
Machine	Learning	Basics	

Marcello	Pelillo	
University	of	Venice,	Italy	

	
	
	

Image	and	Video	Understanding	
a.y.	2018/19	

A	branch	of	Artificial	Intelligence	(AI).		
	
Develops	algorithms	that	can	improve	their	performance	using	
training	data.	
	
Typically	ML	 algorithms	 have	 a	 (large)	 number	 of	 parameters	
whose	values	are	learnt	from	the	data.	
	
Can	 be	 applied	 in	 situations	 where	 it	 is	 very	 challenging	 (=	
impossible)	to	define	rules	by	hand,	e.g.:	

•  Computer	vision	
•  Speech	recognition	
•  Stock	prediction	
•  …	

What	Is	Machine	Learning?	

Computer	

Data	

Program	

Output	

Computer	

Data	

Output	

Program	

Traditional	programming	

Machine	learning	

Machines	that	Learn?	

Computer	 Cat!	

if (eyes == 2) &
 (legs == 4) &

(tail == 1) &
…

then Print “Cat!”

Traditional	Programming	

Computer	

“Cat”

Cat		
recognizer	

Cat!	Learning	
algorithm	

Machine	Learning	

«By	the	mid-2000s,	with	success	stories	piling	up,	the	field	had	learned	a	
powerful	lesson:	data	can	be	stronger	than	theoretical	models.		

A	new	generation	of	intelligent	machines	had	emerged,	powered	by	a	small	
set	of	statistical	learning	algorithms	and	large	amounts	of	data.»	

	
Nello	Cristianini	

The	road	to	artificial	intelligence:	A	case	of	data	over	theory		
(New	Scientist,	2016)	

Data	Beats	Theory	

Example:	
Hand-Written	Digit	Recognition	

Example:	
Face	Detection	

Example:	
Face	Recognition	

The	Difficulty	of	Face	Recognition	

?

Example:	
Fingerprint	Recognition	

Assiting	Car	Drivers	and	Autonomous	Driving	

Assisting	Visually	Impaired	People	

Recommender	Systems		

Three	kinds	of	ML	problems	

	
•  Unsupervised	learning	(a.k.a.	clustering)	

–  All	available	data	are	unlabeled	

•  Supervised	learning	
–  All	available	data	are	labeled	

•  Semi-supervised	learning	
–  Some	data	are	labeled,	most	are	not	

Unsupervised	Learning	
(a.k.a	Clustering)		

	

Given:
ü  a set of n “objects”
ü  an n × n matrix A of pairwise similarities

Goal: Partition the vertices of the G into maximally homogeneous groups (i.e.,
clusters).

Usual assumption: symmetric and pairwise similarities (G is an undirected graph)

= an edge-weighted graph G

The	clustering	problem	

Clustering problems abound in many areas of computer science and engineering.

A short list of applications domains:

 Image processing and computer vision
 Computational biology and bioinformatics
 Information retrieval
 Document analysis
 Medical image analysis
 Data mining
 Signal processing
 …

For a review see, e.g., A. K. Jain, "Data clustering: 50 years beyond K-means,”
Pattern Recognition Letters 31(8):651-666, 2010.

Applications	

Clustering

Source: K. Grauman

Image Segmentation as clustering

Segmentation as clustering

•  Cluster together (pixels, tokens,
etc.) that belong together

•  Agglomerative clustering
–  attach closest to cluster it is

closest to
–  repeat

•  Divisive clustering
–  split cluster along best

boundary
–  repeat

•  Point-Cluster distance
–  single-link clustering
–  complete-link clustering
–  group-average clustering

•  Dendrograms
–  yield a picture of output as

clustering process continues

K-Means

An iterative clustering algorithm

– Initialize:
Pick K random points as cluster centers

– Alternate:
1. Assign data points to closest cluster center
2. Change the cluster center to the average of its assigned points

– Stop when no points’ assignments change

Note: Ensure that every cluster has at least one data point. Possible techniques for doing this include
supplying empty clusters with a point chosen at random from points far from their cluster centers.

