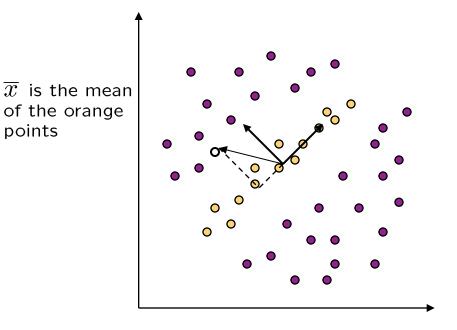
Eigenfaces for recognition

Matthew Turk and Alex Pentland J. Cognitive Neuroscience 1991

Linear subspaces



convert **x** into \mathbf{v}_1 , \mathbf{v}_2 coordinates

$$\mathbf{x}
ightarrow ((\mathbf{x} - \overline{x}) \cdot \mathbf{v}_1, (\mathbf{x} - \overline{x}) \cdot \mathbf{v}_2)$$

What does the v_2 coordinate measure?

- distance to line
- use it for classification—near 0 for orange pts

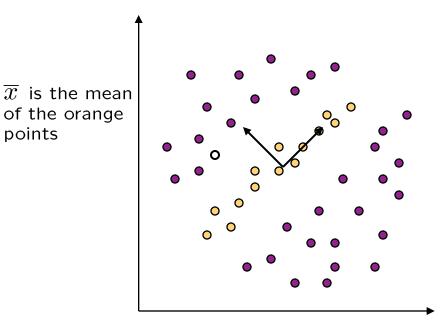
What does the v_1 coordinate measure?

- position along line
- use it to specify which orange point it is

Suppose the data points are arranged as above

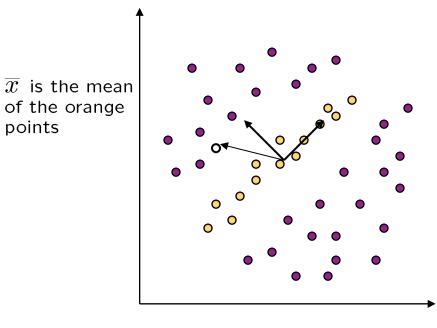
Idea: fit a line, classifier measures distance to line

Dimensionality reduction



- We can represent the orange points with only their v₁ coordinates (since v₂ coordinates are all essentially 0)
- This makes it much cheaper to store and compare points
- A bigger deal for higher dimensional problems

Linear subspaces



Consider the variation along direction **v** among all of the orange points:

$$var(\mathbf{v}) = \sum_{\text{orange point } \mathbf{x}} ||(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}||^{2}$$

What unit vector \mathbf{v} minimizes var?
 $\mathbf{v}_{2} = min_{\mathbf{v}} \{var(\mathbf{v})\}$
What unit vector \mathbf{v} maximizes var?
 $\mathbf{v}_{1} = max_{\mathbf{v}} \{var(\mathbf{v})\}$
 $var(\mathbf{v}) = \sum_{\mathbf{x}} ||(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}||$
 $= \sum_{\mathbf{x}} \mathbf{v}^{\mathrm{T}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \mathbf{v}$
 $= \mathbf{v}^{\mathrm{T}} \left[\sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \right] \mathbf{v}$
 $= \mathbf{v}^{\mathrm{T}} A\mathbf{v} \text{ where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}}$

Solution: v_1 is eigenvector of **A** with *largest* eigenvalue v_2 is eigenvector of **A** with *smallest* eigenvalue

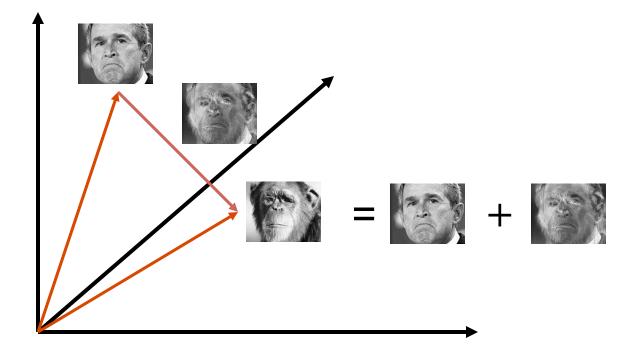
Principal component analysis

- Suppose each data point is N-dimensional
 - Same procedure applies:

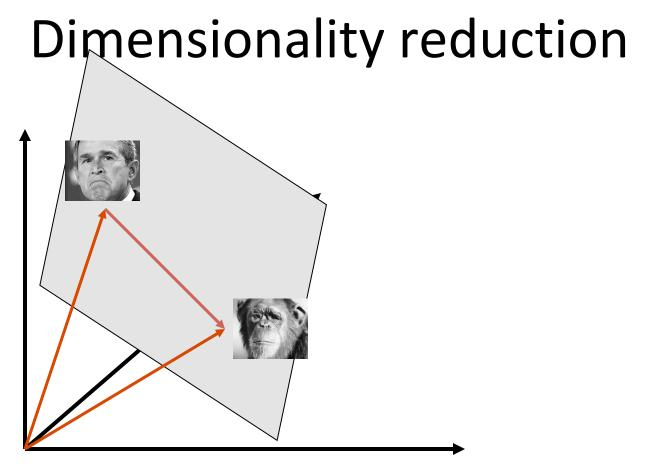
$$\begin{aligned} var(\mathbf{v}) &= \sum_{\mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\| \\ &= \mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} \text{ where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \end{aligned}$$

