Theoretical / Practical Questions

How many layers are needed for a given task?

How many units per layer?

To what extent does representation matter?

What do we mean by generalization?

What can we expect a network to generalize?

* Generalization: performance of the network
on data not included in the training set

* Size of the training set: how large a training
set should be for “good” generalization?

* Size of the network: too many weights in a
network result in poor generalization

ERRORE

¢ VALIDATION SET

& TEAINING SET

- n°® EPOCHE
: OVERFITTING

¥
¥

(a) (b)

(a) A good fit to noisy data. (b) Overfitting of the same data: the fit is perfect on the
“training set” (x’s), but is likely to be poor on “test set” represented by the circle.

Motivation

The size (i.e. the number of hidden units) of an artificial
neural network affects both its functional capabilities and
its generalization performance

Small networks could not be able to realize the desired
input / output mapping

Large networks lead to poor generalization performance

The Pruning Approach

Train an over-dimensioned net and then remove redundant nodes
and / or connections:

e Sietsma & Dow (1988, 1991)
* Mozer & Smolensky (1989)
e Burkitt (1991)

Adavantages:

e arbitrarily complex decision regions

e faster training
* independence of the training algorithm

The Proposed Method

Consider (for simplicity) a net with one hidden layer:

Output

Hidden Ty

Input Ty

Suppose that node h is to be removed:
Remove h (and its in/out connections) and adjust the remaining
weights so that the I/O behavior is the same

This is equivalent to solving the system:

. & (1) _ W (#)
V= e A= S _ZWU- yj” :Z(Wij+§ij)yjﬂ
j=h

which is equivalent to:

Z5ij YE") = W, Yr(lﬂ)

J#h

In a more compact notation:
AXx = b
with Ac SRPnoan(nh_U

LS solution : min H Ax —b H

Detecting Excessive Units

Residual-reducing methods for LLSPs start with an initial solution
X, and produces a sequences of points {X,} so that the residuals

| A, —b]|=r,

decrease r, <r.,
Starting point: X,=0 (:>ro =HbH)

Excessive units can be detected so that H bH IS mMinimum

The Proposed Approach

Instead of analyzing the consistency of the system, we directly solve it

In the least squares sense:

FIND x such that || Ax, —b | is min imum

The method chosen is a projection method developed by Bjorck & Elfving
(BIT, 1979) called CGPCNE

1)

2)

3)

The Pruning Algorithm

Start with an over-sized trained network

Repeat
2.1) find the hidden unit h for which HbH is minimum
2.2) solve the corresponding system
2.3) remove unit h

Until Perf(pruned) — Perf(original) < epsilon

Reject the last reduced network

Example | : 4-bit parity

Ten initial 4-10-1 networks

f

nine 4-5-1
Pruned nets | 5 hidden nodes (average)
one 4-4-1
\
100 = = o 0 0 0,25
90 +
80 + T 0.2
~ 70 T .
E\Oz +recognlt|0n rate
g 60 + —e—MSE T 0,15
E 50 MINIMUM LI(/)J
% NET =
g 40} & 0,1
8
= 30t
20 + 1 0,05
10 +
0 < t f t t t t t 0
10 9 8 7 6 5 4 3 2 1

number of hidden units

Example Il : 4-bit simmetry

Ten initial 4-10-1 networks

Pruned nets m——)> 4.6 hidden nodes (average)

recognition rate (%)

100 =

90 +

80 +

70 +

60 +

50 +

40 +

30 +

20 +

10 +

9

—&—recognition rate
——MSE

MINIMUM
NET

9

P
ag

0,25

+ 0,2

T+ 0,15

+ 0,1

T 0,05

10

7

6 5 4 3 2

number of hidden units

MSE

Optimal Brain Surgeon (OBS)

The question then becomes, which weights should be eliminated? How
should we adjust the remaining weights (if at all) for best performance?
How can this be done in a computationally efficient way?

Magnitude based methods [Hertz, Krogh and Palmer, 1991] eliminate
weights that have the smallest magnitude. This simple and naively plausible
idea unfortunately often leads to the elimination of the wrong weights —
small weights can be necessary for low error. Both Optimal Brain Damage
[Le Cun, Denker and Solla, 1990] and our Optimal Brain Surgeon use
instead a criterion of minimal increase in error on the training data. The
superiority of OBS lies in great part to the fact that it makes no restrictive
assumptions about the form of the network’s Hessian that OBD does —
assumptions that we find are invalid for many networks. Moreover, unlike
OBD, OBS does not demand (typically slow) retraining.

