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Identify	and	locate	human	faces	in	images	regardless	of	their:	

•  position	

•  scale	

•  pose	(out-of-plane		rotation)	

•  orientation	(in-plane	rotation)	

•  illumination	

	

Face	Detection	



•  Consider	a	thumbnail	19	×	19	face	pattern	

•  256361	possible	combination	of	gray	values	

•  256361	=	28×361	=	22888	

•  Total	world	population	(as	of	2018):	

•  7,600,000,000	≅	233	

•  87	times	more	than	the	world	population!	

•  Extremely	high	dimensional	space!	

A	Few	Figures	



Why	Is	Face	Detection	Difficult?	



Why	Is	Face	Detection	Difficult?	



Fooling	Face-Detection	Algorithms	
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Fooling	Face-Detection	Algorithms	



Face	localization:	Determine	the	image	position	of	a	single	face	
(assumes	input	image	contains	only	one	face)	

Facial	feature	extraction:	Detect	the	presence	and	location	of	features	
such	as	eyes,		nose,	nostrils,	eyebrow,	mouth,	lips,	ears,	etc	

Face	recognition	(identification):	Compare	an	input	image	(probe)	
against	a	database	(gallery)	and	reports	a	match	

Face	authentication:	verify	the	claim	of	the	identity	of	an	individual	in	
an	input	image	

Face	tracking:	Continuously	estimate	the	location	and	possibly	the	
orientation	of	a	face	in	an	image	sequence	in	real	time	

Emotion	recognition:	Identifying	the	affective	states	(happy,	sad,	
disgusted,	etc.)	of	humans	

Related	Problems	



Tracking	the	Emotions	



Detection:	concerned	with	a	category	of	object	

Recognition:	concerned	with	individual	identity	

Face	is	a	highly	non-rigid	object	

Many	methods	can	be	applied	to	other	object	detection/recognition	

Car	detection	 Pedestrian	detection	

Detection	vs	Recognition	



•  Representation:	How	to	describe	a	typical	face?	

•  Scale:	How	to	deal	with	face	of	different	size?	

•  Search	strategy:	How	to	spot	these	faces?	

•  Speed:	How	to	speed	up	the	process?	

•  Precision:	How	to	locate	the	faces	precisely?	

•  Post-processing:	How	to	combine	detection	results?	

Research	Issues	



Knowledge-based	methods	
Encode	human	knowledge	of	what	constitutes	a	typical	face		
(usually	the	relationships	between	facial	features)	

Feature	invariant	approaches	
Aim	to	find	structural	features	of	a	face	that	exist	even	when	the		
pose,	viewpoint,	or	lighting	conditions	vary	

Template	matching	methods	
Several	standard	patterns	stored	to	describe	the	face	as	a	whole	or		
the	facial	features	separately	

Appearance-based	methods	
The	models	(or	templates)	are	learned	from	a	set	of	training	images		
which	capture	the	representative	variability	of	facial	appearance	

Methods	to	Detect	Faces	



Top-down	approach:	Represent	a	face	using	a		set	of	human-
coded	rules.	
	
Example:	

•  The	center	part	of	face	has	uniform	intensity	values	
•  The	difference	between	the	average	intensity	values		of	the	

center	part	and	the	upper	part	is	significant	
•  A	face	often	appears	with	two	eyes	that	are		symmetric	to	each	

other,	a	nose	and	a	mouth	
•  Use	these	rules	to	guide	the	search	process	

Knowledge-based	Methods	



Knowledge-Based	Method	[Yang	and	Huang	94]	

•  Multi-resolution	focus-of-attention		
approach	

•  Level	1	(lowest	resolution):	apply	the	
rule	“the	center	part	of		the	face	has	
4	cells	with	a		basically	uniform	
intensity”	to		search	for	candidates	

•  Level	2:	local	histogram		
equalization	followed	by	edge		
detection	

•  Level	3:	search	for	eye	and	mouth		
features	for	validation	



Knowledge-Based	Method	[Kotropoulos	&	Pitas	94]	
•  Horizontal/vertical	projection	to	search	for	candidates	

n  m 

HI (x) = ∑ I (x, y)  VI ( y) = ∑ I (x, y) 
y =1  x=1	

•  Search	eyebrow/eyes,	nostrils/nose	for	validation	
•  Difficult	to	detect	multiple	people	or	in	complex		background	

