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Network Science: Random 

Definition:

 A random graph is a graph of N nodes where each pair 
of nodes is connected by probability p.
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THE RANDOM
NETWORK MODEL

SECTION 3.2

Network science aims to build models that reproduce the properties of 
real networks. Most networks we encounter do not have the comforting 
regularity of a crystal lattice or the predictable radial architecture of a spi-
der web. Rather, at first inspection they look as if they were spun randomly 
(Figure 2.4). Random network theory embraces this apparent randomness 
by constructing networks that are truly random. 

From a modeling perspective a network is a relatively simple object, 
consisting of only nodes and links. The real challenge, however, is to decide 
where to place the links between the nodes so that we reproduce the com-
plexity of a real system. In this respect the philosophy behind a random 
network is simple:  We assume that this goal is best achieved by placing 
the links randomly between the nodes. That takes us to the definition of a 
random network (BOX 3.1):

A random network consists of N nodes where each node pair is connect-
ed with probability p. 

To construct a random network we follow these steps:  

1) Start with N isolated nodes.

2) Select a node pair and generate a random number between 0 and 1. 
If the number exceeds p, connect the selected node pair with a link, 
otherwise leave them disconnected.

3) Repeat step (2) for each of the N(N-1)/2 node pairs.

The network obtained after this procedure is called a random graph or 
a random network. Two mathematicians, Pál ErdĘs and Alfréd Rényi, have 
played an important role in understanding the properties of these net-
works. In their honor a random network is called the ErdĘs-Rényi network 
(BOX 3.2).

RANDOM NETWORKS

BOX 3.1
DEFINING RANDOM NETWORKS

There are two equivalent defini-
tions of a random network:

G(N, L) Model

N labeled nodes are connect-
ed with L randomly placed 
links. ErdĘs and Rényi used 
this definition in their string 
of papers on random net-
works [2-9].

G(N, p) Model

Each pair of N labeled nodes 
is connected  with probability 
p, a model introduced by Gil-
bert [10].

Hence, the G(N, p) model fixes 
the probability p that two nodes 
are connected and the G(N, L) 
model fixes the total number 
of links L.  While in the G(N, L) 
model the average degree of a 
node is simply <k> = 2L/N, oth-
er network characteristics are 
easier to calculate in the G(N, p) 
model. Throughout this book we 
will explore the G(N, p) model, 
not only for the ease that it al-
lows us to calculate key network 
characteristics, but also because 
in real networks the number of 
links is rarely fixed. 

To construct a random network G(N, p): 
 
1)  Start with N isolated nodes 

2)  Select a node pair, and generate a 
random number between 0 and 1. If the 
random number exceeds p, connect the 
selected node pair with a link, otherwise 
leave them disconnected 

3)  Repeat step (2) for each of the N(N-1)/2 
node pairs.  



RANDOM NETWORK MODEL

p=1/6 
 N=12 

L=8 L=10 L=7 
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Hence <L>  is the product of the probability p that two nodes are con-
nected and the number of pairs we attempt to connect, which is Lmax = N(N 
- 1)/2 (CHAPTER 2). 

Using (3.2) we obtain the average degree of a random network

Hence <k> is the product of the probability p that two nodes are con-
nected and (N-1), which is the maximum number of links a node can have 
in a network of size N.

In summary the number of links in a random network varies between 
realizations. Its expected value is determined by N and p. If we increase p 
a random network becomes denser: The average number of links increase 
linearly from <L> = 0 to Lmax and the average degree of a node increases 
from <k> = 0  to <k> = N-1.

Top Row
Three realizations of a random network gen-
erated with the same parameters p =1/6 and N 
= 12. Despite the identical parameters, the net-
works not only look different, but they have a 
different number of links as well (L  = 8, 10, 7). 

Bottom Row
Three realizations of a random network with p  
= 1/6 and N = 100.

Figure 3.3
Random Networks are Truly Random

RANDOM NETWORKS
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THE NUMBER OF LINKS IS VARIABLE
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p=0.03 
 N=100 





MATH TUTORIAL     Binomial Distribution: The bottom line
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Number of links in a random network

P(L): the probability to have exactly L links in a network of N nodes and probability p:

Network Science: Random Graphs 
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P(L): the probability to have a network of exactly L links

Network Science: Random Graphs 
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Degree distribution 
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DEGREE DISTRIBUTION OF A RANDOM GRAPH

Network Science: Random Graphs 

As the network size increases, the distribution becomes increasingly narrow—we are 
increasingly confident that the degree of a node is in the vicinity of <k>.
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POISSON DEGREE DISTRIBUTION
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DEGREE DISTRIBUTION OF A RANDOM NETWORK

Exact Result
-binomial distribution-

Large N limit
-Poisson distribution-
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Image 3.4a
Anatomy of a binomial and a Poisson degree distribution.

