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The (Pairwise) Clustering Problem

Given:
- a set of n “objects”
- an n x n matrix of pairwise similarities

Goal: Partition the input objects into maximally homogeneous
groups (i.e., clusters).
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Applications

Clustering problems abound in many areas of computer science
and engineering.

A short list of applications domains:

Image processing and computer vision
Computational biology and bioinformatics
Information retrieval

Data mining

Signal processing

Machine learning




What is a Cluster?

No universally accepted definition of a “cluster”.
Informally, a cluster should satisfy two criteria:

Internal criterion: all objects inside a cluster should be highly
similar to each other.

External criterion: all objects outside a cluster should be highly
dissimilar to the ones inside.



Clustering as a Graph-Theoretic Problem

We represent the data to be clustered as an undirected edge-weighted
graph with no self-loops G = (V, FE,w), where V. = {1...., n} is the
vertexset, £ € V x Visthe edge set, and w : I — IRi is the (positive)
weight function.

We represent the graph ' with the corresponding weighted adjacency (or
similarity) matrix, which is the n x n symmetric matrix A = (a;;) defined
as:

- { w(i, i), if(i,j) ek
uf_j p—

0, otherwise.



An lllustrative Example: The Binary Case

Suppose the similarity matrix is a binary matrix.

In this case, the notion of a cluster coincide with that of a
maximal cligue.

Given an unweighted undirected graph G=(V,E):

A clique is a subset of mutually adjacent vertices
A maximal cligue is a clique that is not contained in a larger one




Basic Definitions

Let S € V' be a non-empty subset of vertices and ¢« € S. The (average)
weighted degree of ¢ w.r.t. S is defined as:
1

awdegg (i) = B

> aij -

jES

Moreover, if j ¢ S we define: g
¢s (i,7) = a;; —awdegg (i) .

Intuitively, ¢ (i, 7) measures the similarity between nodes j and i, with
respect to the average similarity between node i and its neighbors in S.




Assigning Node Weights / 1

Let S € V' be a non-empty subset of vertices and ¢ € S. The weight of 2
w.rt. S'is

1, if 1S] = 1
Wg (1) = S dsy iy (G D)W 1 (). otherwise.
jes\i |

Moreover, the total weight of S is defined to be:

W(S) =3 Wi (i)




Assigning Node Weights / 2

Intuitively, wg (2) gives us a measure of the overall similarity between ver-
tex ¢ and the vertices of S\ {i} with respect to the overall similarity among
the vertices in S\ {i}.

Wi1234) (1) < 0andwisg 75, (5) > 0.




Dominant Sets

A non-empty subset of vertices S C V such that W(1") > 0 for any non-
empty 7' C S, is said to be dominant if.

1. wg (i) > 0O, foralli € S (internal homogeneity)
2. Wsiigi) (i) < O,foralli & .S (external inhomogeneity)

-!;-.lﬁ
157 s by 70
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Theset {1,2, 3} is dominant.

For O/1 matrices: dominant sets = (strictly) maximal cliques




From Dominant Sets to Local Optima
(and Back) /1

Given an edge-weighted graph ¢ = (V. E/, w) and its weighted adjacency
matrix A, consider the following Standard Quadratic Program (StQP):

maximize f(x) = x'Ax
subjectto xe< A

where

A = { x € R":e’x =1 and r; > 0V e 1}

is the standard simplex of R ande = (1,1,--- .1)".

Note. Other approaches to clustering lead to similar quadratic optimization
problems (e.g., Sarkar and Boyer, 1998).



The Standard Simplex
(when n = 3)




From Dominant Sets to Local Optima
(and Back) / 2

Theorem If S is a dominant subset of vertices, then its weighted charac-
teristics vector x°, defined as

) We(t) £~ Q
T? _ W(‘a) . ifi1 € S
0. otherwise

is a strict local maximizer of f in A.

Conversely, if x* s a strict local maximizer of f in A then its support
g = {T(X*) = {E eV ;T;F = D,L

£

is a dominant set, provided that w1 (i) # O forall i ¢ o.
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Replicator Equations

Developed in evolutionary game theory to model the evolution of behavior
in animal conflicts (Hofbauer & Sigmund, 1998).