[Kotropoulos & Pitas 94] 



Knowledge-based	Methods	
Pros:	
•  Easy	to	come	up	with	simple	rules	to	describe	the	features		of	a	face	

and	their	relationships	
•  Based	on	the	coded	rules,	facial	features	in	an	input	image		are	

extracted	first,	and	face	candidates	are	identified	
•  Work	well	for	face	localization	in	uncluttered	background	

Cons:	
•  Difficult	to	translate	human	knowledge	into	rules	precisely:		

detailed	rules	fail	to	detect	faces	and	general	rules	may	find		many	
false	positives	

•  Difficult	to	extend	this	approach	to	detect	faces	in	different		poses:	
implausible	to	enumerate	all	the	possible	cases	



•  Bottom-up	approach:	Detect	facial	features		(eyes,	nose,	
mouth,	etc)	first	

•  Facial	features:	edge,	intensity,	shape,	texture,		color,	etc	

•  Aim	to	detect	invariant	features	

•  Group	features	into	candidates	and	verify	them	

Feature-based	Methods	



Random	Graph	Matching	[Leung	et	al.	95]	

•  Formulate	as	a	problem	to	find	
the	correct		geometric	
arrangement	of	facial	features	

•  Facial	features	are	defined	by	the	
average	 responses	 of	 multi-scale		
filters	

•  Graph	matching	among	
the	candidates	to	locate	
faces	



Feature-Based	Methods	

Pros:	
•  Features	are	invariant	to	pose	and	orientation		change	

	
Cons:	

•  Difficult	 to	 locate	 facial	 features	 due	 to	 	 several	
corruption	(illumination,	noise,		occlusion)	

•  Difficult	to	detect	features	in	complex		background	



Template	Matching	Methods	

•  Store	a	template	
•  Predefined:	based	on	edges	or	regions	

•  Deformable:	based	on	facial	contours	(e.g.,		Snakes)	

•  Templates	are	hand-coded	(not	learned)	

•  Use	correlation	to	locate	faces	



Ration Template [Sinha 94] 

average shape 

Face	Templates	



Template-Based	Methods	

Pros	
•  Simple	

	
Cons	

•  Templates	needs	to	be	initialized	near	the		face	images	

•  Difficult	to	enumerate	templates	for	different		poses	(similar	
to	knowledge-based	methods)	



Appearance-based	Methods	

General	idea	
	
1.  Collect	a	large	set	of	(resized)	face	and	non-face	images	and	

train	a	classifier	to	discriminate	them.	

2.  Given	a	test	image,	detect		faces	by	applying	the	classifier	at	
each	position	and	scale	of	the	image.	



Sung	and	Poggio	(1994)	

Originally	published	as	an	MIT	Technical	Report	in	1994	



System	Overview	



Pre-processing	

Resizing:	resizes	all	image	patterns	to	
19x19	pixels	

Masking:	reduce	the	unwanted		
background	noise	in	a	face		pattern	

Illumination	gradient		correction:	
find	the	best	fit		brightness	plane	
and	then		subtracted	from	it	to	
reduce		heavy	shadows	caused	by		
extreme	lighting	angles	

Histogram	equalization:		compensates	
the	imaging	effects		due	to	changes	in	
illumination		and	different	camera	
input	gains	



[Sung & Poggio 94] 

•  Cluster	face	and	
non-face		samples	
into	a	few	(i.e.,	6)		
clusters	using	K-
means		algorithm	

•  Each	cluster	is	modeled	by	
a		multi-dimensional	
Gaussian	with		a	centroid	
and	covariance	matrix	

•  Approximate	each	
Gaussian		covariance	with	
a	subspace	(i.e.,		using	the	
largest	eigenvectors)	

Distribution	of	Face	Patterns	



Distance	Metrics	
•  Compute	distances	of	a	sample	to		all	

the	face	and	non-face	clusters	

•  Each	distance	has	two	parts:	

•  Within	subspace	distance	(D1):	
Mahalanobis	distance	of	the	
projected		sample	to	cluster	
center	