The exact form of the degree distribution of a random network is the 
binomial distribution (left). For N  » ‹k›, the binomial can be well approx-
imated by a Poisson distribution (right). As both distributions describe 
the same quantity, they have the same properties, which are expressed in 
terms of different parameters: the binomial distribution uses p and N as 
its fundamental parameters, while the Poisson distribution has only one 
parameter, ‹k›.

Image 3.4b
Degree distribution is independent of the network size.

The degree distribution of a random network with average degree ‹k› = 50 
and sizes N = 102 , 103 , 104. For N = 102 the degree distribution deviates 
significantly from the Poisson prediction (8), as the condition for the 
Poisson approximation, N » ‹k›, is not satisfied. Hence for small networks 
one needs to use the exact binomial form of Eq. (7) (dotted line). For N = 
103 and larger networks the degree distribution becomes indistinguishable 
from the Poisson prediction, (8), shown as a continuous line, illustrating 
that for large N the degree distribution is independent of the network size. 
In the figure we averaged over 1,000 independently generated random 
networks to decrease the noise in the degree distribution.
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Real Networks are not Poisson 

Section 3.4      
 



NO OUTLIERS IN A RANDOM SOCIETY 

Network Science: Random Graphs 

 
  

à The most connected individual has degree kmax~1,185 

à The least connected individual has degree kmin ~ 816 

 
The probability to find an individual with degree k > 2,000 is 10-27.  Hence the chance of 
finding an individual with 2,000 acquaintances is so tiny that such nodes are virtually 
inexistent in a random society. 
 
à  a random society would consist of mainly average individuals, with everyone with 
roughly the same number of friends.  

à  It would lack outliers, individuals that are either highly popular or recluse. 

� 

P(k) = e−<k> < k >k

k!

This suprising conclusion is a consequence of an important property of random networks: 
In a large random network the degree of most nodes is in the narrow vicinity of ‹k› 

Sociologists estimate that a typical person knows about 1,000 individuals on a first name 
basis, prompting us to assume that ‹k› ≈ 1,000.  



� 

P(k) = e−<k> < k >k

k!
(3.8)



FACING REALITY: Degree distribution of real networks 

� 

P(k) = e−<k> < k >k

k!



The evolution of a random network 

Section 6       
 



<k> 

EVOLUTION OF A RANDOM NETWORK 

disconnected nodes  è  NETWORK. 

How does this transition happen? 



<kc>=1     (Erdos and Renyi, 1959) 

EVOLUTION OF A RANDOM NETWORK 

disconnected nodes  è  NETWORK. 

The fact that at least one link per node is necessary to have a giant component is 
not unexpected. Indeed, for a giant component to exist, each of its nodes must be 
linked to at least one other node. 
 
It is somewhat unexpected, however that one link is sufficient for the emergence 
of a giant component.  
 
It is equally interesting that the emergence of the giant cluster is not gradual, but 
follows what physicists call a second order phase transition at <k>=1. 
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In this section we introduce the argument, proposed independently by 
Solomonoff and Rapoport [11], and by ErdĘs and Rényi [2], for the emer-
gence of giant component at <k>= 1 [31].

Let us denote with u = 1 - NG/N the fraction of nodes that are not in the 
giant component (GC), whose size we take to be NG. If node i is part of the 
GC, it must link to another node j, which must also be part of the GC. Hence 
if i is not part of the GC, that could happen for two reasons: 

• There is no link between i and j (probability for this is 1- p).

• There is a link between i and j, but j is not part of the GC (probability 
for this is pu).

Therefore the total probability that i is not part of the GC via node j is 
1 - p + pu. The probability that i is not linked to the GC via any other node is 
therefore (1 - p + pu)N - 1, as there are N - 1 nodes that could serve as potential 
links to the GC for node i.  As u is the fraction of nodes that do not belong to 
the GC, for any p and N the solution of the equation 

         
     

provides the size of the giant component via NG = N(1 - u). Using p = <k> / 
(N - 1) and taking the log of both sides, for <k> « N we obtain

     

Taking an exponential of both sides leads to u = exp[- <k>(1 - u)]. If we 
denote with S the fraction of nodes in the giant component, S = NG / N, then 
S = 1 - u and (3.31) results in

            

SECTION 3.13

ADVANCED TOPICS 3.C
GIANT COMPONENT

(3.30)

(3.31)

RANDOM NETWORKS

u p pu(1 )N 1= − + −
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1
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This equation provides the size of the giant component S in function of 
<k> (Figure 3.17). While (3.32) looks simple, it does not have a closed solu-
tion. We can solve it graphically by plotting  the right hand side of (3.32) as 
a function of S for various values of <k>. To have a nonzero solution, the 
obtained curve must intersect with the dotted diagonal, representing the 
left hand side of (3.32). For small <k> the two curves intersect each other 
only at S = 0, indicating that for small <k> the size of the giant component 
is zero. Only when <k> exceeds a threshold value, does a non-zero solution 
emerge.

