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Images as graphs

Node for every pixel

Edge between every pair of pixels (or every pair of
“sufficiently close” pixels)

Each edge is weighted by the affinity or similarity of the
two nodes

Source: S. Seitz



Graph-theoretic segmentation

* Represent tokens using a weighted graph.

— affinity matrix

e Cut up this graph to get subgraphs with strong interior links




Graphs and matrices

00000000

900000000
000000000

Source: D. Sontag









Measuring affinity

« Suppose we represent each pixel by a feature vector
X, and define a distance function appropriate for this
feature representation

« Then we can convert the distance between two
feature vectors into an affinity with the help of a
Gaussian kernel:

|
20

exp| - — dist(xl.,xj)z)



Scale affects affinity

« Small o: group only nearby points
« Large o: group far-away points
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Eigenvector-based clustering

Let us represent a cluster using a vector X whose k-th entry captures the
participation of node k in that cluster. If a node does not participate in a
cluster, the corresponding entry 1s zero.

We also impose the restriction that x’x = 1

We want to maximize:

n

n
E E WijXiXj = X7 Ax

i=1 j=1

which 1s a measure for the cluster’s cohesiveness.

This is an eigenvalue problem!
Choose the eigenvector of A with largest eigenvalue



Example eigenvector
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More than two segments

e Two options

— Recursively split each side to get a tree, continuing till the
eigenvalues are too small

— Use the other eigenvectors
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Segmentation by eigenvectors:
Algorithm

Construct (or take as input) the affinity matrix A
Compute the eigenvalues and eigenvectors of A
Repeat
Take the eigenvector corresponding to the largest unprocessed eigenvalue
Zero all components corresponding to elements that have already been clustered

Threshold the remaining components to determine which elements belong to
this cluster

If all elements have been accounted for, there are sufficient clusters

Until there are sufficient clusters



Segmentation as graph partitioning

Let G=(V, E, w) a weighted graph.

Given a “cut” (A, B), with B =V'\ A, define:

cut(A,B)= Y ¥ w(i, )

iCA jEB

Minimum Cut Problem

Among all possible cuts (A, B),
find the one which minimizes cut(A, B)




Segmentation as graph partitioning
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MinCut clustering

Good news
Solvable in polynomial time

Bad news
Favors highly unbalanced clusters (often with isolated vertices)
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Graph terminology

Degree of nodes

g.= Zw,._j
r

40 62 8c 100 120 140

Volume of a set

vol(A) = Zd,.,A cV

ieA

Adapted from D. Sontag



Normalized Cut

| 1
Neur(4,B) = cur(4, )I\IVOZ(A)jWE-).‘)

Adapted from D. Sontag



Graph Laplacian (unnormalized)

Defined as

h
1

D-W

Example:

(2—1—100
-1 4 -1 -1 -1
-1 -1 4 0 -1
0o -1 0 1 0
0O -1 -1 0 3
\0 0O -1 0 -1

Assume the weights of edges are +




Key fact

For all vectors f in R”, we have:

FTLf =5 3 wylfi— £5)?

19=1

Indeed:

f'Lf = f'Df-f'Wf

2
= Zdifi _Zfi.fjwij

1 E
= 5 (E E wii ) ff — 2 g fifjwi; + E wij) f7)
L]



Properties

L is symmetric (by assumption) and positive semi-definite:
fLf=0

for all vectors f (by “key fact™)

Smallest eigenvalue of L is 0; corresponding eigenvector is 1

Thus eigenvalues are: 0 =A, <A, <.. <A,

First relation between spectrum and clusters:

Multiplicity of eigenvalue A, = 0 is the number of connected
components of the graph

eigenspace 1s spanned by the characteristic functions of these
components (so all eigenvectors are piecewise constant)



Normalized graph Laplacians

e Row sum (random walk) normalization:

L, =D'L
=[-D'W

e Symmetric normalization:

L = D121 D12
sym
[-D'WD'”?

Spectral properties of both matrices similar to the ones of L.



Solving Ncut

Any cut (A, B) can be represented by a binary indicator vector x:

i

_] +1 ifti€A
-1 ifieB
Rayleigh quotient
It can be shown that: yielga d

min Ncut(x) = miné
: Y Yy Dy

subject to the constraint that y’D1 =3 . y,d. = 0 (with y,e{1, -b}).