- The eigenvectors of **A** define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among training vectors x
 - eigenvector with smallest eigenvalue has least variation
- We can compress the data using the top few eigenvectors
 - corresponds to choosing a "linear subspace"
 - represent points on a line, plane, or "hyper-plane"
 - these eigenvectors are known as the *principal components*

The space of faces



- An image is a point in a high dimensional space
 - An N x M image is a point in R^{NM}
 - We can define vectors in this space as we did in the 2D case



- The set of faces is a "subspace" of the set of images
 - We can find the best subspace using PCA
 - This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors v₁, v₂, ..., v_K
 - any face $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \ldots + a_k \mathbf{v_k}$

Eigenfaces

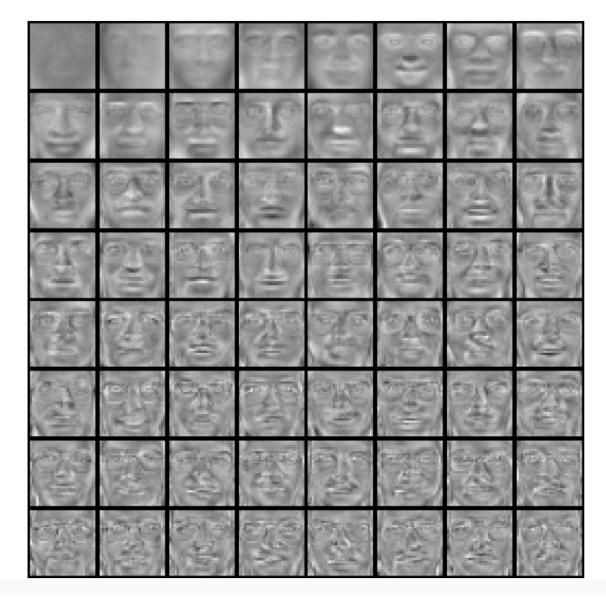
- PCA extracts the eigenvectors of **A**
 - Gives a set of vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , ...
 - Each vector is a direction in face space
 - what do these look like?

Training images

X					, X _N
1	,	-	-	-	,IN

10 10 10 10 10 10 10 10 10 10 10 10 10 1	(1. a)	and the	12 3	15. 21	10 31	1831	15 81	153
愛い変	State -	変す	家の		と	家の		同じ
35.35	N	T	19-3	Celle Celle	ES.	Se se	63	E.
		ASS -	120	150	120	き	Me -	12.1
100	E	S	E	E	6.9	CE-	E	12.2
No an	and and a	200	(15 B	State State	11/2	and and	12 and 1	State State
	· 一		「	100	の町	の町	ので、満	Co.
			19.0	0.0	1.1		950	000
33	1	S.	and a	Cic.	150	100	(Ca	act of
S S	J.	3	E C	Y	E S	5	C.S.	0

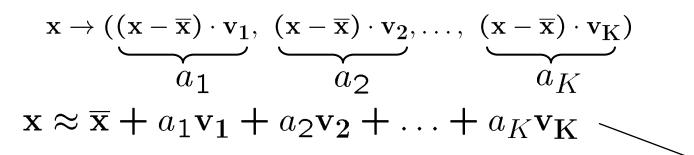
Top eigenvectors: $\mathbf{u}_1, \dots \mathbf{u}_k$



Mean: µ

Projecting onto the eigenfaces

- The eigenfaces $\mathbf{v}_1, ..., \mathbf{v}_K$ span the space of faces
 - A face is converted to eigenface coordinates by



Recognition with eigenfaces

- 1. Process the image database (set of images with labels)
 - Run PCA—compute eigenfaces
 - Calculate the K coefficients for each image
- 2. Given a new image (to be recognized) **x**, calculate K coefficients

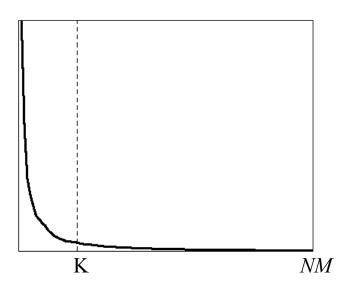
$$\mathbf{x} \rightarrow (a_1, a_2, \dots, a_K)$$

3. Detect if x is a face

 $\|\mathbf{x} - (\mathbf{\overline{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \text{threshold}$

- 4. If it is a face, who is it?
 - Find closest labeled face in database
 - nearest-neighbor in K-dimensional space

Choosing the dimension K



$$\frac{\sum_{i=1}^{K} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}} > Threshold \quad (e.g., 0.9 \text{ or } 0.95)$$

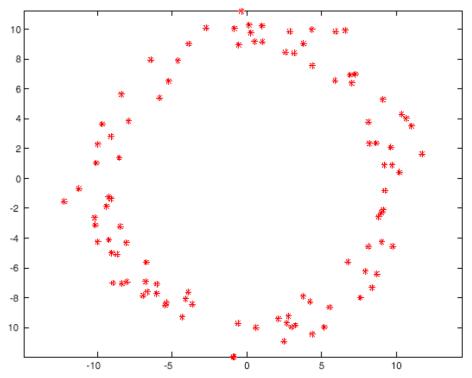
$$\sum_{i=1}^{N} \lambda_{i}$$

In this case, we say that we "preserve" 90% or 95% of the information in our data.

- How many eigenfaces to use?
- Look at the decay of the eigenvalues
 - the eigenvalue tells you the amount of variance "in the direction" of that eigenface
 - ignore eigenfaces with low variance

Limitations

PCA assumes that the data has a Gaussian distribution (mean μ, covariance matrix Σ)



The shape of this dataset is not well described by its principal components

Limitations

• The direction of maximum variance is not always good for classification