To determine the value of <k> at which we start having a nonzero solu-
tion we take a derivative of (3.32), as the phase transition point is when the 
r.h.s. of (3.32) has the same derivative as the l.h.s. of (3.32), i.e. when

Setting S = 0, we obtain that the phase transition point is at <k> = 1 (see 
also ADVANCED TOPICS 3.F).

RANDOM NETWORKS ADVANCED TOPICS 3.C
GIANT COMPONENT

(3.32)

(3.33)

S e = 1 .k S− −〈 〉

d
dS

e1 1,k S( )− =−〈 〉

k e 1.k S〈 〉 =−〈 〉

(a) The three purple curves correspond to y = 
1-exp[ -<k> S ] for <k>=0.5, 1, 1.5. The green 
dashed diagonal corresponds y = S, and 
the intersection of the dashed and purple 
curves provides the solution to (3.32). For 
<k>=0.5 there is only one intersection at  S 
= 0, indicating the absence of a giant com-
ponent. The <k>=1.5 curve has a solution 
at S = 0.583 (green vertical line). The <k>=1 
curve is precisely at the critical point, repre-
senting the separation between the regime 
where a nonzero solution for S exists and 
the regime where there is only the solution 
at S = 0. 

(b) The size of the giant component in function 
of <k> as predicted by  (3.32). After [31].

Figure 3.17

Graphical Solution 
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<k> 

EVOLUTION OF A RANDOM NETWORK 

disconnected nodes  è  NETWORK. 

How does this transition happen? 



Phase transitions in complex systems: liquids 

Water Ice 
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I:  
Subcritical 

<k> < 1 
p < pc=1/N 

<k> 

No giant component. 
 
N-L isolated clusters, cluster size distribution is exponential 
 
The largest cluster is a tree, its size ~ ln N 

� 

p(s) ~ s−3 / 2e−( k −1)s+(s−1)ln k



II:  
Critical  
<k> = 1 

p=pc=1/N 

<k> 

Unique giant component: NG~ N2/3 

à contains a vanishing fraction of all nodes, NG/N~N-1/3 

à Small components are trees, GC has loops. 

Cluster size distribution: p(s)~s-3/2 

A jump in the cluster size: 
N=1,000 à  ln N~ 6.9;  N2/3~95 
N=7 109  à  ln N~ 22;   N2/3~3,659,250 



<k>=3 

<k> 

Unique giant component: NG~ (p-pc)N 
 

à GC has loops. 

Cluster size distribution: exponential 

III:  
Supercritical  

<k> > 1 
p > pc=1/N 

� 

p(s) ~ s−3 / 2e−( k −1)s+(s−1)ln k



IV:  
Connected  
<k> >  ln N 
p > (ln N)/N 

<k>=5 

<k> 

Only one cluster: NG=N 

à GC is dense. 
Cluster size distribution: None 





Real networks are supercritical 
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SECTION 7

REAL NETWORKS ARE SUPERCRITICAL

Two predictions of random network theory are of special 
importance for real networks:  

1. Once the average degree exceeds ‹k› = 1, a giant com-
ponent emerges that contains a finite fraction of all 
nodes. Hence only for ‹k› > 1 the nodes organize them-
selves into a recognizable network. 

2. For ‹k› > lnN all components are absorbed by the giant 
component, resulting in a single connected network.

But, do real networks satisfy the criteria for the existence 
of a giant component, i.e. ‹k› › 1? And will this giant com-
ponent contain all nodes, i.e. is ‹k› › lnN , or do we expect 
some nodes and components to remain disconnected? 
These questions can be answered by comparing the mea-
sured ‹k› with the theoretical thresholds uncovered above. 

The measurements indicate that real networks extrava-
gantly exceed the ‹k› = 1 threshold. Indeed, sociologists es-
timate that an average person has around 1,000 acquain-
tances; a typical neuron is connected to dozens of other 
neurons, some to thousands; in our cells, each molecule 
takes part in several chemical reactions, some, like water, 
in hundreds. This conclusion is supported by Table 3.1, 
listing the average degree of several undirected networks, 

in each case finding ‹k› > 1. Hence the average degree of 
real networks is well beyond the ‹k› = 1 threshold, implying 
that they all have a giant component.