This 1s NP-hard!



Ncut as an eigensystem

If we relax the constraint that y be a discrete-valued vector and allow it to
take on real values, the problem

y y'Dy

is equivalent to:

miny'(D-W)y subjectto y'Dy=1
y

This amounts to solving a generalized eigenvalue problem:

Note: Equivalent to a standard eigenvalue problem using the normalized
Laplacian: L., = D'L = I -D'W.



2-way Ncut

Compute the affinity matrix W, compute the degree matrix D
Solve the generalized eigenvalue problem (D — W)y = ADy

Use the eigenvector associated to the second smallest eigenvalue to
bipartition the graph into two parts.

Why the second smallest eigenvalue?
Remember, the smallest eigenvalue of Laplacians is always 0
(corresponds to the trivial partition A=V, B ={})
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Fig. 5. (a) Point set generated by two Poisson processes, with densities of 2.5 and 1.0 on the left and right clusters respectively, (b) /. and x indicate
the partition of point set in (a). Parameter settings: oy = 5, r = 3.



The effect of relaxation

Ideal solution
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How to choose the splitting point?

* Pick a constant value (0 or 0.5)
*  Pick the median value as splitting point

* Look for the splitting point that has
minimum Ncut value:

1. Choose n possible splitting points
2. Compute Ncut value
3. Pick minimum



Random walk intepretation

Problem: Finding a cut (A, B) in a graph G such that a random walk does
not have many opportunities to jump between the two clusters.

This 1s equivalent to the Ncut problem due to the following relation:

Ncut(A, B) = P(A | B) + P(B | A)

(Meila and Shi, 2001)



Ncut: More than 2 clusters

Approach #1: Recursive two-way cuts

1. Given a weighted graph G = (V, E, w), summarize the information into
matrices Wand D

2. Solve (D — W)y = ADy for eigenvectors with the smallest eigenvalues

3. Use the eigenvector with the second smallest eigenvalue to bipartition the
graph by finding the splitting point such that Ncut is minimized

4. Decide if the current partition should be subdivided by checking the stability of
the cut, and make sure Ncut is below the prespecified value

5. Recursively repartition the segmented parts if necessary

Note. The approach is computationally wasteful; only the second eigenvector is used, whereas
the next few small eigenvectors also contain useful partitioning information.



Ncut: More than 2 clusters

Approach #2: Using first k eigenvectors

1. Construct a similarity graph and compute the unnormalized graph
Laplacian L.

2. Compute the k£ smallest generalized eigenvectors uq, us, - -+, up of
the generalized eigenproblem Lu = ADu.

3. Let U = [uy us ---uk]ER”X’“.

4. Let y; € R be the vector corresponding to the ith row of U.

_ - - -
uip U2 ot Uik Y1
T
U1 U2 -+ Uk Yo
U p— p— .
T
i Up1 Up2 - Unk | B Yn i

5. Thinking of v;’s as points in R¥, cluster them with k-means algorithms.



Fig. 2. A gray level image of a baseball game.



() (h) (i)
Fig. 3. Subplot (a) plots the smallest eigenvectors of the generalized eigenvalue system (11). Subplots (b)-(i) show the eigenvectors corresponding
the second smallest to the ninth smallest eigenvalues of the system. The eigenvectors are reshaped to be the size of the image.
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Fig. 4. (a) shows the original image of size 80 x 100. Image intensity is normalized to lie within 0 and 1. Subplots (b)-(h) show the components of the
partition with Ncut value less than 0.04. Parameter setting: o; = 0.1, oy = 4.0, r = 5.



(b)-(g) show the components of the partition with Ncut value less than 0.08. Parameter setting:

Fig. 8. (a) shows a 126 x 106 weather radar image.

= 15.0, r = 10.

a,

-
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o = 0.00



(e) (f) (9) (h)

Fig. 10. (a) shows an image of a zebra. The remaining images show the major components of the partition. The texture features used correspond to
convolutions with DOOG filters [16] at six orientations and five scales.



Spectral clustering

. Construct a similarity graph and compute the normalized graph
Laplacian Lgym, .

. Compute the k smallest eigenvectors wuy, uz, -+, ug of Lgym,.
. Let U =[ujuy - up ] € RP¥F,

. Normalized the rows of U to norm 1.
U,
(Zk Uz'2k;)1/ 2

Uz’j <

. Let y; € R* be the vector corresponding to the ith row of U.

