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The (Pairwise) Clustering ProblemThe (Pairwise) Clustering Problem

Given:Given:
- a set of n “objects”
- an n × n matrix of pairwise similarities 

Goal:Goal: Partition the input objects into maximally homogeneous 
groups (i.e., clusters).



ApplicationsApplications

Clustering problems abound in many areas of computer science 
and engineering.

A short list of applications domains:

Image processing and computer vision
Computational biology and bioinformatics
Information retrieval
Data mining
Signal processing
Machine learning
…



What is a Cluster? What is a Cluster? 

No universally accepted definition of a “cluster”.

Informally, a cluster should satisfy two criteria:

Internal criterionInternal criterion: all objects inside a cluster should be highly 
similar to each other.

External criterion:External criterion: all objects outside a cluster should be highly 
dissimilar to the ones inside.



Clustering as a GraphClustering as a Graph--Theoretic ProblemTheoretic Problem



An Illustrative Example: The Binary CaseAn Illustrative Example: The Binary Case

Suppose the similarity matrix is a binary matrix.

In this case, the notion of a cluster coincide with that of a 
maximal clique.

Given an unweighted undirected graph G=(V,E):

A clique is a subset of mutually adjacent vertices
A maximal clique is a clique that is not contained in a larger one

How to generalize the notion of a maximal clique 
to weighted graphs?



Basic DefinitionsBasic Definitions
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Assigning Node Weights / 1Assigning Node Weights / 1
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Assigning Node Weights / 2Assigning Node Weights / 2



Dominant SetsDominant Sets



From Dominant Sets to Local Optima From Dominant Sets to Local Optima 
(and Back) / 1(and Back) / 1



The Standard Simplex The Standard Simplex 
(when (when n n = 3)= 3)



From Dominant Sets to Local Optima From Dominant Sets to Local Optima 
(and Back) / 2(and Back) / 2

Generalization of Motzkin-Straus theorem from graph theory
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Replicator EquationsReplicator Equations



The Fundamental Theorem of Natural SelectionThe Fundamental Theorem of Natural Selection



Grouping by Replicator EquationsGrouping by Replicator Equations



A MATLAB ImplementationA MATLAB Implementation



Characteristic VectorsCharacteristic Vectors



Separating Structure for ClutterSeparating Structure for Clutter





Separating Structure from ClutterSeparating Structure from Clutter
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Image SegmentationImage Segmentation

Image segmentation problem: 
Decompose a given image into 
segments, i.e. regions containing 
“similar” pixels.

First step in many
computer vision problems

Example: Segments might be regions of the image depicting the 
same object.

Semantics Problem: How should we infer objects from segments?



Image SegmentationImage Segmentation



Experimental SetupExperimental Setup



Intensity Segmentation ResultsIntensity Segmentation Results

Dominant sets Ncut  



Intensity Segmentation ResultsIntensity Segmentation Results
(97 x 115)(97 x 115)

Dominant sets                                                   Ncut  



Color Segmentation ResultsColor Segmentation Results
(125 x 83)(125 x 83)

Original image             Dominant sets                    Ncut



Texture Segmentation ResultsTexture Segmentation Results
(approx. 90 x 120)(approx. 90 x 120)



Ncut ResultsNcut Results



Dealing with Large Data SetsDealing with Large Data Sets



Grouping OutGrouping Out--ofof--Sample DataSample Data







Results on Berkeley Database Images Results on Berkeley Database Images 
(321 x 481)(321 x 481)



Results on Berkeley Database Images Results on Berkeley Database Images 
(321 x 481)(321 x 481)



Capturing Elongated Structures / 1Capturing Elongated Structures / 1



Capturing Elongated Structures / 2Capturing Elongated Structures / 2



““ClosingClosing”” the Similarity Graphthe Similarity Graph

Basic ideaBasic idea: Trasform the original similarity graph G into a “closed”
version thereof (Gclosed), whereby edge-weights take into account 
chained (path-based) structures.

Unweighted (0/1) case: 

Gclosed = Transitive Closure of G

Note:Note: Gclosed can be obtained from:

A + A2 + … + An



Weighted Closure of Weighted Closure of GG

ObservationObservation: When G is weighted, the ij-entry of Ak represents the sum 
of the total weights on the paths of length k between vertices i and j.

Hence, our choice is:

Aclosed = A + A2 + … + An



Example: Without Closure (Example: Without Closure (σσ = 2)= 2)



Example: Without Closure (Example: Without Closure (σσ = 4)= 4)



Example: Without Closure (Example: Without Closure (σσ = 8)= 8)



Example: With Closure (Example: With Closure (σσ = 0.5)= 0.5)





Grouping Edge ElementsGrouping Edge Elements

Here, the elements to be grouped are edgels (edge elements).

We used Herault/Horaud (1993) similarities, which combine the 
following four terms:

1. Co-circularity
2. Smoothness
3. Proximity
4. Contrast

Comparison with Mean-Field Annealing (MFA).
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Building a Hierarchy: Building a Hierarchy: 
A Family of Quadratic ProgramsA Family of Quadratic Programs



An ObservationAn Observation



The effects of α



Bounds for the Regularization Parameter / 1Bounds for the Regularization Parameter / 1



Bounds for the Regularization Parameter / 2Bounds for the Regularization Parameter / 2



Bounds for the Regularization Parameter / 3Bounds for the Regularization Parameter / 3



The Landscape of  The Landscape of  ffαα



Sketch of the Hierarchical Clustering AlgorithmSketch of the Hierarchical Clustering Algorithm



PseudoPseudo--code of the Algorithmcode of the Algorithm



Results on the IRIS dataset / 1Results on the IRIS dataset / 1



Results on the IRIS dataset / 2Results on the IRIS dataset / 2



Luo and HancockLuo and Hancock’’s Similarities (CVPRs Similarities (CVPR’’01)01)



Klein and KimiaKlein and Kimia’’s Similarities (SODAs Similarities (SODA’’01)01)



Gdalyahu and WeinshallGdalyahu and Weinshall’’s Similarities (PAMI 01)s Similarities (PAMI 01)



Factorization Results Factorization Results 
(Perona and Freeman, 98)(Perona and Freeman, 98)



Typical-cut Results (From Gdalyahu, 1999)



ConclusionsConclusions



OnOn--going and Future Projectsgoing and Future Projects

Grouping with asymmetric affinities: Game theoryGrouping with asymmetric affinities: Game theory

Clustering on hypergraphs (highClustering on hypergraphs (high--order relations)order relations)

Graph matching, object recognition and trackingGraph matching, object recognition and tracking

Video segmentationVideo segmentation



Other Applications of DominantOther Applications of Dominant--Set ClusteringSet Clustering

BioinformaticsBioinformatics
Identification of protein binding sitesIdentification of protein binding sites
R. Zauhar, M. Bruist, Univ. of Sciences Philadelphia, USA (2005)

Clustering gene expression profilesClustering gene expression profiles
T. Li et al, Fudan University, Hong Kong (2005)

Security and video surveillanceSecurity and video surveillance
Detection of anomalous activities in video streamsDetection of anomalous activities in video streams
R. Hamid et al., Georgia Institute of Tehcnology, USA (2005)

Detection of malicious activities in the internetDetection of malicious activities in the internet
F. Pouget, Insitut Eurécom (2006)

ContentContent--based image retrievalbased image retrieval

G. Giacinto, F. Roli, University of Cagliari, Italy (2007)
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