologist who
carried out the first experiment
testing the small-world phenomena.
(BOX 3.6].

The Facebook Data Team
measures the average
distance between its users,
finding "4 degrees” (BOX 3.6).

mathematician Manfred Kochen.
Written in 1958 and published in
1978, their work addressed in

John Guare (1938) A

mathematical detail the small
world effect, predicting that most
individuals can be connected via
two to threee acquaintances.
Their paper inspired the experi-
ments of Stanley Milgram.

The phrase ‘six degrees of separa- Duncan J. Watts (1971,

tion" was introduced by the Steven Strogatz (1950]
playwright John Guare, who used it even Strogalz [1959)
A new wave of interest in small

s the title of his Broadway play. worlds followed the study of Watts
and Strogatz, finding that the small

world property applies to natural
and technological networks as well.




SIX DEGREES | 1929: Frigyes Kartinthy

1929: Minden masképpen van (Everything is Different)
Lancszemek (Chains)

“Look, Selma Lagerlof just won the Nobel Prize for Literature,
thus she is bound to know King Gustav of Sweden, after all he is
the one who handed her the Prize, as required by tradition. King
Gustav, to be sure, is a passionate tennis player, who always
participates in international tournaments. He is known to have
played Mr. Kehrling, whom he must therefore know for sure, and
as it happens | myself know Mr. Kehrling quite well.”

"The worker knows the manager in the shop, who knows Ford;
Ford is on friendly terms with the general director of Hearst
Publications, who last year became good friends with Arpad
Pasztor, someone | not only know, but to the best of my
knowledge a good friend of mine. So | could easily ask him to
send a telegram via the general director telling Ford that he
should talk to the manager and have the worker in the shop
quickly hammer together a car for me, as | happen to need one."

Frigyes Karinthy (1887-1938)
Hungarian Writer



W 1967: Stanley Milgram

HOW TO TAKE PART IN THIS STUDY

1. ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that
the next person who receives this letter will know who it came from.

2. DETACH ONE POSTCARD. FILL ITAND RETURN IT TO HARVARD UNIVERSITY.
No stamp is needed. The postcard is very important. It allows us to keep track of the
progress of the folder as it moves toward the target person.

3. IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL THIS
FOLDER DIRECTLY TO HIM (HER). Do this only if you have previously met the target
person and know each other on a first name basis.

4. |IFYOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS, DO
NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST
CARDS AND ALL) TO APERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN
YOU TO KNOW THE TARGET PERSON. You may send the folder to a friend, relative or
acquaintance, but it must be someone you know on a first name basis.



SIX DEGREES | 1967: Stanley Milgram

h |-

10 -

NUMBER OF CHAINS

0 |

01 2 3 4 5 6 78 9 10 1112

NUMBER OF INTERMEDIARIES



SIX DEGREES 1991: John Guare

Six Degrees of
- Separgh
A play by
John Guare Y

"Everybody on this planet is separated by only six other people.
Six degrees of separation. Between us and everybody else on
this planet. The president of the United States. A gondolier in
Venice.... It's not just the big names. It's anyone. A native in a
rain forest. A Tierra del Fuegan. An Eskimo. | am bound to
everyone on this planet by a trail of six people. It's a profound
thought. How every person is a new door, opening up into other
worlds."




DISTANCES IN RANDOM GRAPHS

Random graphs tend to have a tree-like topology with almost constant node degrees.

N =1+{(k)+{k)" +..

<k>nodes at distance one (d=1).
<k>2nodes at distance two (d=2).
<k>3nodes at distance three (d =3).

<k>4nodes at distance d.




DISTANCES IN RANDOM GRAPHS

_ logN
max 10g<k>

In most networks this offers a better approximation to the average distance
between two randomly chosen nodes, (d), thantod, ., .

We will call the small world phenomena the property that the average
path length or the diameter depends logarithmically on the system size.

Hence, "small” means that (d) is proportional to log N, rather than N.

The 1/log<k) term implies that denser the network, the smaller will be the
distance between the nodes.



DISTANCES IN RANDOM GRAPHS compare with real data

Network N L ko> «> dmax InN/In<k>
Internet 192,244 609,066 6.34 6.98 26 6.58
WWW 325,729 1,497,134 4.60 11.27 93 8.31
Power Grid 4,941 6,594 2.67 18.99 46 8.66
Mobile-Phone Calls 36,595 91,826 2.51 11.72 39 11.42
Email 57,194 103,731 1.81 5.88 18 18.4
Science Collaboration 23,133 93,437 8.08 5.35 15 4.81
Actor Network 702,388 29,397,908 83.71 3.91 14 3.04
Citation Network 449,673 4,707,958 10.43 11.21 42 5.55
E. Coli Metabolism 1,039 5,802 5.58 2.98 8 4.04
Protein Interactions 2,018 2,930 2.90 5.61 14 7.14

Given the huge differences in scope, size, and average degree, the agreement is excellent.



Why are small worlds surprising? Suprising compared to what?

1d lattice 333 2d lattice 14 /
44 <(l> ~ .'\712 2d
<(]> B i\'r 1 1
3d
S B @~ S
= %% >
N ,*:,*} 3dlattice
RN —
Random Network (d) ~ log N 5{;“ |
N log N

Network Science: Random Graphs



Three, Four or Six Degrees?

15 -

For the globe’ s social networks: o

(k) =103

NUMBER OF CHAINS

N = 7 x 10° for the world’ s population.