Let us now inspect if we have single component (if ‹k› > 
lnN), or we expect the network to be fragmented into 
multiple components (if ‹k› < lnN ). For social networks 
this would mean that ‹k› ≥ ln(7 ×109) �22.7ݍ. That is, if the 
average individual has more than two dozens acquain-
tances, then a random society would have a single com-
ponent, leaving no node disconnected. With ‹k› ݍ� 1,000 
this is clearly satisfied. Yet, according to Table 3.1 most real 
networks do not satisfy this criteria, indicating that they 
should consist of several disconnected components. This 
is a disconcerting prediction for the Internet, as it suggests 
that we should have routers that, being disconnected from 
the giant component, are unable to communicate with 
other routers. This prediction is at odd with reality, as these 
routers would be of little utility. 

Table 3.1
Are real networks connected?
The number of nodes N and links L for several undirected networks, 
together with ‹k› and lnN.  A giant component is expected for ‹k› > 1 and 
all nodes should join the giant component for ‹k›  v lnN.  While for all 
networks ‹k› > 1, for most ‹k› is under the lnN threshold.

Image 3.8
Most real networks are supercritical.
The four regimes predicted by random network theory, marking with a 
cross the location of several real networks of Table 3.1. The diagram indi-
cates that most networks are in the supercritical regime, hence they are 
expected to be broken into numerous isolated components. Only the actor 
network is in the connected regime, meaning that all nodes are expected 
to be part of a single giant component. Note that while the boundary be-
tween the subcritical and the supercritical regime is always at ‹k› = 1, the 
boundary between the supercritical and the connected regimes is at lnN, 
hence varies from system to system. 
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Small worlds 
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SIX DEGREES       small worlds



Image by Matthew Hurst
Blogosphere



SIX DEGREES       1929: Frigyes Kartinthy

Frigyes Karinthy (1887-1938)
Hungarian Writer Network Science: Random Graphs 

“Look, Selma Lagerlöf just won the Nobel Prize for Literature, 
thus she is bound to know King Gustav of Sweden, after all he is 
the one who handed her the Prize, as required by tradition. King 
Gustav, to be sure, is a passionate tennis player, who always 
participates in international tournaments. He is known to have 
played Mr. Kehrling, whom he must therefore know for sure, and 
as it happens I myself know Mr. Kehrling quite well.”  

"The worker knows the manager in the shop, who knows Ford; 
Ford is on friendly terms with the general director of Hearst 
Publications, who last year became good friends with Arpad 
Pasztor, someone I not only know, but to the best of my 
knowledge a good friend of mine. So I could easily ask him to 
send a telegram via the general director telling Ford that he 
should talk to the manager and have the worker in the shop 
quickly hammer together a car for me, as I happen to need one." 

1929:  Minden másképpen van (Everything is Different)  
  Láncszemek (Chains) 



SIX DEGREES       1967: Stanley Milgram

Network Science: Random Graphs 

HOW TO TAKE PART IN THIS STUDY 
 
1.  ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that 
the next person who receives this letter will know who it came from. 
 
2.  DETACH ONE POSTCARD. FILL IT AND RETURN IT TO HARVARD UNIVERSITY. 
No stamp is needed. The postcard is very important. It allows us to keep track of the 
progress of the folder as it moves toward the target person. 
 
3.  IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL THIS 
FOLDER DIRECTLY TO HIM (HER). Do this only if you have previously met the target 
person and know each other on a first name basis. 
 
4.  IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS, DO 
NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST 
CARDS AND ALL) TO A PERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN 
YOU TO KNOW THE TARGET PERSON. You may send the folder to a friend, relative or 
acquaintance, but it must be someone you know on a first name basis. 



SIX DEGREES       1967: Stanley Milgram

Network Science: Random Graphs 
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BOX 3.6
SIX DEGREES: EXPERIMENTAL CONFIRMATION

Six Degrees? From Milgram to Facebook

The first empirical study of the small world phenomena took 
place in 1967, when Stanley Milgram, building on the work of 
Pool and Kochen [20], designed an experiment to measure the 
distances in social networks [21, 22]. Milgram chose a stock bro-
ker in Boston and a divinity student in Sharon, Massachusetts 
as targets. He then radomly selected residents of Wichita and 
Omaha, sending them a letter containing a short summary of 
the study’s purpose, a photograph, the name, address and infor-
mation about the target person. They were asked to forward the 
letter to a friend, relative or acquantance who is more likely to 
know the target person. 

