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Images as graphs 

•  Node for every pixel 
•  Edge between every pair of pixels (or every pair of 

“sufficiently close” pixels) 
•  Each edge is weighted by the affinity or similarity of the 

two nodes 
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Source: S. Seitz 



Graph-theoretic segmentation
•  Represent tokens using a weighted graph.

–  affinity matrix

•  Cut up this graph to get subgraphs with strong interior links



Graphs and matrices

Source: D. Sontag 







Measuring affinity 

•  Suppose we represent each pixel by a feature vector 
x, and define a distance function appropriate for this 
feature representation 

•  Then we can convert the distance between two 
feature vectors into an affinity with the help of a 
Gaussian kernel: 
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Scale affects affinity 
•  Small σ: group only nearby points 
•  Large σ: group far-away points 



Eigenvector-based clustering

Let us represent a cluster using a vector x whose k-th entry captures the 
participation of node k in that cluster. If a node does not participate in a 
cluster, the corresponding entry is zero. 

We also impose the restriction that xTx = 1

We want to maximize: 

which is a measure for the cluster’s cohesiveness.

This is an eigenvalue problem!
Choose the eigenvector of A with largest eigenvalue



Example eigenvector
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More than two segments

•  Two options
–  Recursively split each side to get a tree, continuing till the 

eigenvalues are too small
–  Use the other eigenvectors



Segmentation by eigenvectors: 
Algorithm

1. Construct (or take as input) the affinity matrix A 
2. Compute the eigenvalues and eigenvectors of A
3. Repeat
4. Take the eigenvector corresponding to the largest unprocessed eigenvalue
5. Zero all components corresponding to elements that have already been clustered
6. Threshold the remaining components to determine which elements belong to 

this cluster
7. If all elements have been accounted for, there are sufficient clusters
8. Until there are sufficient clusters



Segmentation as graph partitioning

cut(A, B) = w(i, j)
j∈B
∑

i∈A
∑

Minimum Cut Problem

Among all possible cuts (A, B),
find the one which minimizes cut(A, B)

Let G=(V, E, w) a weighted graph.

Given a “cut” (A, B), with B =V \ A, define:

A
B



Segmentation as graph partitioning



MinCut clustering

Bad news
     Favors highly unbalanced clusters (often with isolated vertices)

Good news
     Solvable in polynomial time



Graph terminology

Adapted from D. Sontag

Degree of nodes

Volume of a set



Normalized Cut

Ncut(A, B) = cut(A, B) 1
vol(A)
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Graph Laplacian (unnormalized)
Defined as

L = D – W

Example:

Assume the weights of edges are 1	



Key fact
For all vectors  f  in Rn, we have: 

 

 

Indeed: 



Properties

•  L is symmetric (by assumption) and positive semi-definite:

f’L f  ≥ 0 

for all vectors f  (by “key fact”)

•  Smallest eigenvalue of L is 0; corresponding eigenvector is 1

•  Thus eigenvalues are:  0 = λ1 ≤ λ2 ≤ ... ≤ λn

First relation between spectrum and clusters:

•  Multiplicity of eigenvalue λ1 = 0 is the number of connected 
components of the graph

•  eigenspace is spanned by the characteristic functions of these 
components (so all eigenvectors are piecewise constant)



Normalized graph Laplacians

•  Row sum (random walk) normalization:

       Lrw  =  D−1 L

=  I – D−1 W

•  Symmetric normalization:

     Lsym  =  D−1/2 L D−1/2

=  I – D−1 W D−1/2

Spectral properties of both matrices similar to the ones of L.



Solving Ncut
Any cut (A, B) can be represented by a binary indicator vector x:

min
x

Ncut(x) = min
y

y '(D−W )y
y 'Dy

xi = +1 if i ∈ A
−1 if i ∈ B

⎧
⎨
⎩

This is NP-hard!

It can be shown that:

subject to the constraint that y’D1 = ∑i yi di = 0 (with yi∈{1, -b}).

Rayleigh quotient



Ncut as an eigensystem

Note: Equivalent to a standard eigenvalue problem using the normalized 
Laplacian: Lrw  =  D−1 L  =  I – D−1 W.