•  Distance	to	the	subspace	(D2):		
distance	of	the	sample	to	the	
subspace	

•  Feature	 vector:	 Each	 face/non-face		
samples	 is	 represented	by	 a	 vector	 	 of	
these	distance	measurements	

•  Train	a	multilayer	neural	network	
using	the	feature	vectors	for	face		
detection	

•  6	face	clusters	
•  6	non-face	clusters	
•  2	distance	values	per	cluster	
•  24	measurements	



Positive	examples	

•  Get	as	much	variation	as	possible	

•  Manually	crop	and	normalize	each	face	image	

into	a	standard	size		(e.g.,	19	×	19	pixels)	

•  Creating	virtual	examples	

		

Negative	examples	

•  Fuzzy	idea	

•  Any	images	that	do	not	contain		faces	

•  A	large	image	subspace	

•  Bootstraping	

Face	and	Non-faces	Examples	



Creating	Virtual	Positive	Examples	
•  Simple	and	very	effective	method	

•  Randomly	mirror,	rotate,	translate	and		scale	face	samples	
by		small	amounts	

•  Increase	number	of		training	examples	

•  Less	sensitive	to		alignment	error	



1.  Start	with	a	small	set	of	non-face		
examples	in	the	training	set	

2.  Train	a	neural	network	classifier	
with	the		current	training	set	

3.  Run	the	learned	face	detector	on	a		
sequence	of	random	images.	

4.  Collect	all	the	non-face	patterns		
that	the	current	system	wrongly		
classifies	as	faces	(i.e.,	false		
positives)	

5.  Add	these	non-face	patterns	to	the		
training	set	

6.  Got	to	Step	2	or	stop	if	satisfied	

Bootstrapping	



Scan an input image at one-pixel increments  
horizontally and vertically 

Downsample the input image by 
a factor of 1.2 and continue to search 

Search	over	Space	and	Scale	



Continue	to	downsample	the	input	image	and	search		until	the	
image	size	is	too	small	

Search	over	Space	and	Scale	



Some	Results	



Rowley-Baluja-Kanade	(1996/98)		

Originally	presented	at	CVPR	1996	



Features	
•  Similar	to	Sung	and	Poggio	

•  20x20	instead	of	19x19	

•  Same	technique	for	bootstrapping,	preprocessing,	etc.	

•  Neural	network	(with	different	receptive	fields)	applied	directly	to	
the	image	

•  Different	heuristics	

•  Faster	than	Sung	and	Poggio	(but	still	far	from	real-time)	



The	Architecture	

Trained	using	standard	back-propagation	with	momentum	



Some	Results	

The	label	in	the	upper	left	corner	of	each	image	(D/T/F)	gives	the	number	of	faces	detected	(D),	the	total	number	of	faces	in	the	
image	(T),	and	the	number	of	false	detections	(F).		



Some	Results	



Detecting	Rotated	Faces	
A	router	network	is	trained	to	estimate	the	angle	of	an		input	window	

•  If	 it	 contains	a	 face,	 the	 router	 returns	 the	angle	of	 the	 face		
and	the	face	can	be	rotated	back	to	upright	frontal	position	

•  Otherwise	the	router	returns	a	meaningless	angle	

The	de-rotated	window	 is	 then	applied	 to	a	detector	 	 (previously	
trained	for	upright	frontal	faces)	



Router	Network	

•  Rotate	a	face	sample	at	10	degree	increment	

•  Create	virtual	examples	(translation	and	scaling)	from		each	sample	

•  Train	a	multilayer	neural	network	with	input-output		pair	

Input-output	pair	to	train	a	router	network	



Some	Results	

The	label	in	the	upper	left	corner	of	each	image	(D/T/F)	gives	the	number	of	faces	detected	(D),	the	total	number	of	faces	in	the	image	(T),	
and	the	number	of	false	detections	(F).	The	label	in	the	lower	right	corner	of	each	image	gives	its	size	in	pixels	



Viola	and	Jones	(2001)	

Journal	version:	P.	Viola	and	M.	Jones.	Robust	real-time	face	
detection.	Int.	J.	Computer	Vision	(2004).		