. Thinking of y;’s as points in R”, cluster them with k-means algorithms.

Ng, Jordan and Weiss (2002)



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with
non-convex boundaries.
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Adapted from A. Singh



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with

non-convex boundaries.

Points of two clusters
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K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with
non-convex boundaries.

Similarity matrix
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Examples (choice of k)

threecrcles—joined, 2 clusters




Choosing &

The eigengap heuristic: Choose & such that all eigenvalues A,"--, A, are
very small, but A, is relatively large

Histogram of the sample
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Four 1D Gaussian clusters with increasing variance and corresponding eigevalues of L, (von Luxburg, 2007).
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Clustering on Graphs

Given:
- a set of n “objects”

J_ o _ ,§=_ an edge-weighted graph
- an n x n matrix A of pairwise simil)irities

Goal: Group the the input objects (the vertices of the
graph) into maximally homogeneous classes (i.e.,
clusters).

0.1 - ____1
2 N /4 \2
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What is a Cluster?

No universally accepted (formal) definition of a “cluster”
but, informally, a cluster should satisfy two criteria:

Internal criterion
all “objects” inside a cluster should be highly similar to
each other

External criterion

all “objects” outside a cluster should be highly dissimilar
to the ones inside

How to formalize these criteria?



Basic Definitions

Let S € V be a non-empty subset of vertices, and
IE€S.

The (average) weighteol degree of iw.rt. Sis

fin - awdeg (i) =— }
defined as g(i) lSleESaU

Moreover, if j ¢ S, we i
define:
0,(i.j)=a, - awdeg, (i) S

Intuitively, @¢(i,j) measures the similarity between

vertices j and i, with respect to the (average) similarity
hatween vertey /1 and ite neinhbare in <



Basic Definitions

Let S € V be a non-empty subset of vertices, and

IES.

The weight olf iw.rt Sis definediﬂ§‘:=1
w(i) =1 E(pS (7, z)ws_{i}( j) otherwise

]ES

Further, the total weight of S is
defined as:

W(S)= Y wy(i)

€S




Interpretation

Intuitively, wg(/) gives us a measure of the overall
(relative) similarity between vertex i and the vertices of
S \ {i} with respect to the overall similarity among the

vertices in S\ {i}.

Wit 234(1) <0 Wy 234(1) >0



Dominant Sets
Let S € V be a subset of vertices of a graph G and i€ S.

Define a measure for the similarity between vertex i and
the vertices of S \ {i} with respect to the overall internal
similarity of S\ {i}.

Call it wg(i).
S is said to be a dominant set if:

1. wg(i) > 0, for all iES (internal ho

2. Wgyp(i) <0, foralli€ S (external homogengl

M. Pavan and M. Pelillo. Dominant sets and pairwise clustering (PAMI 2007)



Dominant Sets
Let S € V be a subset of vertices of a graph G and i€ S.
Define a measure for the similarity between vertex i and

the vertices of S \ {i} with respect to the overall internal
similarity of S\ {i}.

Call it wg(i). |
S is said to be a dominant set if: ;-.,IS o0 %
1. wg(i) > 0, for all i€ES (internal hoi | %

2. Wsyp(i) <0, foralli€ S (external homoger 304 "

M. Pavan and M. Pelillo. Dominant sets and pairwise clustering (PAMI 2007)



The Many Facets of Dominant Sets

Dominant sets have intriguing connections wth:

Game theory
Nash equilibria of “clustering games”

Optimization theory
Local maximizers of (continuous) quadratic
problems

Graph theory
Maximal cliques

Dynamical systems theory
Stable attractors of evolutionary game dynamics

See Rota Bulo and Pelillo (EJOR 2017) for a a review



Using Symmetric Affinities

Given a symmetric affinity matrix A, consider the following
continuous quadratic optimization problem (QP):

maximize  f(x) = x'Ax
subjectto  x € A

where A is the standard simplex (probability space).

The function f(x) provides a measure of cohesiveness of
a cluster.

I:)O_nce

Note. In the 0/1 case, dominant sets correspond to

mavimal ~clicainiac



Finding Dominant Sets

Replicator dynamics from evolutionary game theory
are a popular and principled way to find DS’s.