Within a few days the first letter arrived, passing through only 
two links. Eventually 64 of the 296 letters made it back, some, 
however, requiring close to a dozen intermediates [22]. These 
completed chains allowed Milgram to determine the number of 
individuals required to get the letter to the target (Figure 3.12a). 
He found that the median number of intermediates was 5.2, a 
relatively small number that was remarkably close to Frigyes 
Karinthy’s 1929 insight (BOX 3.7).
 
Milgram lacked an accurate map of the full acquaintance net-
work, hence his experiment could not detect the true distance 
between his study’s participants. Today Facebook has the most 
extensive social network map ever assembled. Using Facebook’s 
social graph of May 2011, consisting of 721 million active users 
and 68 billion symmetric friendship links, researchers found an 
average distance 4.74 between the users (Figure 3.12b). Therefore, 
the study detected only ‘four degrees of separation’ [18], closer 
to the prediction of (3.20) than to Milgram’s six degrees [21, 22]. 
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Figure 3.12

(a) In Milgram's experiment 64 of the 296 
letters made it  to the recipient. The fig-
ure shows the length distribution of the 
completed chains, indicating that some 
letters required only one intermediary, 
while others required as many as ten. The 
mean of the distribution was 5.2, indicat-
ing that on average six ‘handshakes’ were 
required to get a letter to its recipient. The 
playwright John Guare renamed this ‘six 
degrees of separation’ two decades later.  
After [22].

(b) The distance distribution, pd , for all pairs 
of Facebook users worldwide and within 
the US only.Using Facebook’s N and L (3.19) 
predicts the average degree to be approx-
imately 3.90, not far from the reported 
four degrees. After [18].

“I asked a person of intelligence how 
many steps he thought it would take, and 
he said that it would require 100 interme-
diate persons, or more, to move from Ne-
braska to Sharon.”

Stanley Milgram, 1969



SIX DEGREES       1991: John Guare

Network Science: Random Graphs 

"Everybody on this planet is separated by only six other people. 
Six degrees of separation. Between us and everybody else on 
this planet. The president of the United States. A gondolier in 
Venice…. It's not just the big names. It's anyone. A native in a 
rain forest. A Tierra del Fuegan. An Eskimo. I am bound to 
everyone on this planet by a trail of six people. It's a profound 
thought.  How every person is a new door, opening up into other 
worlds." 



DISTANCES IN RANDOM GRAPHS

Random graphs tend to have a tree-like topology with almost constant node degrees.

Network Science: Random Graphs 

� 

dmax =
logN
log k

� 

N =1+ k + k 2 + ...+ k dmax =
k dmax +1 −1
k −1

≈ k dmax
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SMALL WORLDS
SECTION 3.8

The small world phenomenon, also known as six degrees of separation, 
has long fascinated the general public. It states that if you choose any two 
individuals anywhere on earth, you will find a path of at most six acquain-
tances between them (Figure 3.10). The fact that individuals who live in the 
same city are only a few handshakes from each other is by no means sur-
prising. The small world concept states, however, that even individuals 
who are on the opposite side of the globe can be connected to us via a few 
acquaintances. 

In the language of network science the small world phenomenon im-
plies that the distance between two randomly chosen nodes in a network 
is short. This statement raises two questions: What does short (or small) 
mean, i.e. short compared to what? How do we explain the existence of 
these short distances?

Both questions are answered by a simple calculation. Consider a ran-
dom network with average degree <k>.  A node in this network has on av-
erage:

 <k> nodes at distance one (d=1).
 <k>2 nodes at distance two (d=2).
 <k>3 nodes at distance three (d =3).
 ...
 <k>d nodes at distance d.

For example, if  <k>�1,000ݍ, which is the estimated number of acquain-
tences an individual has, we expect 106 individuals at distance two and 
about a billion, i.e. almost the whole earth’s population, at distance three 
from us.

 
To be precise, the expected number of nodes up to distance d from our 

starting node is

      

RANDOM NETWORKS

According to six degrees of separation two 
individuals, anywhere in the world, can be 
connected through a chain of six or fewer ac-
quaintances. This means that while Sarah does 
not know Peter, she knows Ralph, who knows 
Jane and who in turn knows Peter. Hence Sar-
ah is three handshakes, or three degrees from 
Peter. In the language of network science six 
degrees, also called the small world proper-
ty, means that the distance between any two 
nodes in a network is unexpectedly small.

