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Shape-based Object 
Recognition 
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Shock Graph Representation of 
Shape 
•!Shocks (or medial axis or skeleton) are locus of centers 

of maximal circles that are bitangent to shape boundary 

Shocks Real Example 

Shape boundary 
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Shock Categories 
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Recognition as Matching 
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Distance Between Shapes 

•!Shape space is the collection of all 
shapes 

–! shape is a point (shock graph) in the 
space 

–! shape deformation (shock graph) 
sequence is a path through the space 

•!Cost of the optimal deformation sequence is 
the minimim distance from A to B  

•!Distance between shapes is important 
for recognition 
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Application: Gesture 
Recognition 
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Organizing Image Databases 
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Motivation 
" !Many hierarchical structures in computer vision can be 

represented as trees. 
" !Matching two hierarchical structures can therefore be 

formulated as finding their largest isomorphic subtree. 
" ! Equivalently, we can find the maximum clique in their 

association graph, effectively reducing a hierarchical 
matching problem to a “flat,” discrete optimization 
problem. 

" ! Powerful, continuous optimization methods applicable 
only to “flat” problems can be used to find a solution that 
obeys hierarchical constraints. 
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Outline 

" !Subtree isomorphism 
" !An equivalent, maximum clique formulation 
" !An equivalent, continuous, quadratic optimization 

formulation 
" !A dynamical systems solution framework 
" !An extension to free trees 
" !An extension to weighted maximum clique 
" !Conclusions 
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Preliminaries 
Given a graph G=(V, E), with V the set of nodes, and E the set 
of edges:     
" !  Two nodes u,v 2 V are adjacent (denoted u » v) if they are 
connected by an edge. 
" !  A path is any sequence of distinct nodes u0 u1 ! un such 
that ui-1 » ui,  8 i=1! n.           
" !  If u0=un, the path is a cycle. 
" !  A graph is connected if any pair of nodes is joined by a 
path. 
" !  The distance between two nodes u and v is the length of 
the shortest path joining them. 
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Trees 

" ! A tree is a connected graph with no cycles. 
" ! A rooted tree has a distinguished node, the root. 
" ! The level of a node u in a rooted tree (denoted 

lev(u)) is the distance between u and the root. 
" ! If u » v and lev(v) - lev(u) = 1, u is the parent of 

v and, conversely, v is a child of u. 

Property: In a tree, any two nodes are connected 
by a unique path. 
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1.!  u » v , !(u ) » !(v ) 
2.! u is v ’s parent , !(u ) is !(v )’s parent.  
3.! the induced subgraphs are connected.   

Let T1=(V1, E1) and T2=(V2, E2) be two rooted trees. 

Any bijection ! : H1 ! H2, with H1 ! V1 and H2 ! V2, is 
called a subtree isomorphism if, given u,v 2 H1, we have: 

Subtree Isomorphism 



Graph Algorithms and Object Recognition: max clique 
17 

A subtree isomorphism is maximal if there is no other 
subtree isomorphism !’ : H1’ ! H2’ with H1 " H1’, and 
maximum if H1 has largest cardinality. 

The maximal (maximum) subtree isomorphism problem 
is to find a maximal (maximum) subtree isomorphism 
between two rooted trees. 
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Subgraph Isomorphism as a 
Maximum Clique Problem 

b 
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(u,w)~(v,z) iff (u~v AND w~z) OR (u !~ v AND w !~ z) 
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The Loss of Hierarchical Structure 
In the standard formulation of the association graph, the 
solutions may not preserve the hierarchical structure of the 
trees being matched. 
Example: 

Using the standard association graph, the assignment 2 ! h will 
also be included in the final solution, but the result violates 
hierarchical constraints, and is also not a tree. 
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Let u and v be two distinct nodes of a rooted tree, 
with u=x0x1! xn=v  the (unique) path joining them. 