If we relax the constraint that y be a discrete-valued vector and allow it to 
take on real values, the problem

min
y

y '(D−W )y
y 'Dy

is equivalent to:

min
y

y '(D−W )y   subject to  y 'Dy =1

This amounts to solving a generalized eigenvalue problem:

(D−W )y = λDyLaplacian



2-way Ncut

1.  Compute the affinity matrix W, compute the degree matrix D

2.  Solve the generalized eigenvalue problem (D – W)y = λDy

3.  Use the eigenvector associated to the second smallest eigenvalue to 
bipartition the graph into two parts.

Why the second smallest eigenvalue?
Remember, the smallest eigenvalue of Laplacians is always 0

(corresponds to the trivial partition A = V, B = {})





The effect of relaxation

How to choose the splitting point?

•  Pick a constant value (0 or 0.5)

•  Pick the median value as splitting point

•  Look for the splitting point that has 
minimum Ncut value:

1.  Choose n possible splitting points
2.  Compute Ncut value
3.  Pick minimum



Problem: Finding a cut (A, B) in a graph G such that a random walk does 
not have many opportunities to jump between the two clusters.

This is equivalent to the Ncut problem due to the following relation:

Ncut(A, B) = P(A | B) + P(B | A)

(Meila and Shi, 2001)

Random walk intepretation



Approach #1: Recursive two-way cuts

1.  Given a weighted graph G = (V, E, w), summarize the information into 
matrices W and D

2.  Solve (D − W)y = λDy for eigenvectors with the smallest eigenvalues

3.  Use the eigenvector with the second smallest eigenvalue to bipartition the 
graph by finding the splitting point such that Ncut is minimized

4.  Decide if the current partition should be subdivided by checking the stability of 
the cut, and make sure Ncut is below the prespecified value

5.  Recursively repartition the segmented parts if necessary

Note. The approach is computationally wasteful; only the second eigenvector is used, whereas 
the next few small eigenvectors also contain useful partitioning information.

Ncut: More than 2 clusters



Ncut: More than 2 clusters
Approach #2: Using first k eigenvectors













Spectral clustering

Ng, Jordan and Weiss (2002)



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with 
non-convex boundaries.

Adapted from A. Singh
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Examples



Examples (choice of k)



Choosing k
The eigengap heuristic: Choose k such that all eigenvalues λ1,…, λk  are 
very small, but λk+1  is relatively large

 Four 1D Gaussian clusters with increasing variance and corresponding eigevalues of Lrw (von Luxburg, 2007).
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Clustering on Graphs 

Given: 
-  a set of n “objects” 
-  an n × n matrix A of pairwise similarities  
 
Goal: Group the the input objects (the vertices of the 
graph) into maximally homogeneous classes (i.e., 
clusters). 

= an edge-weighted graph 



What is a Cluster? 

No universally accepted (formal) definition of a “cluster” 
but, informally, a cluster should satisfy two criteria: 
 
Internal criterion 

 all “objects” inside a cluster should be highly similar to 
each other 

 
External criterion 

 all “objects” outside a cluster should be highly dissimilar 
to the ones inside 

 
 
 

How to formalize these criteria? 



Let S ⊆ V be a non-empty subset of vertices, and 
i∈S. 
 
The (average) weighted degree of i w.r.t. S is 
defined as: 
 
 

€ 

awdegS (i) =
1

| S |
aij

j∈S
∑

j i 

S

Moreover, if j ∉ S, we 
define: 
 φS (i, j) = aij −  awdegS (i)

Intuitively, ΦS(i,j) measures the similarity between 
vertices j and i, with respect to the (average) similarity 
between vertex i and its neighbors in S. 

Basic Definitions 



Let S ⊆ V be a non-empty subset of vertices, and 
i∈S. 
 