A0,

x(t+1)=x,(¢) O A

MATLAB
distancepippplementation

while distances>epsilon

old x=X; . .
Faster dynamics available!

X = X.*(A*X); (See Rota Bulo and Pelillo, 2017)

X = X./sum(Xx) ;

distance=pdist ([x,0ldx]");

end




Measuring Cluster Membership

The components of the converged vector x give us a
measure of the participation of the corresponding vertices
in the cluster, while the value of the objective function
measures the cluster’'s cohe -

Useful for ranking
the

elements in the :

cluster!




In a Nutshell

The dominant-set approach to clustering:

v does not require a priori knowledge on the number of
clusters

v" is robust against outliers

v" allows to rank the cluster’s elements according to
“‘centrality”

v" allows extracting overlapping clusters (ICPR’08)

v" generalizes naturally to hypergraph clustering problems
(PAMI’13)

v makes no assumption on the structure of the similarity
matrix, (works also with asymmetric and even neqgative



Some Computer Vision Applications

* Image and video segmentation
* Anomaly detection

* Video summarization

« Feature selection

* Image matching and registration
« 3D reconstruction

* Human action recognition

« Content-based image retrieval

But also in neuroscience, bioinformatics, medical image analysis, etc.
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F-formations

“Whenever two or more individuals in close proximity orient their bodies
in such a way that each of them has an easy, direct and equal access to
every other participant’s transactional segment”

Ciole£< & Kendon (1980)




System Architecture

Kr [
11 |
i )
‘ ............ o

Persons as Frustum of = - . Affinity matrix based P Game theoretic Game theoretic

Q il ittiiticn — o Binned scene 2D hist o I.T.tymeasures ° smoothing o clustering

: Temporal Grou

Frames Feature extraction . P . p

Integration extraction

Frustrum of visual attention

= A person in a scene is described by his/her position (x,y) and the head
orientation 0

= The frustum represents the area in which a person can sustain a conversation
and is defined by an aperture and by a length



7

Spectral
Clustering

Results

CoffeeBreak (S1+S2) PosterData Gdet
Method * Prec Rec F1 Prec Rec F1 Prec Rec F1
IRPM [61],[22] 0.60 0.41 0.49 — — — — — —
HFF [22] 0.82 0.83 0.82 0.93 0.96 0.94 0.67 0.57 0.62
DS (6], [22])x 0.68 0.65 0.66 0.93 0.92 0.92 = = =
MULTISCALE [46] 0.82 0.77 0.80 - — — - — —
GTCG [47] KL 0.80 0.84 0.82 0.90 0.94 0.92 0.76 0.75 0.75
GTCG [47]]S 0.83 0.89 0.86 0.92 0.96 0.94 0.76 0.76 0.76
R-GTCG SC 0.52 0.59 0.55 0.26 0.27 0.26 0.75 0.75 0.75
R-GTCG 0.86 0.88 0.87 0.92 0.96 0.94 0.76 0.76 0.76
o=0.2,l=145 o=025,l=115 o=071=180
Cocktail Party Synth
Method Prec Rec F1 Prec Rec F1
IRPM [22,61] - — —_ 0.71 0.54 0.61
HFF ( [7], [46] ) 0.59 0.74 0.66 0.73 0.83 0.78
MULTISCALE [46] 0.69 0.74 0.71 0.86 0.94 0.90
GTCG [47] KL 0.85 0.81 0.83 1.00 1.00 1.00
GTCG [47]]S 0.86 0.82 0.84 1.00 1.00 1.00
R-GTCG SC Q.77 0.72 0.74 0.40 0.90 0.56
0=06,1=170 0=01 ,1=75
R-GTCG 0.87 0.82 0.84 1.00 1.00 1.00




Results

Qualitative results on the CoffeeBreak dataset compared with the state of the art HFF.