The path-string of u and v, denoted by str (u,v ), is the 
string s1s2! sn on the alphabet {-1,+1} where  
si=lev (xi )-lev (xi-1 ), 8 i=1! n.    

Solution: Path Strings 

e 

b c 

f g 

d 

a Example: 

str (e,g )=-1-1+1+1 
str (u,u )=", the null string 
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The TAG of two attributed trees T1=(V1,E1) and T2=
(V2,E2) is the (weighted) graph G=(V,E) where: 

Deriving the Tree Association 
Graph (TAG) 

1.!  V=V1 x V2 

2.! for any two nodes (u,w) and (v,z) in  V:  
 (u,w) ~ (v,z) , str(u,v)=str(w,z) 
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A subset of vertices of a graph G =(V,E ) is said to be a 
clique if all its nodes are mutually adjacent. 

A maximal clique in G is one which is not contained in any 
other clique having larger size. 

Theorem 1 Any maximal (maximum) subtree 
isomorphism between two rooted trees induces a maximal 
(maximum) clique in the corresponding TAG and vice 
versa. (proof in paper) 

The Main Theorem 
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The association graph approach is attractive for several reasons: 

•!  it allows us to cast the relational structure matching problem in 
terms of a well-known problem in graph theory, for which both theory 
and algorithms are available. 

•!  many powerful heuristics for solving the maximimum clique 
problem are available (Bomze et al, 1999). 

•!  it generalizes to many-to-many matching problems (see Pelillo et 
al., 1999 (IWVF), for a review) 

Why Association Graphs for 
Subtree Isomorphism? 



Graph Algorithms and Object Recognition: max clique 
24 

Given an arbitrary weighted graph G(V,E,!) with n nodes: 

•! Sn is the standard simplex in Rn: 

•! If C ! G, xc will denote its characteristic vector, which is defined 
as: 

•! where |C | denotes the cardinality of C. 

Some Notation 

1 

1 

1 
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Consider the following quadratic function: 

where A=(aij ) is the adjacency matrix of G, i.e., the n x n symmetric 
matrix defined as: 

x* is a global maximizer of f  in Sn if f(x*)¸ f(x), for all x 2 Sn. x* is a 
local maximizer if there exists an " > 0 such that f(x*) ¸ f(x) for all x 
2 Sn whose distance from x* is less than "  and if f(x*) = f(x) implies 
x* = x, then x* is said to be a strict local maximizer. 

A Continuous Formulation for  
MAX-CLIQUE 
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The Motzkin-Straus theorem (1965) establishes a connection 
between the global (local) maximizers of f in Sn and maximum 
(maximal) cliques of G. 

Namely, a subset of vertices C  of a graph G  is a maximum clique if 
and only if its characteristic vector xc is a global maximizer of f  on 
Sn. 

This allows us to shift to the continuous domain, drawing on 
continuous optimization techniques to solve the corresponding 
discrete problem. 
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•!Unfortunately, there is a problem with the Motzkin-
Strauss formulation.   

•!Namely, spurious solutions exist that do not obey the 
properties of a characteristic vector, i.e., the solution 
doesn’t converge to the barycenter of a simplex face.   

•!In these cases, the cardinality of the solution is known 
but the assignments are not.  

Problem 
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Bomze has recently introduced a solution using a 
regularized version of f : 

which is obtained by substituting in f  the following 
adjacency matrix: 

where In is the nxn identity matrix. 

Solution 
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Theorem 2   

Let C ! V, and let Xc be its characteristic vector. Then: 

•!C  is a maximum clique of G , xc is a global maximizer of g in Sn. In 
this case, |C |=1/2(1-g(xc)). 

•!C  is a maximal clique of G , xc is a local maximizer of g in Sn. 

•!All local (and hence global) maximizers of g on Sn are strict. 

See (Bomze, Pelillo, and Stix, 1999) for proof. 

A Stronger Result 
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The search for an optimal solution on the simplex can be 
modeled as the evolution of a set of populations over time. 