The	Viola-Jones	Face	Detector	

•  A	seminal	approach	to	real-time	object	detection		

•  Training	is	slow,	but	detection	is	very	fast	

•  Key	ideas	
–  Integral	images	for	fast	feature	evaluation	
–  Boosting	for	feature	selection	
–  Attentional	cascade	for	fast	rejection	of	non-face	windows	



Rectangular	Image	Features	

Value =  ∑ (pixels in white area) – ∑ (pixels in black area) 



Forehead,	eye	features	can	be	captured	

Rectangular	Image	Features	



Fast	Computation	with	Integral	Images	

•  The	 integral	 image	 computes	 a	
value	at	each	pixel	(x,y)	that	is	the	
sum	of	the	pixel	values	above	and	
to	the	left	of	(x,y),	inclusive	

•  This	 can	 quickly	 be	 computed	 in	
one	pass	through	the	image	

(x,y) 



Computing	the	Integral	Image	



Computing	the	Integral	Image	

Cumulative	row	sum:	s(x,	y)	=	s(x–1,	y)	+	i(x,	y)		
Integral	image:	ii(x,	y)	=	ii(x,	y−1)	+	s(x,	y)	

ii(x, y-1) 
s(x-1, y) 

i(x, y) 



•  Let	A,B,C,D	be	the	values	of	the	
integral	image	at	the	corners	of	a	
rectangle	

•  Then	the	sum	of	original	image	
values	within	the	rectangle	can	be	
computed	as:	
			sum	=	A	–	B	–	C	+	D	
	

•  Only	3	additions	are	required	for	
any	size	of	rectangle!	

D B 

C A 

Computing	Sum	within	a	Rectangle	



Feature	selection	
•  For	 a	 24x24	 detection	 region,	 the	 number	 of	 possible	 rectangle	

features	is	~160,000!	



training	data	+	labels	

Learning	Algorithm	

Model

The	Supervised	Learning	Pipeline	
(the	two-class	case)	 “cat”	

“cat”	

“dog”	 etc	

Testing	data	 Predicted	label	

“dog”	

Courtesy:	Gavin	Brown	



The	Ensemble	Approach	

Learning	Algorithm	

“Committee”	of	Models	

Testing	data	 Predicted	label	

Model	1

Model	2

Model	m

training	data	+	labels	

Vote!	

Courtesy:	Gavin	Brown	



Model	1 Model	2

Each	model	corrects	the	mistakes	of	its	predecessors.	

“Boosting”	algorithms	build	an	ensemble,	sequentially.	

Dataset	2	

Model	3

Dataset	3	

Model	4

Dataset	4	

Courtesy:	Gavin	Brown	

Boosting	



Boosting	

•  Boosting	is	a	classification	scheme	that	works	by	combining	weak	
learners	into	a	more	accurate	ensemble	classifier	
–  A	weak	learner	need	only	do	better	than	chance	

•  Training	consists	of	multiple	boosting	rounds	
–  During	each	boosting	round,	we	select	a	weak	learner	that	does	
well	on	examples	that	were	hard	for	the	previous	weak	learners	

–  “Hardness”	is	captured	by	weights	attached	to	training	
examples	



Boosting	
•  Initially,	weight	each	training	example	equally	

•  In	each	boosting	round:	

–  Find	the	weak	learner	that	achieves	the	lowest	weighted	
training	error	

–  Raise	the	weights	of	training	examples	misclassified	by	
current	weak	learner	

•  Compute	final	classifier	as	linear	combination	of	all	weak	
learners	(weight	of	each	learner	is	directly	proportional	to	its	
accuracy)	

•  Exact	formulas	for	re-weighting	and	combining	weak	learners	
depend	on	the	particular	boosting	scheme	(e.g.,	AdaBoost)	



Boosting	at	work	

Weak  
Classifier 1 



Weights 
Increased 

Boosting	at	work	



Weak  
Classifier 2 

Boosting	at	work	



Weights 
Increased 

Boosting	at	work	



Weak  
Classifier 3 

Boosting	at	work	



Final classifier is  
a combination of weak 
classifiers 

Boosting	at	work	



•  Define	weak	learners	based	on	rectangle	features	

•  For	each	round	of	boosting:	
–  Evaluate	each	rectangle	filter	on	each	example	
–  Select	best	threshold	for	each	filter		
–  Select	best	filter/threshold	combination	
–  Reweight	examples	