[n deriving our method we begin, as do Le Cun, Denker and Solla [1990], by
considering a network trained to a local minimum in error. The functional
Taylor series of the error with respect to weights is:

JE T ~ | o T - ~ 13
OE=|—] -ow + 50w -H-ow + O(waH') (1)
7AL < —
i - r ::{}
=0
°E
where H = P is the Hessian matrix (containing all second order derivative
W~

information) and the superscript T denotes vector transpose. For a network
trained to a local minimum 1n error, the first (linear) term vanishes; we also
ignore the third and all higher order terms. Our goal is then to set one of the
weights to zero (which will be called w,) to minimize the increase in error

given by Eq. 1. Eliminating w, can be expressed as:

5wq +w, =0 or E;__:,_ - OW + W, =0 (2)
where e is the unit vector in weight space corresponding to (scalar) weight
W, Our goal is then to solve:

Ming {Ming,, {% swl . H. ow} such that eg Oow+w,, =0) (3)

q

To this end we form a Lagrangian from Eqs. | and 2:
L=%511’T~H-5w+&(_eg -511-'+wq) (4)

where 4 1s a Lagrange undetermined multiplier. We take functional deriva-
tives, employ the constraints of Eq. 2, and use matrix inversion to find that
the optimal weight change and resulting change in error are:

3

ow = —?—IQH_I €, and L= %T—F
[H "1y 2[H "y

Note that neither H nor H™! need be diagonal (as is assumed by Le Cun et
al.): moreover, our method recalculates the magnitude of all the weights in

the network, by the left side of Eq.5. Figure I illustrates the basic idea.

(5)

Optimal Brain Surgeon procedure

[. Train a “reasonably large™ network to minimum error.
2. Compute H!
3. Find the q that gives the smallest L=w, */(2[H']qq) (cf. Eq.5).

4
5

.U
.N

It this candidate error increase 1s much smaller than E, then
the qth weight should be deleted, and we proceed to step 4;
otherwise go to step 5
se the ¢ from step 3 to update all weights (Eq.5). Go to step 2.
o more weights can be deleted without large increase in E. (At
this point it may be desirable to retrain the network.)

'l\‘l\‘
WY
\\\\\\

il
I
T

W

\

i \

Wy
e
\‘\?é
i

¥

%

A

/

W s’/i//////////ﬁ

/”///

il

n

/(7/

{ f

Figure 1: Error as a function of two weights
in a network., The (local) minimum occurs
at weight w#, found by gradient descent
learning. In this illustration, a magnitude
based pruning technique (mag) then removes
the smallest weight. weight 2; Optimal Brain
Damage before retraining (OBD) removes
weight 1. In contrast, our Optimal Brain
Surgeon method (OBS) removes weight 1
but alse automatically adjusts the value of
weight 2 to minimize the error. The error
surface here i1s general in that it has different
curvatures (second derivatives) along
different directions, a minimum at a non-
special weight value, and a non-diagonal
Hessian (i.e.. principal axes are not parallel
to the weight axes). The relative magnitudes
of the error after pruning (before retraining,
if any) depend upon the particular problem.
but to second order obey: E(mag)=
E(OBD)=E(OBS). which is the key to the

superiority of OBS. We call our method
Optimal Brain Surgeon because in addition
to cutting out weights, it calculates and
changes the strengths of other weights
without the need for retraining.

Comparison with OBD

E
-17 | \ :2|[E :
1555— 215|)
3 .21
.16 |
205
.155] |
| -2 OBS
-15 & ‘.-‘.-.. _-:ql.—:l ——— B
30 35 40 45 S0 55 60 &5 30 35 40 45 S50 55 60 65
number of weights number of weights

Figure 1: OBS and OBD training error on a sum of Gaussians prior pattern clas-
sification task as a function of the number of weights in the network. (Pruning
proceeds right to left.) OBS pruning employed @ = 1078 (cf., Eq. 5); OBD em-
ployed 60 retraining epochs after each pruning.

OBS/OBD comparison on
“stopped” networks

196 OBS

35 40 45 50 55 60
number of weights

Figure 2: A 64-weight network was trained to minimum validation error on the
Gaussian problem — not w* — and then pruned by OBD and by OBS. The test
error on the resulting network is shown. (Pruning proceeds from right to left.) Note
especially that even though the network is far from w*, OBS leads lower test error
over a wide range of prunings, even through OBD employs retraining.

Riferimenti bibliografici

o (. Castellano, A. M. Fanelli, M. Pelillo. A method of pruning feed-
forward neural networks. IEEE Transactions on Neural Networks,
1997.

 B. Hassibi, D. G. Stork. Second-order derivatives for network
pruning: Optimanl Brain Surgeon. In: NIPS 1993.

	Theoretical / Practical Questions
	Motivation
	The Pruning Approach
	The Proposed Method
	Detecting Excessive Units
	The Proposed Approach
	The Pruning Algorithm
	Example I : 4-bit parity
	Example II : 4-bit simmetry
	Optimal Brain Surgeon (OBS)
	Comparison with OBD
	OBS/OBD comparison on �“stopped” networks
	Riferimenti bibliografici