Figure 3.10

Six Deegree of Separation
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DISTANCES IN RANDOM GRAPHS

Network Science: Random Graphs 

� 

dmax =
logN
log k

� 

< d >=
logN
log k

We will call the small world phenomena the property that the average 
path length or the diameter depends logarithmically on the system size.  

 
Hence, ”small” means that ⟨d⟩ is proportional to log N, rather than N.  

In most networks this offers a better approximation to the average distance 
between two randomly chosen nodes, ⟨d⟩, than to dmax . 

The 1/log⟨k⟩ term implies that denser the network, the smaller will be the 
distance between the nodes.  



Given the huge differences in scope, size, and average degree, the agreement is excellent.

DISTANCES IN RANDOM GRAPHS        compare with real data



Why are small worlds surprising? Suprising compared to what?

Network Science: Random Graphs 
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BOX 3.6
SIX DEGREES: EXPERIMENTAL CONFIRMATION

Six Degrees? From Milgram to Facebook

The first empirical study of the small world phenomena took 
place in 1967, when Stanley Milgram, building on the work of 
Pool and Kochen [20], designed an experiment to measure the 
distances in social networks [21, 22]. Milgram chose a stock bro-
ker in Boston and a divinity student in Sharon, Massachusetts 
as targets. He then radomly selected residents of Wichita and 
Omaha, sending them a letter containing a short summary of 
the study’s purpose, a photograph, the name, address and infor-
mation about the target person. They were asked to forward the 
letter to a friend, relative or acquantance who is more likely to 
know the target person. 

Within a few days the first letter arrived, passing through only 
two links. Eventually 64 of the 296 letters made it back, some, 
however, requiring close to a dozen intermediates [22]. These 
completed chains allowed Milgram to determine the number of 
individuals required to get the letter to the target (Figure 3.12a). 
He found that the median number of intermediates was 5.2, a 
relatively small number that was remarkably close to Frigyes 
Karinthy’s 1929 insight (BOX 3.7).
 
Milgram lacked an accurate map of the full acquaintance net-
work, hence his experiment could not detect the true distance 
between his study’s participants. Today Facebook has the most 
extensive social network map ever assembled. Using Facebook’s 
social graph of May 2011, consisting of 721 million active users 
and 68 billion symmetric friendship links, researchers found an 
average distance 4.74 between the users (Figure 3.12b). Therefore, 
the study detected only ‘four degrees of separation’ [18], closer 
to the prediction of (3.20) than to Milgram’s six degrees [21, 22]. 
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Figure 3.12

(a) In Milgram's experiment 64 of the 296 
letters made it  to the recipient. The fig-
ure shows the length distribution of the 
completed chains, indicating that some 
letters required only one intermediary, 
while others required as many as ten. The 
mean of the distribution was 5.2, indicat-
ing that on average six ‘handshakes’ were 
required to get a letter to its recipient. The 
playwright John Guare renamed this ‘six 
degrees of separation’ two decades later.  
After [22].

(b) The distance distribution, pd , for all pairs 
of Facebook users worldwide and within 
the US only.Using Facebook’s N and L (3.19) 
predicts the average degree to be approx-
imately 3.90, not far from the reported 
four degrees. After [18].

“I asked a person of intelligence how 
many steps he thought it would take, and 
he said that it would require 100 interme-
diate persons, or more, to move from Ne-
braska to Sharon.”

Stanley Milgram, 1969

Three, Four or Six Degrees? 

For the globe’s  social networks: 
 
⟨k⟩ ≃ 103 
 

 N ≃ 7 × 109 for the world’s population.  
 

� 

< d >=
ln(N)
ln k

= 3.28



Clustering coefficient 
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Since edges are independent and have the same probability p, 

< Li >≅ p ki (ki −1)
2

• The clustering coefficient of random graphs is small.

• For fixed degree C decreases with the system size N.

• C is independent of a node’s degree k.

Ci ≡
2 < Li >
ki (ki −1)

CLUSTERING COEFFICIENT

26

CLUSTERING COEFFICIENT
SECTION 3.9

The degree of a node contains no information about the relationship 
between a node's neighbors. Do they all know each other, by having links 
between them? Or are they perhaps isolated from each other? The answer 
is provided by the local clustering coefficient Ci, that measures the density 
of links in node i’s immediate neighborhood: C = 0 means that there are no 
links between i’s neighbors; C = 1 implies that each of the i’s neighbors link 
to each other (SECTION 2.10). 