Following (Hofbauer & Sigmund, 1988), the components of our 
vector x represent the frequencies of the various populations. 

The rate of increase of a particular population Ei  equals the 
increase in fitness of the population over the average fitness: 

An Evolutionary Approach to Solving 
the Continuous Optimization Problem 
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This is called the replicator equation, and it models 
the evolution of behaviour in animal conflicts.   

The trajectory of the populations, including the 
solution, is guaranteed to stay on the surface of the 
simplex. 
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If f  is linear, i.e., f  is an n £ n matrix such that  
fi (x)=(Wx)i , then we can write: 

and in the discrete domain: 
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Theorem 3  If W=W’, then the function 

is strictly increasing along any non-stationary trajectory of both 
continuous-time and discrete-time replicator dynamics. In other 
words, 8 t ¸ 0: 

for the contonuous-time dynamics, and  

for the discrete-time dynamics, unless x(t) is a stationary point.  
Furthermore, any such trajectory converges to a stationary point 
(see Fisher (1930), Crow and Kimura (1970), Hofbauer & Sigmund 
(1988)). 

The Fundamental Theorem of 
Natural Selection 
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Let T1 and T2 be two attributed trees, G=(V,E) be the corresponding 
TAG, and define 

our regularized Motzkin-Strauss formulation.   

The replicator dynamical system starting from an arbitrary initial 
state (typically, the barycenter of Si) will eventually converge to a 
maximizer of x’Wx over the standard simplex. 

This will correspond to a maximal clique in the TAG, and hence to a 
maximal subtree isomorphism between T1 and T2. 

Back to Tree Matching 
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Shock Graph 
Siddiqi, Shokoufandeh, Dickinson, and Zucker, 1999 

Shock Trees 
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Results 
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Matching Free Trees 

Title: Matching Free Trees, Maximal Cliques, and 
Monotone Game Dynamics 
Author: M. Pelillo 
Publication: IEEE PAMI 
Year: 2002 
URL: http://www.dsi.unive.it/~pelillo/papers/
pami-2001.ps.gz 
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A free tree (or simply a tree) is a connected graph with 
no cycles. 

Note: Unlike rooted trees, free trees have no 
distinguished node playing the role of root. Hence, no 
hierarchy is imposed on the tree. 

Property: In a tree, any two nodes are connected by a 
unique path. 

Extension to Free Trees 
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The free tree association graph (FTAG) of two 
attributed trees T1=(V1,E1) and T2=(V2,E2) is the 
(weighted) graph G=(V,E) where: 

Deriving the Free Tree Association 
Graph (FTAG) 

1.!  V=V1 x V2 

2.! for any two nodes (u,w) and (v,z) in  V:  
 (u,w) ~ (v,z) , d(u,v)=d(w,z) 
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Theorem 1 Any maximal (maximum) similarity 
subtree isomorphism between two attributed trees 
induces a maximal (maximum) weight clique in the 
corresponding weighted FTAG and vice versa. (proof in 
paper) 

The Main Theorem Holds for Free 
Trees 
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Faster Replicator Dynamics 
Continuous-time version (# is a positive constant): 

Discrete-time version: 
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Let T’ and T’’ be two free trees, let AG denote the adjacency 
matrix of the coresponding FTAG, and let 

where I  is the identity matrix. 

The replicator systems, starting from an arbitrary initial state, 
will eventually converge to a maximizer of the function 

over the simplex.  This will correspond to a maximal clique of 
the FTAG, and hence to a “maximal” subtree isomorphism 
between T’ and T’’. 

Tree Matching Replicator Equations 
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Recently, Liu, Geiger, and Kohn (1998) introduced a new 
representation for shape based on the idea of self-similarity.  

Given a closed planar shape, they consider two different 
parameterizations of its contour, one oriented counterclockwise: 

and the other clockwise: 

Matching Shape Axis Trees 
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•! By minimizing an appropriate cost functional, they find a 
“good” match between the two parameterizations. 