Let W = (w;;) be a non-negative real-valued n x n matrix.

Continuous-time version:
{'J.'T . f—
E@G):mﬁ)wPﬂﬂx—xﬁﬁIﬂﬂ}

Discrete-time version:

(Wx(1)),
x (1) Wx(t)

ri(t4+ 1) = 2;(t)

A is invariant under both dynamics, and they have the same stationary
points.



The Fundamental Theorem of Natural Selection

If W = W/, then the function
F(x) =x'Wx

is strictly increasing along any non-constant trajectory of both continuous-
time and discrete-time replicator dynamics.

In other words, vt > O:

d - ~
—F (x(1)) >0

for the continuous-time dynamics, and

F(x(t+ 1)) > F(x(t))

for the discrete-time dynamics, unless x(t) is a stationary point.




Grouping by Replicator Equations

Let A denote the weighted adjacency matrix of the similarity graph.
Let

W=A (=W >0).

The replicator systems, starting from an arbitrary initial state, will eventually
converge to a maximizer of the function f(x) = x’' Ax, over the simplex.

This will correspond to a dominant set in the graph, and hence to a cluster
of vertices.



A MATLAB Implementation

distance=1inf;

while distancesepsilon
old x=x;
X = X.*(A*X);
X = X./sum(x) ;

distance=pdist ([x,0ldx]"’) ;

end




Characteristic Vectors

Note. The components of the weighted characteristic vectors give us a
measure of the participation of the corresponding vertices in the cluster,
while the value of the objective function provides a measure of the cohe-

siveness of the cluster (cfr. Sarkar and Boyer, 1998).




Separating Structure for Clutter

Figure fu. Three prominent blobs are perceived immediately and with livtle effort. Locally, the
blobs are similar to the background contours. (adopied from Mahoney ( 1986)

Figure fb. Intersections were added to illustrate that the blobs are not distingmished by virtue
of their intersections wilh tha background eurves.
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Figure 2. A circle in a background of 200 randomly placed and oriented segments The circle is
still perceived immediately although its contour is fragmented.

Figure 3. An edge image of a car in a cluttered background. Our attention is drawn immediately
to the region of interest. It seems that the car need not be recognized to attract our
attention. The car also remains salient when parallel lines and small blobs are removed,
and when the less textured region surrounding parts of the car is filled in with more

texture.



Separating Structure from Clutter
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Image Segmentation

Image segmentation problem:
Decompose a given image into
segments, i.e. regions containing §
“similar” pixels.

First step in many
computer vision problems

Example: Segments might be regions of the image depicting the
same object.

Semantics Problem: How should we infer objects from segments?




Image Segmentation

An image is represented as an edge-weighted undirected graph, where
vertices correspond to individual pixels and the edge-weights reflect the
“similarity” between pairs of vertices.

OQur clustering algorithm basically consists of iteratively finding a dominant
set in the graph using replicator dynamics and then removing it from the
graph, until all vertices have been clustered.

On average, the algorithm took only a few seconds to converge, on a ma-
chine equipped with a 750 MHz Intel Pentium Ill.



Experimental Setup

The similarity between pixels ¢ and ;7 was measured by:

—|IF @) - F(j)ll%)

o2

w(i,j) = exp (
where o is a positive real number which affects the decreasing rate of w,
and:
e F(7) = (normalized) intensity of pixel i, for intensity segmentation
e F(i) = [v.vssin(h),vscos(h)](z), where h. s, v are the HSV values
of pixel 2, for color segmentation

o F(2) = [|Ixf1],...,|[I*[|](7) is avector based on texture information
at pixel i, the f; being DOOG filters at various scales and orientations,
for texture segmentation



Intensity Segmentation Results

Dominant sets Ncut



Intensity Segmentation Results
(97 x 115)

Dominant sets




Color Segmentation Results
(125 x 83)
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Original image Dominant sets Ncut




Texture Segmentation Results
(approx. 90 x 120)




Ncut Results
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Dealing with Large Data Sets

We address the problem of grouping out-of~sample (i.e., unseen)
examples after the clustering process has taken place.