To calculate Ci for a node in a random network we need to estimate the 
expected number of links Li between the node’s ki neighbors. In a random 
network the probability that two of i’s neighbors link to each other is p.  As 
there are ki(ki - 1)/2 possible links between the ki neighbors of node i, the 
expected value of Li is 

      
Thus the local clustering coefficient of a random network is 
            
     

Equation (3.21) makes two predictions:

(1)  For fixed <k>, the larger the network, the smaller is a node’s cluster-
ing coefficient. Consequently a node's local clustering coefficient Ci 
is expected to decrease as  1/N. Note that the network's average clus-
tering coefficient, <C> also follows (3.21).

 
(2) The local clustering coefficient of a node is independent of the node’s 

degree.

To test the validity of (3.21) we plot <C>/<k> in function of N for several 
undirected networks (Figure 3.13a). We find that <C>/<k> does not decrease 

RANDOM NETWORKS
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C decreases with the system size N.

C is independent of a node’s degree k.

Network Science: Random Graphs 
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SECTION 3.9
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links between i’s neighbors; C = 1 implies that each of the i’s neighbors link 
to each other (SECTION 2.10). 

To calculate Ci for a node in a random network we need to estimate the 
expected number of links Li between the node’s ki neighbors. In a random 
network the probability that two of i’s neighbors link to each other is p.  As 
there are ki(ki - 1)/2 possible links between the ki neighbors of node i, the 
expected value of Li is 

      
Thus the local clustering coefficient of a random network is 
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degree.
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as N-1, but it is largely independent of N, in violation of the prediction (3.21)
and point (1) above. In Figure 3.13b-d we also show the dependency of C on 
the node’s degree ki for three real networks, finding that C(k) systematical-
ly decreases with the degree, again in violation of (3.21) and point (1). 

In summary, we find that the random network model does not capture 
the clustering of real networks. Instead real networks have a much high-
er clustering coefficient than expected for a random network of similar 
N and L. An extension of the random network model proposed by Watts 
and Strogatz [26] addresses the coexistence of high C and the small world 
property (BOX 3.8). It fails to explain, however, why high-degree nodes have 
a smaller clustering coefficient than low-degree nodes. Models explaining 
the shape of C(k) are discussed in Chapter 9.

RANDOM NETWORKS CLUSTERING COEFFICIENT

(a) Comparing the average clustering co-
efficient of real networks with the 
prediction (3.21) for random networks. 
The circles and their colors correspond 
to the networks of Table 3.2. Directed 
network were made undirected to cal-
culate C and <k>. The green line cor-
responds to (3.21), predicting that for 
random networks the average cluster-
ing coefficient decreases as N-1. In con-
trast, for real networks <C> appears to 
be independent of N.

(b)-(d)  The dependence of the local clustering 
coefficient, C(k), on the node’s degree 
for (b) the Internet, (c) science collabo-
ration network and (d) protein interac-
tion network. C(k) is measured by av-
eraging the local clustering coefficient 
of all nodes with the same degree k. 
The green horizontal line corresponds 
to <C>. 

Figure 3.13

Clustering in Real Networks

InternetAll Networks

Protein InteractionsScience Collaboration

(a)

(c)

(b)

(d)
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As quantitative data about real networks became available, we can
compare their topology with the predictions of random graph theory.

Note that once we have  N and  <k> for a random network, from it we can derive every 
measurable property. Indeed, we have:

Average path length:

Clustering Coefficient: 

Degree Distribution: � 

< lrand >≈
logN
log k

ARE REAL NETWORKS LIKE RANDOM GRAPHS?

Network Science: Random Graphs 
� 

P(k) = e−<k> < k >k

k!
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Real networks have short distances
like random graphs. 

Prediction: 

PATH LENGTHS IN REAL NETWORKS

Network Science: Random Graphs 

� 

< d >=
logN
log k



Prediction: 

Crand underestimates with orders of magnitudes 
the clustering coefficient of real networks. 

CLUSTERING COEFFICIENT
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To calculate Ci for a node in a random network we need to estimate the 
expected number of links Li between the node’s ki neighbors. In a random 
network the probability that two of i’s neighbors link to each other is p.  As 
there are ki(ki - 1)/2 possible links between the ki neighbors of node i, the 
expected value of Li is 

      
Thus the local clustering coefficient of a random network is 
            
     

Equation (3.21) makes two predictions:

(1)  For fixed <k>, the larger the network, the smaller is a node’s cluster-
ing coefficient. Consequently a node's local clustering coefficient Ci 
is expected to decrease as  1/N. Note that the network's average clus-
tering coefficient, <C> also follows (3.21).

 
(2) The local clustering coefficient of a node is independent of the node’s 

degree.