K-means clustering: Example

Initialization:
Pick K random points as
cluster centers

Shown here for K=2

Adapted from D. Sontag

Iterative Step 1:
Assign data points to
closest cluster center

K-means clustering: Example

Adapted from D. Sontag

Iterative Step 2:
Change the cluster center to
the average of the assigned
points

K-means clustering: Example

Adapted from D. Sontag

Repeat until convergence

K-means clustering: Example

Adapted from D. Sontag

K-means clustering: Example

Final output

Adapted from D. Sontag

K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color

Properties of K-means

Guaranteed to converge in a finite number of steps.

Minimizes an objective function (compactness of clusters):

where µi is the center of cluster i.

Running time per iteration:
•  Assign data points to closest cluster center: O(Kn) time
•  Change the cluster center to the average of its points: O(n) time

€

x j − µ i

2

j∈elements of i'th cluster
∑

⎧
⎨
⎩

⎫
⎬
⎭ i∈clusters

∑

•  Pros
–  Very simple method
–  Efficient

•  Cons
–  Converges to a local minimum

 of the error function
–  Need to pick K
–  Sensitive to initialization
–  Sensitive to outliers
–  Only finds “spherical” clusters

Properties of K-means

Supervised	Learning	
(classification)		

	

Classification	Problems	
	

	

					 	 					Given	: 	 		

															1)					some		“features”: 														

	 										2)					some		“classes”:																											

	 			

	

	

						 	 					Problem	:	

								To	classify	an	“object”	according	to	its	features	

	 		

		

n21 fff ,....,,
m1 cc ,....,

Example	#1	
	

												To	classify	an	“object”	as	:	

	 	 	 	=		“	watermelon	”	

	 	 	 	=		“	apple	” 		

	 	 	 	=		“	orange	” 	 		

					

						According	to	the	following	features	: 		

	 	 		 	 	=		“	weight	”	

	 	 	 	=		“	color	”	

	 	 	 	=		“	size	”	

								

							Example	:	

	 	 	weight		=		80	g	

	 	 	color					=		green																																														 	 	
	 	size						=		10	cm³ 		

	

	

I
m
p
o
s
s
i
bI
m
p
o
s
s
i
b

1f

2f
3f

“apple”

Impossibile visualizzare
l'immagine. La memoria
del computer potrebbe
essere insufficiente per
aprire l'immagine oppure
l'immagine potrebbe
essere danneggiata.
Riavviare il computer e
aprire di nuovo il file. Se
viene visualizzata di
nuovo la x rossa,
potrebbe essere
necessario eliminare
l'immagine e inserirla di
nuovo.

Example			#2	
																																																																																													

															Problem:				Establish	whether	a	patient	got	the	flu	

	 	 	 		

	 	 	 		

•  Classes	:	 	{	“	flu	”	,	“	non-flu	”	}	

	

•  (Potential)	Features	: 	 	 	 	 		

	 	 	 		:					Body	temperature		

	 	 	 		:						Headache	? 	 	(yes	/	no)	

	 	 	 		:						Throat	is	red	? 	(yes	/	no	/	medium)	

	 	 	 		:	

							 	 	 	 		

	

1f

2f
3f
4f

Example	#3	
Hand-written	digit	recognition	

Example	#4:	
Face	Detection	

Example	#5:	
Spam	Detection	

Geometric Interpretation

Example:		
Classes				=		{	0	,	1	}	
Features			=			x	,	y	:					both	taking	value	in	[0	,	+∞	[

	

Idea:	Objects	are	represented	as	“point”	in	a	geometric	space	

	 		

	

The	formal	setup	
SLT	deals	mainly	with	supervised	learning	problems.		
	
Given:	

ü  an	input	(feature)	space:	X		
ü  an	output	(label)	space:	Y		 	(typically	Y	=	{ -1, +1 })	

the	 question	 of	 learning	 amounts	 to	 estimating	 a	 functional	
relationship	between	the	input	and	the	output	spaces:	

f	:	X → Y
	
Such	a	mapping	f	is	called	a	classifier.		
	
In	order	to	do	this,	we	have	access	to	some	(labeled)	training	data:		
	

(X1,Y1), … , (Xn,Yn)	∈	X × Y		
	
A	classification	algorithm	is	a	procedure	that	takes	the	training	data	
as	input	and	outputs	a	classifier	f.		

