
IVU LECTURES

PYTORCH BASIC 
KNOWLEDGE

FACTS ON TENSORS, MODULES AND 
FUNCTIONALS FOR YOUR DAILY DEEP 

LEARNING ROUTINE



GPU-Accelerated Computing

PyTorch is a Python library mainly used to perform deep learning tasks such as building, training and 
evaluating neural network models.

PyTorch is deeply integrated with CUDA, to run the 
training of models directly in the GPU

● Tensors and models can be sent to the GPU
● Gradient checkpointing can be used if GPU memory 

is slow
● GPU acceleration dramatically improves the time 

performances



Dynamic Derivative Graph

PyTorch is a Python library mainly used to perform deep learning tasks such as building, training and 
evaluating neural network models

PyTorch allows user to change dynamically the model 
structure at runtime:

● Network defined in a modular way. Modules can be 
deleted and added

● Useful for RNNs/LSTMs and model pruning
● Require the user to manually zero out gradients



Its father

● Lua-based framework with 
the same purposes

● Inspirational source of 
Pytorch and the two 
frameworks share some 
authors

● Not actively supported 
anymore

Its cousin

● Python-based MATLAB-like 
library for scientific 
computing

● Popular tensor indexing 
and slicing mechanics

● Lots of scientific computing 
algorithms (check also 
SciPy, scikit-learn, 
matplotlib) 

● Poor GPU support for 
Deep Learning tasks

Its rival

● Python-based too
● Older than PyTorch
● Largely used in production 

environments
● Harder to debug
● Default static 

differentiation graph
● Will switch to a 

PyTorch-inspired 
framework within months

Its mother

● Python-based framework 
with the same purposes

● Has dynamic graphs too
● Uses autograd too
● Lot of backend in Python
● Worse efficiency



Basic structures

Characteristics
● Very similar to NumPy’s ndarray structure 

(efficient NumPy conversion)
● Advanced indexing/slicing (since v0.3)
● Can store associated derivatives values:

- v0.4: requires_grad/requires_grad_()
- v0.3: Variable wrapping

● Can be sent to GPU for faster computations:
- v0.4: to(device=’gpu:0’)
- v0.3 cuda()

Tensor: the most important one. It’s used to perform array-like computations i.e. vectorial sums, 
vectorial/element-wise products, etc.



Basic structures

Characteristics
● Defines a forward abstract method, for the 

forward pass
● forward is then called by __call__ method
● Has methods to easily debug gradients 

(register_*_hook)
● It usually stores a Functional performing the 

operation (not covered in this tutorial)

Parameter: subclass of Tensor used for model 
weights that need to be updated. 

Module: base class used to create NNs building 
blocks. It is used to represent convolutional 
operators, non-activation function, losses, 
grouping of Modules, etc. 

Characteristics
● Each Parameter field of a Module object will 

receive gradient updates during the 
backward pass



Basic structures

Characteristics
● Calling backward method will results in 

computing all the needed gradients.

Optimizer: Base class for optimizers. Includes 
SGD, Adam, etc.

_Loss: Module subclass which represents 
losses. Includes MSE, cross-entropy, etc. 

Characteristics
● Accept a group of arguments (lr, 

momentum, weight_decay, etc.) and a 
group of weights to be updated (just call 
Module.parameters method on your model)

● Call step method to start the weights 
update



Basic structures

Characteristics
● Two methods must always be present:

○ __len__ to retrieve the length of the 
dataset

○ __getitem__ to get items from the 
dataset.

● Lots of standard datasets are already 
defined in torchvision library

DataLoader: base class which automatizes the 
batches generation from Dataset objects.

Dataset: base class representing a train or test 
dataset.

Characteristics
● Requires a Dataset object to iterate on
● Usually the standard DataLoader suffices for 

classification tasks, however more 
specialized ones are defined

● It is used in for cycles. __iter__ method 
returns an iterator on the Dataset object



@googleslides

LET’S 
START