•  Computational	complexity	of	learning:	O(MNK)	
–  M	rounds,	N	examples,	K	features	

Boosting	for	Face	Detection	



Boosting	for	Face	Detection	

Define	weak	learners	based	on	rectangle	features	

⎩
⎨
⎧ >

=
otherwise   0

)( if   1
)( tttt

t

pxfp
xh

θ

window 

value of rectangle feature 

parity threshold 

x	is	a	24x24	sub-window	of	an	image	



Boosting	Algorithm	



Boosting	for	Face	Detection	
•  First	two	features	selected	by	boosting:	

	
	
	
	
	
	
	
	
	
	

•  This	feature	combination	can	yield	100%	detection	rate	and	
50%	false	positive	rate	



Boosting	for	face	detection	
•  A	200-feature	classifier	can	yield	95%	detection	rate	and	a	false	

positive	rate	of	1	in	14084	

Not good enough! 

Receiver operating characteristic (ROC) curve 

Unfortunately,	the	
most	straightforward	
technique	for	
improving	detection	
performance,	adding	
features	to	the	
classifier,	directly	
increases	computation	
time.	



Attentional	Cascade	

•  We	start	with	simple	classifiers	which	reject	many	of	the	
negative	sub-windows	while	detecting	almost	all	positive	sub-
windows	

•  Positive	response	from	the	first	classifier	triggers	the	evaluation	
of	a	second	(more	complex)	classifier,	and	so	on	

•  A	negative	outcome	at	any	point	leads	to	the	immediate	
rejection	of	the	sub-window	

FACE IMAGE 
SUB-WINDOW 

Classifier 1 
T 

Classifier 3 
T 

F 

NON-FACE 

T 
Classifier 2 

T 

F 

NON-FACE 

F 

NON-FACE 



FACE IMAGE 
SUB-WINDOW 

Classifier 1 
T 

Classifier 3 
T 

F 

NON-FACE 

T 
Classifier 2 

T 

F 

NON-FACE 

F 

NON-FACE 

Attentional	Cascade	



Attentional	Cascade	

•  The	detection	rate	and	the	false	positive	rate	of	the	cascade	are	
found	by	multiplying	the	respective	rates	of	the	individual	stages	

•  A	detection	rate	of	0.9	and	a	false	positive	rate	on	the	order	of	
10-6	can	be	achieved	by	a	10-stage	cascade	if	each	stage	has	a	
detection	rate	of	0.99	(0.9910	≈	0.9)	and	a	false	positive	rate	of	
about	0.30	(0.310	≈	6×10-6)		

FACE IMAGE 
SUB-WINDOW 

Classifier 1 
T 

Classifier 3 
T 

F 

NON-FACE 

T 
Classifier 2 

T 

F 

NON-FACE 

F 

NON-FACE 



Multiple	Detections	
•  There	will	typically	be	several	detections	for	a	single	face	

•  This	is	true	for	all	appearance-based	methods	discussed	



Non-maximum	Suppression	
•  The	set	of	detections	are	first	partitioned	into	disjoint	subsets	
•  Two	detections	are	in	the	same	subset	if	their	regions	overlap	
•  Each	partition	yields	a	single	final	detection	
•  The	corners	of	the	final	bounding	region	are	the	average	of	the	

corners	of	all	detections	in	the	set	



Training	Data	
–  4916	hand	labeled	faces	
–  10000		non	faces	
–  Faces	are	normalized	

•  Scale,	translation	
	
	
Many	variations	

–  Across	individuals	
–  Illumination	
–  Pose	(rotation	both	in	plane	and	out)	

The	Implemented	System	



System	Performance	

•  Training	time:	“weeks”	on	466	MHz	Sun	workstation	

•  38	layers,	total	of	6061	features	

•  Average	of	10	features	evaluated	per	window	on	test	set	

•  “On	a	700	Mhz	Pentium	III	processor,	the	face	detector	can	process	
a	384	by	288	pixel	image	in	about	.067	seconds”		

–  15	Hz	

–  15	times	faster	than	previous	detector	of	comparable	accuracy	
(Rowley	et	al.,	1998)	



Viola-Jones	at	Work	



Viola-Jones	at	Work	