Assumptions	

In	SLT	one	makes	the	following	assumptions:	
	
ü  there	exists	a	joint	probability	distribution	P	on	X × Y	

ü  the	training	examples	(Xi,Yi)		are	sampled	independently	from	P	(iid	
sampling).	

In	particular:		
	
1.  No	assumptions	on	P	

2.  The	distribution	P	is	unknown	at	the	time	of	learning	

3.  Non-deterministic	labels	due	to	label	noise	or	overlapping	classes	

4.  The	distribution	P	is	fixed	

Losses	and	risks	

We	need	to	have	some	measure	of	“how	good”	a	function	f	is	when	used	as	
a	classifier.	A	loss	function	measures	the	“cost”	of	classifying	instance	X∈X	
as	Y∈Y.

The	 simplest	 loss	 function	 in	 classification	 problems	 is	 the	 0-1	 loss	 (or	
misclassication	error):

The	 risk	 of	 a	 function	 is	 the	 average	 loss	 over	 data	 points	 generated	
according	to	the	underlying	distribution	P:	
	
	
	
The	best	classifier	is	the	one	with	the	smallest	risk	R(f).	
	

Bayes	classifiers	

Among	all	possible	classifiers,	the	“best”	one	is	the	Bayes	classifier:		

In	practice,	it	is	impossible	to	directly	compute	the	Bayes	classifier	as	the	
underlying	probability	distribution	P	is	unknown	to	the	learner.		
	
The	idea	of	estimating	P	from	data	doesn’t	usually	work	…	
	

Bayes’	theorem	

«[Bayes’	theorem]	is	to	the	theory	of	probability	what	
Pythagoras’	theorem	is	to	geometry.»	

	
Harold	Jeffreys		

Scientific	Inference	(1931)	

ü  P(h):		prior	probability	of	hypothesis	h	
ü  P(h	|	e):		posterior	probability	of	hypothesis	h	(in	the	light	of	evidence	e)	
ü  P(e	|	h):		“likelihood”	of	evidence	e	on	hypothesis	h	

€

P(h | e) =
P(e | h)P(h)

P(e)
=

P(e | h)P(h)
P(e | h)P(h) + P(e | ¬h)P(¬h)

Given:	

ü  a	set	training	points	(X1,Y1), … , (Xn,Yn)	∈	X × Y drawn	iid	from	an	
unknown	distribution	P		

ü  a	loss	functions	

Determine	a	function	f	:	X → Y	which	has	risk	R(f)	as	close	as	possible	to	
the	risk	of	the	Bayes	classifier.	

The	classification	problem	

Caveat.	Not	only	is	it	impossible	to	compute	the	Bayes	error,	but	also	the	
risk	of	a	function	f	cannot	be	computed	without	knowing	P.		
	
A	desperate	situation?	
	

«Early	in	1966	when	I	first	began	teaching	at	Stanford,	a	student,	
Peter	Hart,	walked	into	my	office	with	an	interesting	problem.	He	
said	that	Charles	Cole	and	he	were	using	a	pattern	classification	
scheme	which,	for	lack	of	a	better	word,	they	described	as	the	

nearest	neighbor	procedure.		
This	scheme	assigned	to	an	as	yet	unclassified	observation	the	

classification	of	the	nearest	neighbor.	Were	there	any	good	
theoretical	properties	of	this	procedure?»	

	
Thomas	Cover	(1982)	

An	example:	
The	nearest	neighbor	(NN)	rule	

How	good	is	the	NN	rule?	

Variations:	
	
ü  k-NN	rule:	use	the	k	nearest	neighbors	and	take	a	majority	vote		
ü  kn-NN	rule:	the	same	as	above,	for	kn	growing	with	n	
	
Theorem	 (Stone,	 1977)	 If	 n → ∞ and k → ∞,	 such	 that	 k/n → 0,	 then	 for	 all	
probability	 distributions	 R(kn-NN)	 → R(fBayes)	 (that	 is,	 the	 kn-NN	 rule	 is	
“universally	Bayes	consistent”).