•! The shape axis (SA) is defined as the loci of middle points 
between the matched contour points.  

•! From a given SA, it is possible to construct a unique free tree, 
called the SA-tree, by grouping the discontinuities contained in 
the SA. 
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Results 

SA-tree construction: input shapes (left); shape-axis model (middle); 
SA-trees (right) 
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Examples of SA-trees, under various shape deformations. 
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Algorithm was tested on a selection of 17 shapes (SA-trees) 
representing six different object classes (horse, human, bird, dog, 
sheep, and rhino). 

Both the discrete-time first-order dynamics and its exponental 
counterpart (with #=10) were used. 

The algorithms were started from the simplex barycenter and 
stopped when either a maximal clique was found, or the distance 
between two successive points was smaller than a fixed threshold. 

Each shape was matched to each other shape (including itself), and 
in all 289 trials, both algorithms returned the maximum 
isomorphism, i.e., a maximum clique in the FTAG. 
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SA-tree matching examples. 
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Matching (Larger) Random Trees 
A hundred 100-node free trees were generated uniformly at random 
using a procedure described by Wilf (1981). 

Each tree was subject to a corruption process which consisted of 
randomly deleting a fraction of its terminal nodes. 

Corruption levels: 2%, 10%, 20%, 30%, 40%. 

Overall, therefore, 500 pairs of trees were obtained. 

Both linear and the exponential dynamics were used. 

After convergence, the proportion of matched nodes was calculated 
and averaged. 
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Results obtained over 
100-node random trees 
with various levels of 
coruption, using the first-
order dynamics. Top: 
percentage of correct 
matches; Bottom: 
average computational 
time taken by the 
replicator equations. 
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Results obtained over 
100-node random trees 
with various levels of 
coruption, using the 
exponential dynamics. 
Top: percentage of 
correct matches; Bottom: 
average computational 
time taken by the 
replicator equations. 
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Application: Matching Attributed 
Hierarchical Structures 

Title:Matching Hierarchical Structures using 
Association Graphs 
Authors: Pelillo, Siddiqi, and Zucker 
Publication: IEEE PAMI Vol. 21, No. 11 
Year: 1999 
URL: http://www.dsi.unive.it/~pelillo/papers/
pami99.pdf 
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Let # be any similarity measure on the attribute space.  

An attributed tree is a triple T=(V,E,$), where (V,E) is 
the “underlying” rooted tree and $ is a function which 
assigns an attribute vector $(u) to each node u 2 V. 

If ! : H1 ! H2 is a subtree isomorphism between two 
attributed trees T1 = (V1, E1, $1) and T2 = (V2, E2, $2) , 
the overall similarity between the induced subtrees T1
[H1] and T2[H2] is defined as: 

Attributed Tree Matching 
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The isomorphism ! is called a maximal similarity 
subtree isomorphism if there is no other subtree 
isomorphism !’ : H1’ ! H2’ such that H1 is a strict subset 
of H1’ and S(%) < S(%’). 

It is called a maximum similarity subtree isomorphism 
if S(%) is largest among all subtree isomorphisms 
between T1 and T2.    
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The TAG of two attributed trees T1=(V1,E1,$1) and T2=
(V2,E2,$2) is the (weighted) graph G=(V,E,!) where: 

Deriving the Attributed Tree 
Association Graph (TAG) 

1.!  V=V1 x V2 

2.! for any two nodes (u,w) and (v,z) in  V:  
 (u,w) ~ (v,z) , str(u,v)=str(w,z) 

3.! for any node (u,w) in V : !(u,w)=&($1(u),$2(w)) 
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A subset of vertices of a weighted graph G=(V,E,!) is said to be a 
clique if all its nodes are mutually adjacent. 