O 1 1 1 1 1 1 1 1 1

01 2 3 4 56 78 910112
NUMBER OF INTERMEDIARIES

0.6 - Worldwide -e

_InV) _ 3.28 : o
In(k) |

<d>




Clustering coefficient



CLUSTERING COEFFICIENT

_2<L>

" k(k-1)

Ci=1 C¢=1/2 CiZO

Since edges are independent and have the same probability p,

_ 2L
<L >§p—k"(ké b ﬁ> C,-:ﬁziﬁ%-

*The clustering coefficient of random graphs is small.
For fixed degree C decreases with the system size N.

«C is independent of a node’ s degree k.



CLUSTERING COEFFICIENT

(a) All Networks (b) Internet

100 r ! ! N 100 N ! ! ! ;|

o4 @
o .‘~

102 107 - .
(€)/ (k) Clk) 2<L > k
10% + 107 L - C — i —_ — < >
= =p=-—.
"k (k -1) N
100 | 109 | I [ J I I
10’ 10° 10° 100 10’ 102 10° 104
N k
(c) Science Collaboration (d) Protein Interactions
10° ., | | | ;| 100 r | | ;|
™ C decreases with the system size N.
K 4. K et K - ,
. o leret C is independent of a node s degree k.
Y. o)
g 10" o ® T
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Real networks are not random



ARE REAL NETWORKS LIKE RANDOM GRAPHS?

As quantitative data about real networks became available, we can
compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every
measurable property. Indeed, we have:

Average path length:

logN
< lrand >= g
log(k)
Clustering Coefficient:
XL k
(2,0
k(=) " N
Degree Distribution:
e <k

P(k)=e




PATH LENGTHS IN REAL NETWORKS

Prediction: 5 . . . .
Wiood webs &
HF-neural network
- . power grid
Acclaboration networks
¥y
10 FEmetabolic networs ]
logN % @ internet y A s
<d>= = A
log(k) = 104
A -
5 L ,*” 7
- ..-"-.
T
a .;.FJ Iz ; Is IE 0
10 10 10" 10 10 10
M

Real networks have short distances
like random graphs.



CLUSTERING COEFFICIENT

Prediction: o° e ,
A A
TR x A
10° A .
Ay A
3 Wiood webs . ]
C B 2<L,> _ P _ <k> % 1ig* N ﬂen&ur::ﬁ&mrcr‘rﬁ s, ]
= =D =—. y Hl metabolic networks *
' ki(ki_l) N O | power grid
F A collaboration networks
s [
10 .
1g*® -|:-' L v Lt sssn L v vvvun ] -
10 10 10 10° 10
N

C,.,q Underestimates with orders of magnitudes
the clustering coefficient of real networks.



THE DEGREE DISTRIBUTION

Prediction:

Internet Science Collaboration Protein Interactions
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ARE REAL NETWORKS LIKE RANDOM GRAPHS?

As quantitative data about real networks became available, we can
compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every
measurable property. Indeed, we have:

Average path length:
° ° logN ]\
< lrand >=
log(k)
Clustering Coefficient:
XL k
C‘ — l — P — Q
" k(k=l) " N -
Degree Distribution:
k
Pk = K>

L



The Watts-Strogatz Model

We start from a ring of nodes, Regular networks (p=0)
each node being connected to - large distances (bad)

their immediate and next - large clustering coefficients (good)
neighbors. Hence initially each

node has «C> = 3/4 (p = 0). Random networks (p=1):

- small distances (good)

With probability p each link is - small clustering coefficients (bad)

rewired to a randomly chosen

node. For small p the network

maintains high clustering but REGULAR SMALL-WORLD RANDOM

the random long-range links
can drastically decrease the
distances between the nodes.

For p =1 all links have been
rewired, so the network turns
into a random network.

p: 0 ) p: 1
Increasing randomness



Watts-Strogatz Model

23] [ = I ~ T ] 0 I . | ]

1 o © o0 . i ]

nBL * o i

i . (Clp)y . ;

E Cl0 ]

All graphs 0.5 L ° (cloh ]
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The dependence of the average path length d(p) and clustering coefficient <C(p)» on the
rewiring parameter p. Note that d(p) and «C(p)» have been normalized by d(0) and <C(0)
obtained for a regular lattice (i.e. for p=0 in (a)). The rapid drop in d(p) signals the onset of
the small-world phenomenon. During this drop, <«C(p)> remains high.

Hence in the range 0.001<p<0.1 short path lengths and high clustering coexist.



IS THE RANDOM GRAPH MODEL RELEVANT TO REAL SYSTEMS?

(B) Most important: we need to ask ourselves, are real networks random?

The answer is simply: NO

There is no network in nature that we know of that would be
described by the random network model.

Network Science: Random Graphs



IF IT IS WRONG AND IRRELEVANT, WHY DID WE DEVOT TO IT A FULL CLASS?

It is the reference model for the rest of the class.
It will help us calculate many quantities, that can then be compared to the real

data, understanding to what degree is a particular property the result of some
random process.

Patterns in real networks that are shared by a large number of real networks,
yet which deviate from the predictions of the random network model.

In order to identify these, we need to understand how would a particular property
look like if it is driven entirely by random processes.

While WRONG and IRRELEVANT, it will turn out to be extremly USEFUL!



HISTORICAL NOTE

1951, Rapoport and Solomonoft:

—> first systematic study of a random
graph.
—>demonstrates the phase transition.

—>natural systems: neural networks; the
social networks of physical contacts
(epidemics); genetics.

1959: G(N,p)

Anatol Rapoport

1911- 2007 Edgar N. Gilbert

(b.1923)

Why do we call it the Erdos-Renyi random model?