The weight of i w.r.t. S is defined as: 
 
 

€ 

wS (i) =
1 if S =1

φS− i{ }( j,i)wS− i{ }( j)
j∈S− i{ }
∑ otherwise

⎧ 
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S 
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S - { i } 

Further, the total weight of S is 
defined as: 
 
 

€ 

W (S) = wS (i)
i∈S
∑

Basic Definitions 



Intuitively, wS(i) gives us a measure of the overall 
(relative) similarity between vertex i and the vertices of 
S \ {i} with respect to the overall similarity among the 
vertices in S \ {i}.  

w{1,2,3,4}(1) < 0 w{1,2,3,4}(1) > 0 

Interpretation 



S is said to be a dominant set if: 
1. wS(i) > 0, for all i∈S   (internal homogeneity) 

2. wS∪{i}(i) < 0, for all i ∉ S  (external homogeneity) 

 

 

Let S ⊆ V be a subset of vertices of a graph G and i∈S. 
 
Define a measure for the similarity between vertex i and 
the vertices of S \ {i} with respect to the overall internal 
similarity of S \ {i}.  
 
Call it wS(i).  

Dominant Sets 

M. Pavan and M. Pelillo. Dominant sets and pairwise clustering (PAMI 2007) 

S

j

i
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Let S ⊆ V be a subset of vertices of a graph G and i∈S. 
 
Define a measure for the similarity between vertex i and 
the vertices of S \ {i} with respect to the overall internal 
similarity of S \ {i}.  
 
Call it wS(i).  

Dominant Sets 

M. Pavan and M. Pelillo. Dominant sets and pairwise clustering (PAMI 2007) 



Dominant sets have intriguing connections wth: 
 
•  Game theory 

 Nash equilibria of “clustering games” 

•  Optimization theory 
 Local maximizers of (continuous) quadratic 

problems 
•  Graph theory 

 Maximal cliques  

•  Dynamical systems theory 
 Stable attractors of evolutionary game dynamics 

 

The Many Facets of Dominant Sets 

See Rota Bulò and Pelillo (EJOR 2017) for a a review 



Given a symmetric affinity matrix A, consider the following 
continuous quadratic optimization problem (QP): 
 
 
 
where Δ is the standard simplex (probability space). 
 
The function ƒ(x) provides a measure of cohesiveness of 
a cluster.  
 
 
 

Dominant sets are in one-to-one correspondence  
to (strict) local solutions of QP 

Note. In the 0/1 case, dominant sets correspond to 
maximal cliques. 

 

Using Symmetric Affinities 



€ 

xi(t +1) = xi(t)
A x(t)( )i

x(t)T Ax(t)

MATLAB 
implementation 

Replicator dynamics from evolutionary game theory 
are a popular and principled way to find DS’s. 

Finding Dominant Sets 

Faster dynamics available! 
(See Rota Bulò and Pelillo, 2017) 



The components of the converged vector x give us a 
measure of the participation of the corresponding vertices 
in the cluster, while the value of the objective function 
measures the cluster’s cohesiveness. 

Measuring Cluster Membership 

Useful for ranking 
the 

elements in the 
cluster! 



The dominant-set approach to clustering: 

ü  does not require a priori knowledge on the number of 
clusters 

ü  is robust against outliers 

ü  allows to rank the cluster’s elements according to 
“centrality” 

ü  allows extracting overlapping clusters (ICPR’08) 

ü  generalizes naturally to hypergraph clustering problems 
(PAMI’13) 

ü makes no assumption on the structure of the similarity 
matrix, (works also  with asymmetric and even negative 
affinities) 

In a Nutshell 



•  Image and video segmentation 

•  Anomaly detection 

•  Video summarization 

•  Feature selection 

•  Image matching and registration 

•  3D reconstruction 

•  Human action recognition 

•  Content-based image retrieval 

•  … 

But also in neuroscience, bioinformatics, medical image analysis, etc. 