Given a subset of nodes C of V, the total weight assigned to C is 
the sum of all the weights associated with its nodes. 

A maximal weight clique in G is one which is not contained in any 
other clique having larger total weight. 

A maximum weight clique is a clique having largest total weight. 

Theorem 1 Any maximal (maximum) similarity subtree 
isomorphism between two attributed trees induces a maximal 
(maximum) weight clique in the corresponding weighted TAG and 
vice versa. (proof in paper) 

The Main Theorem holds for 
Attributed Trees 
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Given an arbitrary weighted graph G(V,E,!) with n nodes: 

•! Sn is the standard simplex in Rn: 

•! If C ! G, xc will denote its characteristic vector, which is defined 
as: 

•! where '(C) = (uj 2 C !(uj ) is the total weight on C. 

Some Notation 

1 

1 

1 
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Given a weighted graph G=(V,E,!), let M(G) be the class of nxn 
symmetric matrices: 

Continuous Formulation of MAX-
WEIGHT-CLIQUE 
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Theorem 2 (extended)  Let G=(V,E,!) be an arbitrary weighted 
graph, and let B 2 M(G). Then: 

•!A vector x 2 Sn is a local minimizer of g(x)=x’Bx on Sn iff x = xc, 
where C is a maximal weight clique of G.  

•!A vector x 2 Sn is a global minimizer of g(x)=x’Bx on Sn iff x = xc, 
where C is a maximum weight clique of G.  

•!All local (and hence global) minimizers of g(x)=x’Bx on Sn are 
strict. 

See (Bomze, Pelillo, and Stix, 1999) for proof. 

Weighted Clique/Minimizer Duality 
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M(G) is isomorphic to the positive orthant in 

dimensions 

This class is a polyhedral pointed cone whose apex is given by the 
following matrix, the one used in the experiments: 
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Let T1 and T2 be two attributed trees, G=(V,E,!) be the corresponding 
weighted TAG, and define  

where b=(bij ) is any matrix in the class M(G), e is the vector of 1’s, 
and ) = max bij.  Note that since B implies a minimization problem, we 
transform it to W, so that we can apply our replicator equation 
maximization framework. 

The replicator dynamical system, starting from an arbitrary initial state, 
will eventually converge to a maximizer of x’Wx (and hence a minimizer 
of x’Bx) over the standard simplex. 

The solution yields a maximal weight clique in the weighted TAG, and 
hence to a maximal similarity subtree isomorphism between T1 and T2. 

Attributed Tree Matching 
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The vector of attributes assigned to each node u 2 V of the 
attributed shock tree T=(V,E,$) is given by 

where 

•!  m is the number of shocks in the group. 
•!  xi and yi are the coordinates 
•!  ri is the radius (or time of formation) 
•!  vi is the speed 
•!  *i is the direction 

of each shock i in the sequence. 

Attributed Shock Trees 
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The similarity measure we use is a linear combination of four terms, 
incorporating the differences in lengths, radii, velocities, and 
curvature of two shock sequences. 

Each term is normalized to provide a unitless quantity, so that these 
different geometric properties can be combined. 

The measure provides a number between 0 and 1, which represents 
the overall similarity between the geometric attributes of the two 
nodes being compared. 

The measure is designed to be invariant under rotations and 
translations of two shapes. 

Measuring Shock Similarity 
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Results 
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A formal framework for matching hierarchical structures, non-
hierarchical structures (free trees), attributed hierarchical 
structures, and noisy structures has been introduced. 

the basic ingredients are: 

•!  subtree isomorphism as clique search 
•!  clique search as a quadratic program 
•!  replicator equations as tree matching co-operative algorithms 
  -- easily implementable in H/W (Torsello and Pelillo, 1998) 

 -- offer the advantage of biological plausibility 

Application to shape matching problem (via hierarchical shock trees 
and free shape-axis trees) 

Extension to many-to-many matching (Pelillo et al, 2001). 

Conclusions 