Yellow = ground truth
Green = our method
Red = HFF.
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Dominant Sets for “Constrained” Image
Segmentation

Eyasu Zemene *, Member, IEEE, Leulseged Tesfaye Alemu *, Member, IEEE
and Marcello Pelillo, Fellow, IEEE

Abstract—Image segmentation has come a long way since the early days of computer vision, and still remains a challenging task.
Modern variations of the classical (purely bottom-up) approach, involve, e.g., some form of user assistance (interactive segmentation)
or ask for the simultaneous segmentation of two or more images (co-segmentation). At an abstract level, all these variants can be
thought of as “constrained” versions of the original formulation, whereby the segmentation process is guided by some external source
of information. In this paper, we propose a new approach to tackle this kind of problems in a unified way. Our work is based on some
properties of a family of quadratic optimization problems related to dominant sets, a graph-theoretic notion of a cluster which
generalizes the concept of a maximal clique to edge-weighted graphs. In particular, we show that by properly controlling a
regularization parameter which determines the structure and the scale of the underlying problem, we are in a position to extract groups
of dominant-set clusters that are constrained to contain predefined elements. In particular, we shall focus on interactive segmentation
and co-segmentation (in both the unsupervised and the interactive versions). The proposed algorithm can deal naturally with several
types of constraints and input modalities, including scribbles, sloppy contours and bounding boxes, and is able to robustly handle noisy
annotations on the part of the user. Experiments on standard benchmark datasets show the effectiveness of our approach as
compared to state-of-the-art algorithms on a variety of natural images under several input conditions and constraints.

Index Terms—Interactive segmentation, co-segmentation, dominant sets, quadratic optimization, game dynamics.

+




Constrained Dominant Sets

Given S C V and a parameter a > 0, define the following
parameterized family of quadratic programs:

maximize f3(x) = x'(A - alg)x
subjectto x € A

where [ is the diagonal matrix whose elements are set
to 1 in correspondence to the vertices outside S, and to
zero otherwise:
o — ( i 0 )
0 I

Property. By setting:
a > )\Ill&X<AV\S>

all local solutions will have a support containing elements
nf



Interactive Image Segmentation

Given an image and some information provided by a
user, in the form of a scribble or of a bounding box, to
provide as output a foreground object that best reflects
the user’s intent

Scribble
on FG

Scribble
with error

RIRIRIE)



System Overview

Labeled Regions
(Constraint Set) S VI\S RRp
il M, X m
I i =
=3 -
| Scale the Affinity | 5
ie M=A-aig =
S
Unlabeled “ = Update M, x

Corresponding affinity = A
Over-Segments

Left: Over-segmented image with a user scribble (blue label).

Middle: The corresponding affinity matrix, using each over-segments as a node, showing its two
parts: S, the constraint set which contains the user labels, and V n S, the part of the graph which
takes the regularization parameter .

Right: RRp, starts from the barycenter and extracts the first dominant set and update x and M, for
the next extraction till all the dominant sets which contain the user labeled regions are extracted.



Results

Table 1. Error rates of different Table 2. Jaccard index of different
scribble-based approaches on the Grab- approaches — first 5 bounding-box-
Cut dataset based — on Berkeley dataset
Methods Error rate Methods Jaccard index
Graph Cut [7] 6.7 MILCut-Struct [3] 84
Lazy Snapping [5] 6.7 MILCut-Graph [3] 83
Geodesic Segmentation [4] 6.8 MILCut [3] 78
Random Walker [33] 5.4 Graph Cut [1] o
Transduction [34] 5.4 Binary Partition Trees [35] |71
Geodesic Graph Cut [30] 4.8 Interactive Graph Cut [7] |64
Constrained Random Walker [31] 4.1 Seeded Region Growing [36] | 59
CDS_Self Tuning (Ours) 3.57 Simple Interactive O.E [37] |63
CDS_Single Sigma (Ours) 3.80 CDS_Self Tuning (Ours) 93
CDS_Best Sigma (Ours) 2.72 CDS_Single Sigma (Ours) 93
CDS_Best Sigma (Ours) 95
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Large-scale Image Geo-Localization
Using Dominant Sets

Eyasu Zemene*, Student Member, IEEE, Yonatan Tariku Tesfaye®, Student Member, IEEE,
Haroon Idrees, Member, IEEE, Andrea Prati, Senior member, IEEE, Marcello Pelillo, Fellow, IEEE,
and Mubarak Shah, Fellow, IEEE