Some Computer Vision Applications 





F-formations	

“Whenever	two	or	more	individuals	in	close	proximity	orient	their	bodies	
in	such	a	way	that	each	of	them	has	an	easy,	direct	and	equal	access	to	
every	other	participant’s	transactional	segment”	
			

Ciolek	&	Kendon	(1980)	



System	Architecture	

Frustrum	of	visual	attention	

§  A	person	in	a	scene	is	described	by	his/her	position	(x,y)	and	the	head	
orientation	θ						

§  The	frustum	represents	the	area	in	which	a	person	can	sustain	a	conversation	
and	is	defined	by	an	aperture	and	by	a	length	

	



Results	

Spectral
Clustering



Qualitative	results	on	the	CoffeeBreak	dataset	compared	with	the	state	of	the	art	HFF.	
	
Yellow	=	ground	truth	
Green	=	our	method	
Red	=	HFF.		
	

Results	





Given S ⊆ V and a parameter α > 0, define the following 
parameterized family of quadratic programs: 

where IS is the diagonal matrix whose elements are set 
to 1 in correspondence to the vertices outside S, and to 
zero otherwise:  

Property. By setting: 

all local solutions will have a support containing elements 
of S. 

Constrained Dominant Sets 



Given an image and some information provided by a 
user, in the form of a scribble or of a bounding box, to 
provide as output a foreground object that best reflects 
the user’s intent. 

Interactive Image Segmentation 



Left:	Over-segmented	image	with	a	user	scribble	(blue	label).		
	
Middle:	 The	 corresponding	 affinity	matrix,	 using	 each	 over-segments	 as	 a	 node,	 showing	 its	 two	
parts:	 S,	 the	 constraint	 set	which	 contains	 the	user	 labels,	 and	V	n	S,	 the	part	of	 the	graph	which	
takes	the	regularization	parameter	.	
	
Right:	RRp,	starts	from	the	barycenter	and	extracts	the	first	dominant	set	and	update	x	and	M,	for	
the	next	extraction	till	all	the	dominant	sets	which	contain	the	user	labeled	regions	are	extracted.	

System	Overview	



Results	



Bounding box                Result                      Scribble                      Result                 Ground truth 

Results	



Bounding box                Result                      Scribble                      Result                 Ground truth 

Results	





200x time faster  +  20% accuracy improvement w.r.t 
previous approach

A new approach for the problem of geo-localization using 
image matching in a structured database of city-wide 

reference images with known GPS coordinates. 

Image Geo-localization 



Datasets: �

•  Datasets one:  
•  Reference images: 

•  102K Google street view images from Pittsburgh, 
PA and Orlando, FL 

•  Test Set: 
•  521 GPS-Tagged unconstrained images 
•  Downloaded From Flickr, Panoramio, Picasa, … 

•  WorldCities Datasets (NEW)*:  
•  Reference images: 

•  300K Google street view images 
•  14 different cities from Europe, N. America and 

Australia 
•  Test Set: 

•  500 GPS-Tagged unconstrained images 
•  Downloaded From Flickr, Panoramio, Picasa, … 



Google Maps Street View Datasets:�

Side Views top 
View

For each location: 4 side views and 1 top view is collected



Overall Result
•  Dataset 1: 102K Google street view images (Orlando and Pittsburg area)
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•  Dataset 2: WorldCities (14 different cities from Europa, North America, Australia)



Computational Time



Query	
Match	–	Error:	5.4	m	

Query	 Query	
Match	–	Error:	7.5	m	 Match	–	Error:	62.7	m	

Query	

Match	–	Error:	70.01	m	

Query	 Match	–	Error:	10.4	m	

Qualitative Results 
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Person Re-identification 

?

•  Recognize an individual over different non-overlapping 
cameras. 

•  Given a gallery of person images we want to recognize 
(between all of them) a new observed  image, called probe. 



Gallery

Probe	

Video-based Person Re-ID 

Traditional methods focus on: 
•  Building better feature representation of objects 
•  Building a better distance metric 
•  Finally rank images from gallery based on the 

pairwise distances from the query 

In our approach  
•  We use standard features and distance metric 
•  Extract constrained dominant sets for each query 
•  Perform ranking over shortlisted clips NOT over the 

whole set 
We take into account both the relationship between query 
and elements in the gallery and elements in the gallery.   