Cover	and	Thomas	showed	that:	
	
	
where	R∞	denotes	the	expected	error	rate	of	NN	when	the	sample	size	tends	to	
infinity.	
	
We	cannot	say	anything	stronger	as	there	are	probability	distributions	for	which	
the	performance	of	the	NN	rule	achieves	either	the	upper	or	lower	bound.	

€

R(fBayes) ≤ R∞ ≤ 2R(fBayes)

Back-Propagation	
Neural	Networks	

	

History	
Early work (1940-1960)

•  McCulloch & Pitts (Boolean logic)
•  Rosenblatt (Learning)
•  Hebb (Learning)

Transition (1960-1980)
•  Widrow – Hoff (LMS rule)
•  Anderson (Associative memories)
•  Amari

Resurgence (1980-1990’s)
•  Hopfield (Ass. mem. / Optimization)
•  Rumelhart et al. (Back-prop)
•  Kohonen (Self-organizing maps)
•  Hinton , Sejnowski (Boltzmann machine)

New resurgence (2012 -)
•  CNNs, Deep learning, GAN’s ….

The	McCulloch	and	Pitts	Model	(1943)	
The McCulloch-Pitts (MP) Neuron is modeled as a binary threshold unit

The unit “fires” if the net input reaches (or exceeds) the unit’s threshold T:

If neuron is firing, then its output y is 1, otherwise it is 0.

g is the unit step function:

Weights wij represent the strength of the synapse between neuron j and neuron i

wjj∑ I j

y = g wj
j
∑ I j −T
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

g(x) = 0 if x < 0
1 if x ≥ 0

⎧
⎨
⎩

Network	Topologies	and	Architectures	
	

•  Feedforward	only	vs.	Feedback	loop	(Recurrent	networks)	
•  Fully	connected	vs.	sparsely	connected	
•  Single	layer	vs.	multilayer	
	
																	Multilayer	perceptrons,	Hopfield	networks,	
																	Boltzman	machines,	Kohonen	networks,	…	

	
	
	
	
	
	
	
	
	
	
																																										(a)	A	feedforward	network	and	(b)	a	recurrent	network	

	 					
	 												
	 	 		

	

Neural	Networks	for	Classification	

A	neural	network	can	be	used	as	a	classification	device	.	

	

	Input	 			≡					features	values			

	Output				≡					class	labels	

		

Example	:																						3	features	,		2	classes	

Thresholds	

We	can	get	rid	of	the	thresholds	associated	to	neurons	by	adding	an		

extra	unit	permanently	clamped	at	-1	(or	+1).	

	

In	so	doing,	thresholds	become	weights	and	can	be	adaptively	adjusted				

during	learning.		

The	Perceptron		

A	 network	 consisting	 of	 one	 layer	 of	 M&P	 neurons	 connected	 in	 a	
feedforward	way		(i.e.	no	lateral	or	feedback	connections).	

	

			

		

	

	

	

	

	

•  Discrete	output	(+1	/	-1)	

•  Capable	of	“learning”	from	examples	(Rosenblatt)	

•  They	suffer	from	serious	computational	limitations	

Decision	Regions	

It’s	an	area	wherein	all	examples	of	one	class	fall.	

	

Examples:		

	

			

		

	

	

	

	

	

	

	

	

Linear	Separability	

A	classification	problem	is	said	to	be	linearly	separable	if	the	decision	regions	
can	be	separated	by	a	hyperplane.	

	

Example: 	AND	

	

	

		

	

	

	

	

	

	

	

	

X Y X AND Y

0 0 0

0 1 0

1 0 0

1 1 1

Limitations	of	Perceptrons	

It	has	been	shown	that	perceptrons	can	only	solve	linearly	separable		

problems.	