This may serve to:

1. substantially reduce the computational burden associated to
the processing of very large data sets, by extrapolating the
complete grouping solution from a small number of samples,

2. deal with dynamic situations whereby data sets need to be
updated continually.



Grouping Out-of-Sample Data

Recall that the sign of wg () provides an indication as to
whether 7 is tightly or Ioosely coupled with the vertices in S.

Accordingly, we use the following rule for predicting cluster mem-
bership of unseen data ::

IT Wg iy (1) > 0, then assign vertex i to cluster S .
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Figure 2: Evaluating the quality of our approximations on a 150-point cluster. Average distance
between approximated and actual cluster membership (left) and cohesiveness (middle) as a function
of sampling rate. Right: average CPU time as a function of sampling rate.




Figure 4: Segmentation results on a 115 x 97 weather radar image. From left to right: original
image, the two regions found on the sampled image (sampling rate = 0.5%), and the two regions
obtained on the whole image (sampling rate = 100%).




Results on Berkeley Database Images
(321 x 481)
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Results on Berkeley Database Images
(321 x 481)
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Capturing Elongated Structures / 2
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“Closing” the Similarity Graph

Basic idea: Trasform the original similarity graph G into a “closed
version thereof (G ,seq): Whereby edge-weights take into account
chained (path-based) structures.

Unweighted (0/1) case:

G = Transitive Closure of G

closed

Note: G ,.eq CaN be obtained from:

A+A%+ .. +AN



Weighted Closure of G

Observation: When G is weighted, the ij-entry of AK represents the sum
of the total weights on the paths of length k between vertices i and j.

Hence, our choice is:

A A+ A2+ .+ AN

closed —




Example: Without Closure (o = 2)
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Figura 4.11: Cluster senza chinsura: o = 2




Example: Without Closure (o = 4)
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Figura 4.12: Cluster senza chinsura: = = 4




Example: Without Closure (o = 8)
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Example: With Closure (o =0.5)
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Grouping Edge Elements

Here, the elements to be grouped are edgels (edge elements).

We used Herault/Horaud (1993) similarities, which combine the
following four terms:

Co-circularity
Smoothness
Proximity
Contrast

> wn e

Comparison with Mean-Field Annealing (MFA).
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Building a Hierarchy:
A Family of Quadratic Programs

Consider the following family of StQP'’s:

maximize fa(x) =x'(A — al)x
subjectto xe A

where o« > 0 is a parameter and [ is the identity matrix.

The objective function f., consists of:
e adataterm (x'Ax) which favors solutions with high internal coherency

e a regularization term (—ax’x) which acts as an entropic factor: it is
concave and, on the simplex A, it is maximized at the barycenter and
it attains its minimum value at the vertices of A




An Observation

The solutions of the StQP remain the same if the matrix A — o[ is replaced
with A — ol 4+ ree’, where x is an arbitrary constant, since

x'(A —al + ree)x =x'(A —al)x+k

forallx ¢ A,

In particular, if 1 = « the resulting matrix is nonnegative and has a null
diagonal.

Hence all (strict) solutions of the StQP correspond to dominant sets for
the scaled similarity matrix A + a(ee’ — I') having the off-diagonal entries
equal to a;; + «.
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Bounds for the Regularization Parameter / 1

When « is large enough the regularization term (—ax'x) dominates, and
the only solution of the StQP is in the interior of A: this corresponds to a
unique large cluster which comprises all the data points.

Proposition /f

o = )\max(;’-l)

then f. is a strictly concave function in IR", and the only solution x of the
StQP belongs to the interior of A, ie., o(x) = V.



Bounds for the Regularization Parameter / 2

Given a subset of vertices S C V, the face of A corresponding to S is
defined as:

Ag={xec A : o(x)CS}
and its relative interior is:

int(Ag) =4{xe A : o(x) =5}

Theorem Let S C V' be a proper subset of vertices (S #= V'), and let Ag
denote the submatrix of A formed by the rows and columns indexed by the
elements of S. If

oy == }.max(x‘is)

then there is no point x € int(A g) that is a local maximizer of f, in A.