CNN features with XQDA metric used to compute the edge weights  

Constrained	DS’s	

Gallery

Probe	 Final Rank 

Re-ID with Constrained DS’s 



•  Largest video Re-ID dataset 
(2016) 
•  6 near-synchronized cameras 
•  1,261 identities 
•  3,248 distractors  
•  tracklets are of 25-30 frames long 

  [8] M. Farenzena et al. Person re-identification by symmetry-driven accumulation of local features (CVPR 2010) 
[16] A. Klaser et al. A spatio-temporal descriptor based on 3D-gradients (BMVC 2008) 
[20] S. Liao et al. Person re-identification by local maximal occurrence representation and metric learning (CVPR 2015) 
[24] B. Ma et al. Covariance descriptor based on bio-inspired features for person re-identification and face verification (Image Vision Comput 2014) 
[40] F. Xiong et al. Person re-identification using kernel-based metric learning methods (ECCV 2014) 
[48] L. Zheng et al. MARS: A video benchmark for large-scale person re-identification (ECCV 2016) 
[49] L. Zheng et al. Scalable person re-identification: A benchmark (ICCV 2015) 

Results on MARS Dataset 



The green and red boxes denote the same and different persons with the probes, respectively 
Gallery images are ordered based on their membership score (highest -> lowest).  

Probes Gallery 

Examples 



Camera 1 

Camera 2 

Camera 3 

Camera 1 
Camera 3 

Camera 2 

Within-camera tracking Cross-camera tracking 

Multi-target Multi-camera Tracking 



First layer Second layer 

Tracks 

Camera 1 

Camera n 

CDSC 

CDSC 

CDSC 

CDSC 

CDSC 

Third  layer 

Tracklets 

Tracklets  

Tracks 

Final 
Results

Human  
Detection

s 

Human  
Detection 

Segment 01 Segment 05 

Segment 10 

Short tracklets

Segment 06 

Segment 01 Segment 05 

Segment 10 Segment 06 

Short tracklets

Tracks Across 
Cameras 

Pipeline 



Edge weights combine appearance and motion  
•  Appearance = CNN features 
•  Motion = Constant velocity 

Short Tracklets

Layer 1: Tracklet Extraction 
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Short Tracklets  Tracklets

Edge weights combine appearance and motion  
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Layer 1: Tracklet Extraction 



 TrackletsShort Tracklets

Another data association problem 
Nodes become tracklets 
CDSC is used to stitch tracklets 

Layer 2: Track Extraction 
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Layer 2: Track Extraction 

Another data association problem 
Nodes become tracklets 
CDSC is used to stitch tracklets 



Tracks

 TrackletsShort Tracklets

Layer 2: Track Extraction 

Another data association problem 
Nodes become tracklets 
CDSC is used to stitch tracklets 



Short Tracklets
(Overlap Constraint) 

Final Tracks
(CDSC)

Input: Human Detections

Tracklets
(CDSC)

Within-Camera Tracking 
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Layer 3: Cross-Camera Association 

Tracks are nodes 
Cameras as constraints 
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Results on DukeMTMC 

[33] E. Ristani et al. Performance measures and a data set for multi-target multi-camera tracking (ECCV 2016) 
[26] A. Maksai et al. Non-Markovian globally consistent multi-object tracking (ICCV 2017) 

IDP = Fraction of computed detections that are correctly identified 
IDR = Fraction of ground-truth detections that are correctly identified 
IDF1 = Ratio of correctly identified detections over the average number of ground-truth and 

computed detections 

•  Largest MTMC dataset (2016) 
•  8 fixed synchronized cameras 
•  More than 2 million frames  
•  0 to 54 persons per frame 
•  2,700 Identities  

Test-easy

Test-hard



Camera 1 Camera 2 

Camera 5 Camera 6 



Camera 6 

Camera 1 

Camera 8 

Camera 7 





Dominant sets and related concepts shown to be a 
powerful notion for attacking a variety of computer vision 
problems, e.g., 

•  Interactive image segmentation and cosegmentation 
•  Geo-localization 
•  Group detection in image and videos 
•  Person re-identification 
•  Multi-target tracking 
•  … 

On-going work focuses on combining deep learning and 
DS’s for improving performances. 

Conclusions 
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