	

Example: 	XOR				(exclusive	OR)	

	

	

		

	

	

	

	

	

	

	

	

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

A	View	of	the	Role	of	Units	

Multi–Layer	Feedforward	Networks	

•  Limitation	of	simple	perceptron:	can	implement	only	linearly	separable	
functions	

	
•  Add	“	hidden”	layers	between	the	input	and	output	layer.	A	network	

with	just	one	hidden	layer	can	represent	any	Boolean	functions	including	
XOR	

	
•  Power	of	multilayer	networks	was	known	long	ago,	but	algorithms	for	

training	or	learning,	e.g.	back-propagation	method,	became	available	
only	recently	(invented	several	times,	popularized	in	1986)	

	
•  Universal	approximation	power:	Two-layer	network	can	approximate	

any	smooth	function		(Cybenko,	1989;	Funahashi,	1989;	Hornik,	et	al..,	
1989)	

	
•  Static	(no	feedback)	

	

	

Sigmoid	(or	logistic)	

Continuous-Valued	Units	

Continuous-Valued	Units	

Hyperbolic	tangent	

Back-propagation	Learning	Algorithm	
	

•  An	algorithm	for	learning	the	weights	in	a	feed-forward	network,	
	given	a	training	set	of	input-output	pairs	

•  The	algorithm	is	based	on	gradient	descent	method.	
	

	
	
	
	
	
	
	
	
	
	

	 												
	 	 		

	

Supervised	Learning	

Supervised	 learning	 algorithms	 require	 the	 presence	 of	 a	 “teacher” who	
provides	the	right	answers	to	the	input	questions.	

		

Technically,	this	means	that	we	need	a	training	set	of	the	form	

	

	

			

		

where	:	

	

	 	 	 	is	the	network	input	vector	

	

	 	 	 	is	the	desired	network	output	vector	

	 		

L = x1, y1() , x p, y p(){ }

xµ µ =1…p()

yµ µ =1…p()

Supervised	Learning	

The	 learning	 (or	 training)	phase	consists	of	determining	a	 configuration	of	
weights	in	such	a	way	that	the	network	output	be	as	close	as	possible	to	the	
desired	output,	for	all	the	examples	in	the	training	set.	

	

Formally,	this	amounts	to	minimizing	an	error	function	such	as	(not	only	
possible	one):	

	

	

			

		

		

where	Ok
μ	is	the	output	provided	by	the	output	unit	k	when	the	network	is	

given	example	μ	as	input.	

E =
1
2 k

∑
µ

∑ yk
µ −Ok

µ()
2

Back-Propagation	
To	minimize	the	error	function	E	we	can	use	the	classic		gradient-
descent	algorithm:	

	
	
	

To	compute	the	partial	derivates	we	use	the	error	back	propagation	
algorithm.	

		
It	consists	of	two	stages:	
	

	Forward	pass	:					the	input	to	the	network	is	propagated	
	 	 	layer	after	layer	in	forward	direction	

	
	Backward	pass	:			the	“error”	made	by	the	network	is		
	 	 	propagated	backward,	and	weights		
	 	 	are	updated	properly	
	 	 		

	
	

 η = “learning rate”

	
Error	Back-Propagation	

	

Locality of Back-Prop

The Back-Propagation Algorithm

The Back-Propagation Algorithm

The Role of the Learning Rate

The Momentum Term
Gradient descent may:

•  Converge too slowly if η is too small
•  Oscillate if η is too large

Simple remedy:

The momentum term allows us to use large values of η thereby avoiding
oscillatory phenomena

 Typical choice: α = 0.9, η = 0.5

The Momentum Term

The Problem of Local Minima

Back-prop cannot avoid local minima.

Choice of initial weights is important.

If they are too large the nonlinearities
tend to saturate since the beginning of
the learning process.

Theoretical / Practical Questions

§  How many layers are needed for a given task?

§  How many units per layer?

§  To what extent does representation matter?

§  What do we mean by generalization?

§  What can we expect a network to generalize?

•  Generalization: performance of the network on data not
included in the training set

•  Size of the training set: how large a training set should be for
“good” generalization?

•  Size of the network: too many weights in a network result in
poor generalization

True vs Sample Error

The true error is unknown (and will remain so forever…).
On which sample should I compute the sample error?

Training vs Test Set

Cross-validation

Leave-one-out: using as many test folds as there are examples (size of test fold = 1)

Model	selection	

Early Stopping

•  The size (i.e. the number of hidden units and the number of weights)
of an artificial neural network affects both its functional capabilities
and its generalization performance

•  Small networks could not be able to realize the desired
input / output mapping

•  Large networks lead to poor generalization performance

Size Matters