Bounds for the Regularization Parameter / 3

Suppose for simplicity that a;; < 1 foralli,j < V', i.e.
0< A<eel — 1.
Forany S C V' we get:
Amax(Ag) < Amax(ee! — 1) =[5 -1

Hence, if we want to avoid clusters of size |S| < m < |V| we could let

o >m —1

In so doing, no face A g with |S| < m will contain solutions of the StQP, in
other words:

at this scale all clusters will have more than m data points



The Landscape of f,

Key observation: For any fixed «, the energy landscape of f. is populated
by two kinds of solutions:

e solutions which correspond to dominant sets for the original matrix A

¢ solutions which do not correspond to any dominant set for the original
matrix A, although they are dominant for the scaled matrix A4-a (ee’—
I)

The latter represent large subsets of points that are not sufficiently coher-
ent to be dominant with respect to A, and hence they should be split.



Sketch of the Hierarchical Clustering Algorithm

Basic idea: start with a sufficiently large « and adaptively decrease it
during the clustering process:

1) let « be a large positive value (e.g., a > |[V| — 1)

2) find a partition of the data into a-clusters

3) for all the «-clusters that are not O-clusters recursively repeat step 2)
with decreased a




Pseudo-code of the Algorithm

Algorithm HIER_.CLUSTERING( V', A )

begin
if V" is dominant then return V'
leta > |V]| -1
repeat

decrease o
if o« << Othen o« — O
Vi Vi, — SPLIT(V, A, o)
until 2z > 1
return Uf-le { HER_.CLUSTERING( V;, Ay ) |
end




Results on the IRIS dataset / 1

This data set. attributed to Fisher (1936). is a classic benchmark in the machine learning
litevature.  The data set contains 3 classes of 50 instances each. where each class refers
to a type of iris plant. The three classes are Iris Setosa (15), Iris Versicolonr (IVe), and
Iris Virginica (IVi). Each data item 1s a d-dimensional real vector representing as many
measturements of an Iris Hower. Class 15 is linearly separable from the other two (IVe and

]H]‘I but Ve and IV1 are not ]]-]ll':I]'].\' h("lfl:l]'?l]ll".
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Results on the IRIS dataset / 2
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Luo and Hancock’s Similarities (CVPR'01)
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Left: Similarity matrix used in the experiment. Middle: Hierarchy produced by our algo-

rithm. Right: (Flat) partition produced by Luo and Hancock.




Klein and Kimia's Similarities (SODA’'01)
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Left: Similarity matrix used in the experiment. Right: Hierarchy produced by our algorithm.




Gdalyahu and Weinshall's Similarities (PAMI 01)
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Left: Similarity matrix used in the experiment (courtesy of Y. Gdalyahu). Right: Hierarchy

produced by our algorithm.




Factorization Results
(Perona and Freeman, 98)
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Conclusions

¢ Introduced the notion of a dominant set of vertices in an edge-weighted
graph, and defined a new notion of a cluster.

e Established a connection between the (combinatorial) problem of find-
ing dominant sets and (continuous) quadratic programming.

e Used straightforward parallel dynamics from evolutionary game theory
that can be coded in a few lines of MATLAB.

¢ Demonstrated potential of the approach on image segmentation.

e Extended the framework to hierarchical clustering

¢ Demonstrated its potential on the problem of organizing a shape database.




On-going and Future Projects

=  Grouping with asymmetric affinities: Game theory

= Clustering on hypergraphs (high-order relations)

=  Graph matching, object recognition and tracking

= Video segmentation




Other Applications of Dominant-Set Clustering

Bioinformatics
Identification of protein binding sites
R. Zauhar, M. Bruist, Univ. of Sciences Philadelphia, USA (2005)

Clustering gene expression profiles
T. Li et al, Fudan University, Hong Kong (2005)

Security and video surveillance
Detection of anomalous activities in video streams
R. Hamid et al., Georgia Institute of Tehcnology, USA (2005)

Detection of malicious activities in the internet
F. Pouget, Insitut Eurécom (2006)

Content-based image retrieval

G. Giacinto, F. Roli, University of Cagliari, Italy (2007)
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