Abstract—This paper presents a new approach for the challenging problem of geo-localization using image matching in a structured
database of city-wide reference images with known GPS coordinates. We cast the geo-localization as a clustering problem of local
image features. Akin to existing approaches to the problem, our framework builds on low-level features which allow local matching
between images. For each local feature in the query image, we find its approximate nearest neighbors in the reference set. Next, we
cluster the features from reference images using Dominant Set clustering, which affords several advantages over existing approaches.
First, it permits variable number of nodes in the cluster, which we use to dynamically select the number of nearest neighbors for each
query feature based on its discrimination value. Second, this approach is several orders of magnitude faster than existing approaches.
Thus, we obtain multiple clusters (different local maximizers) and obtain a robust final solution to the problem using multiple weak
solutions through constrained Dominant Set clustering on global image features, where we enforce the constraint that the query image
must be included in the cluster. This second level of clustering also bypasses heuristic approaches to voting and selecting the reference
image that matches to the query. We evaluate the proposed framework on an existing dataset of 102k street view images as well as a
new larger dataset of 300k images, and show that it outperforms the state-of-the-art by 20% and 7%, respectively, on the two datasets.

Index Terms—Geo-localization, Dominant Set Clustering, Multiple Nearest Neighbor Feature Matching, Constrained Dominant Set
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Image Geo-localization

A new approach for the problem of geo-localization using
image matching in a structured database of city-wide
reference images with known GPS coordinates.

1 DS,

e g

g?ﬂ:fiﬂ!! - |
DS3

DSC based feature
matching

Query Image Local feature
(SIFT) extraction

Dynamic NN selection NN Pruning
for each query feature

| 20.439 -80.004 |_

Approximate the location e
Based of the location of Best matching
The best matching reference reference image

Post-Processing using constraint Dominant sets

200x time faster + 20% accuracy improvement w.r.t
previous approach



Datasets:

« Datasets one:
* Reference images:
* 102K Google street view images from Pittsburgh,
PA and Orlando, FL
» Test Set:
« 521 GPS-Tagged unconstrained images
* Downloaded From Flickr, Panoramio, Picasa, ...

 WorldCities Datasets (NEW)*:

« Reference images:

+ 300K Google street view images
« 14 different cities from Europe, N. America and
Australia

« Test Set:
« 500 GPS-Tagged unconstrained images
 Downloaded From Flickr, Panoramio, Picasa, ...




Google Maps Street View Datasets:

For each location: 4 side views and 1 top view is collected

Side Views

Pittsburgh, PA Longitude =

AN ANATARAC T atitinda—_QN NNTO



Overall Result

e Dataset 1: 102K Google street view images (Orlando and Pittsburg area)
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Overall Result

* Dataset 2: WorldCities (14 different cities from Europa, North America, Australia)
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Computational Time
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Qualitative Results

Match — Error: 10.4 m




Multi-Target Tracking in Multiple Non-Overlapping Cameras
using Fast-Constrained Dominant Sets

Yonatan Tariku Tesfaye « Eyasu Zemene + Andrea Prati - Marcello

Pelillo «+ Mubarak Shah

Submitted



Person Re-identification

* Recognize an individual over different non-overlapping
cameras.

» Given a gallery of person images we want to recognize
(between all of them) a new observed image, called probe.




Video-based Person Re-ID

Probe

AR
) )} ] ';‘..' l\ ']i

RPN

) S
Gallery

Traditional methods focus on:
« Building better feature representation of objects
« Building a better distance metric

« Finally rank images from gallery based on the
pairwise distances from the query

In our approach
« We use standard features and distance metric
« Extract constrained dominant sets for each query

* Perform ranking over shortlisted clips NOT over the
whole set

We take into account both the relationship between query
and elements in the gallery and elements in the gallery.



Re-ID with Constrained DS’s

Probe Constrained DS’s Final Rank

\ L] | | /
Gallery

CNN features with XQDA metric used to compute the edge weights



Results on MARS Dataset

Methods rank 1
: HLBP [40] + XQDA 18.60
Largest video Re-ID dataset BCov [21] + XQDA 990

(2016)
* 6 near-synchronized cameras
1,261 identities

LOMO [20] + XQDA | 30.70
BoW [40] + KISSME | 30.60

- 3,248 distractors SDALF [8] + DVR 4.10
« tracklets are of 25-30 frames long HOG3D [16] + KISSME | 2.60
CNN + XQDA [&5] 530
CNN + KISSME [48] | 65.00
Ours 68.22