To test the validity of (3.21) we plot <C>/<k> in function of N for several 
undirected networks (Figure 3.13a). We find that <C>/<k> does not decrease 
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� 

P(k) ≈ k −γ

Prediction: 

Data:

THE DEGREE DISTRIBUTION
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� 

P(k) = e−<k> < k >k

k!



As quantitative data about real networks became available, we can
compare their topology with the predictions of random graph theory.

Note that once we have  N and  <k> for a random network, from it we can derive every 
measurable property. Indeed, we have:

Average path length:

Clustering Coefficient: 

Degree Distribution: � 

< lrand >≈
logN
log k

ARE REAL NETWORKS LIKE RANDOM GRAPHS?
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� 

P(k) = e−<k> < k >k

k!
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CLUSTERING COEFFICIENT
SECTION 3.9

The degree of a node contains no information about the relationship 
between a node's neighbors. Do they all know each other, by having links 
between them? Or are they perhaps isolated from each other? The answer 
is provided by the local clustering coefficient Ci, that measures the density 
of links in node i’s immediate neighborhood: C = 0 means that there are no 
links between i’s neighbors; C = 1 implies that each of the i’s neighbors link 
to each other (SECTION 2.10). 

To calculate Ci for a node in a random network we need to estimate the 
expected number of links Li between the node’s ki neighbors. In a random 
network the probability that two of i’s neighbors link to each other is p.  As 
there are ki(ki - 1)/2 possible links between the ki neighbors of node i, the 
expected value of Li is 

      
Thus the local clustering coefficient of a random network is 
            
     

Equation (3.21) makes two predictions:

(1)  For fixed <k>, the larger the network, the smaller is a node’s cluster-
ing coefficient. Consequently a node's local clustering coefficient Ci 
is expected to decrease as  1/N. Note that the network's average clus-
tering coefficient, <C> also follows (3.21).

 
(2) The local clustering coefficient of a node is independent of the node’s 

degree.

To test the validity of (3.21) we plot <C>/<k> in function of N for several 
undirected networks (Figure 3.13a). We find that <C>/<k> does not decrease 
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The Watts-Strogatz Model

We	start	from	a	ring	of	nodes,	
each	node	being	connected	to	
their	immediate	and	next	
neighbors.	Hence	ini6ally	each	
node	has	‹C›	=	3/4	(p	=	0).	
	
With	probability	p	each	link	is	
rewired	to	a	randomly	chosen	
node.	For	small	p	the	network	
maintains	high	clustering	but	
the	random	long-range	links	
can	dras6cally	decrease	the	
distances	between	the	nodes.	
	
For	p	=	1	all	links	have	been	
rewired,	so	the	network	turns	
into	a	random	network.	

Regular networks (p=0) 
 - large distances      (bad) 
 - large clustering coefficients   (good) 

 
Random networks (p=1): 

 - small distances      (good) 
 - small clustering coefficients   (bad) 
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Watts-Strogatz Model

The dependence of the average path length d(p) and clustering coefficient ‹C(p)› on the 
rewiring parameter p. Note that d(p) and ‹C(p)› have been normalized by d(0) and ‹C(0)› 
obtained for a regular lattice (i.e. for p=0 in (a)). The rapid drop in d(p) signals the onset of 
the small-world phenomenon. During this drop, ‹C(p)› remains high.  
 

Hence in the range 0.001‹p‹0.1 short path lengths and high clustering coexist.  

All graphs 
have N=1000 
and ‹k›=10. 



(B) Most important: we need to ask ourselves, are real networks random?

The answer is simply: NO

There is no network in nature that we know of that would be 
described by the random network model. 

IS THE RANDOM GRAPH MODEL RELEVANT TO REAL SYSTEMS? 
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It is the reference model for the rest of the class.  

It will help us calculate many quantities, that can then be compared to the real 
data, understanding to what degree is a particular property the result of some 
random process.

Patterns in real networks that are shared by a large number of real networks, 
yet which deviate from the predictions of the random network model.

In order to identify these, we need to understand how would a particular property 
look like if it is driven entirely by random processes.

While WRONG and IRRELEVANT, it will turn out to be extremly USEFUL! 

IF IT IS WRONG AND IRRELEVANT, WHY DID WE DEVOT TO IT A FULL CLASS?
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1951, Rapoport and Solomonoff: 

à first systematic study of a random 
graph. 
àdemonstrates the phase transition.

ànatural systems: neural networks; the 
social networks of physical contacts 
(epidemics); genetics.

Why do we call it the Erdos-Renyi random model?
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HISTORICAL NOTE 

Anatol Rapoport 
 1911- 2007 Edgar N. Gilbert  

(b.1923)  

1959: G(N,p) 