[8] M. Farenzena et al. Person re-identification by symmetry-driven accumulation of local features (CVPR 2010)
[16] A. Klaser et al. A spatio-temporal descriptor based on 3D-gradients (BMVC 2008)
[20] S. Liao et al. Person re-identification by local maximal occurrence representation and metric learning (CVPR 2015)
[24] B. Ma et al. Covariance descriptor based on bio-inspired features for person re-identification and face verification (Image Vision Comput 2014)
[40] F. Xiong et al. Person re-identification using kernel-based metric learning methods (ECCV 20714)
[48] L. Zheng et al. MARS: A video benchmark for large-scale person re-identification (ECCV 2016)
[49] L. Zheng et al. Scalable person re-identification: A benchmark (/ICCV 2015)



Examples

Gallery

AN S L S
. . s &

The green and red boxes denote the same and different persons with the probes, respectively
Gallery images are ordered based on their membership score (highest -> lowest).



Multi-target Multi-camera Tracking

Camera 1

.

Camera 3
Camera 3

Camera 2

£

Camera 2

Within-camera tracking Cross-camera tracking



Pipeline

Camera 1 Human First layer Second layer Third layer
Detection

Short tracklets

CDSC Tracks

Segment 06

Human
Camera n Detection

Short tracklets Tracklets

Tracks Across
Cameras

Segment 06 Segment 10




Layer 1: Tracklet Extraction

Short Tracklets

Edge weights combine appearance and motion
« Appearance = CNN features
* Motion = Constant velocity
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Short Tracklets Tracklets

Edge weights combine appearance and motion
« Appearance = CNN features
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Short Tracklets Tracklets

Edge weights combine appearance and motion
« Appearance = CNN features
* Motion = Constant velocity



Layer 1: Tracklet Extraction

Short Tracklets Tracklets

Edge weights combine appearance and motion
« Appearance = CNN features
* Motion = Constant velocity



Layer 2: Track Extraction

Short Tracklets Tracklets

Another data association problem
Nodes become tracklets
CDSC is used to stitch tracklets
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Track Extracti

Layer 2

Tracklets

Short Tracklets

Another data association problem

Nodes become tracklets

Tracks

CDSC is used to stitch tracklets




Layer 2: Track Extraction

Short Tracklets

Tracks Another data association problem

Nodes become tracklets
CDSC is used to stitch tracklets



Layer 2: Track Extraction

Short Tracklets

Tracks Another data association problem

Nodes become tracklets
CDSC is used to stitch tracklets



Layer 2: Track Extraction

Short Tracklets

Tracks Another data association problem

Nodes become tracklets
CDSC is used to stitch tracklets



Within-Camera Tracking

Short Tracklets
(Overlap Constraint)

Tracklets Final Tracks
(CDSC) v i (CDSC)




Layer 3: Cross-Camera Association

Camera 3

Tracks are nodes
Cameras as constraints



Layer 3: Cross-Camera Association

Camera 3

Tracks are nodes
Cameras as constraints



Layer 3: Cross-Camera Association

Camera 3

Tracks are nodes
Cameras as constraints



Results on DukeMTMC

« Largest MTMC dataset (2016)

» 8 fixed synchronized cameras

 More than 2 million frames

« 0 to 54 persons per frame
« 2,700 Identities

Methods | IDF11 | IDPt | IDR?

| B3 173 | 596 | 302
M%E;iife‘a 26 320 | 43 | 273
Y Ows | 50.0 | 63.2 | 42.6
Methods | IDF14 | IDPt | IDR?

— | B3 562 | 670 | 484
1\‘[¥ltﬁa“1§1a %] | 349 | 416 | 301
et Ours | 60.0 | 68.3 | 53.5

IDP = Fraction of computed detections that are correctly identified
IDR = Fraction of ground-truth detections that are correctly identified

IDF1 = Ratio of correctly identified detections over the average number of ground-truth and

computed detections

[33] E. Ristani et al. Performance measures and a data set for multi-target multi-camera tracking (ECCV 2016)

[26] A. Maksai et al. Non-Markovian globally consistent multi-object tracking (/CCV 2017)
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Conclusions

Dominant sets and related concepts shown to be a
powerful notion for attacking a variety of computer vision
problems, e.g.,

* Interactive image segmentation and cosegmentation
Geo-localization

Group detection in image and videos

Person re-identification

Multi-target tracking

On-going work focuses on combining deep learning and
DS’s for improving performances.
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