
Hopfield Network 

•! Single Layer Recurrent Network 

•! Bidirectional Symmetric Connection 

•! Binary / Continuous Units 

•! Associative Memory 

•! Optimization Problem 



Hopfield Model – Discrete Case 

Recurrent neural network that uses McCulloch and Pitt’s (binary) neurons. 
Update rule is stochastic. 

Eeach neuron has two “states” :  Vi
L , Vi

H 

              Vi
L = -1 ,  Vi

H = 1 
Usually :    

          Vi
L = 0  ,  Vi

H = 1 
Input to neuron i is : 

Where: 
•! wij = strength of the connection from j to i  
•! Vj  = state (or output) of neuron j  
•! Ii    = external input to neuron i 



Hopfield Model – Discrete Case 

Each neuron updates its state in an asynchronous way, using the following rule: 

The updating of states is a stochastic process: 

To select the to-be-updated neurons we can proceed in either of two ways: 

•! At each time step select at random a unit i to be updated 
 (useful for simulation) 

•! Let each unit independently choose to update itself with  
 some constant probability per unit time 
 (useful for modeling and hardware implementation) 



Dynamics of Hopfield Model 

In contrast to feed-forward networks (wich are “static”) Hopfield networks are 
dynamical system. 
The network starts from an initial state 

     V(0) = ( V1(0), ….. ,Vn(0) )T 

and evolves in state space following a trajectory: 

Until it reaches a fixed point: 

                 V(t+1) = V(t) 



Dynamics of Hopfield Networks 

What is the dynamical behavior of a Hopfield network ? 

Does it coverge ? 

Does it produce cycles ? 

Examples 

      
      (a)           (b) 



Dynamics of Hopfield Networks 

To study the dynamical behavior of Hopfield networks we make the 
following assumption: 

In other words, if  W = (wij) is the weight matrix we assume:   

In this case the network always converges to a fixed point. 
In this case the system posseses a Liapunov (or energy) function that  
is minimized as the process evolves. 



The Energy Function – Discrete Case 

Consider the following real function: 

and let   

Assuming that neuron h has changed its state, we have: 

But        and         have the same sign. 
Hence 
                                                     (provided that               ) 



Schematic configuration space 

   model with three attractors 



Hopfield Net As Associative Memory 

Store a set of p patterns x!, ! = 1,…,p ,in such a way that when presented with  
a new pattern x, the network responds by producing that stored pattern which  
most closely resembles x. 

•! N binary units, with outputs s1,…,sN 

•! Stored patterns and test patterns are binary (0/1,±1) 
•! Connection weights (Hebb Rule) 

 Hebb suggested changes in synaptic strengths proportional to the 
 correlation between the firing of the pre and post-synaptic neurons.    

•! Recall mechanism  

 Synchronous / Asynchronous updating 

•! Pattern information is stored in equilibrium states of the network 



Example With Two Patterns 

•! Two patterns  
                X1 = (-1,-1,-1,+1) 
                X2 = (+1,+1,+1,+1) 

•! Compute weights 

•! Weight matrix 

•! Recall 

•! Input (-1,-1,-1,+1)    !    (-1,-1,-1,+1)   stable 
•! Input (-1,+1,+1,+1)  !    (+1,+1,+1,+1)     stable   
•! Input (-1,-1,-1,-1)     !    (-1,-1,-1,-1)   spurious   



Associative Memory Examples 

      An example of the behavior of a Hopfield net when used as a content-addressable 
      memory. A 120 node net was trained using the eight examplars shown in (A). The 
      pattern for the digit “3” was corrupted by randomly reversing each bit with a  proba- 
      bility of 0.25 and then applied to the net at time zero.  
      Outputs at time zero and after the first seven iterations are shown in (B).  



Associative Memory Examples 

    Example of how an associative memory  
    can reconstruct images. These are binary  
    images with 130 x 180 pixels. The images 
    on the right were recalled by the memory   
    after presentation of the corrupted images 
    shown on the left. The middle column  
    shows some intermediate states. A  
    sparsely connected Hopfield network with 
    seven stored images was used.  



Storage Capacity of Hopfield Network 

•! There is a maximum limit on the number of random patterns 
 that a Hopfield network can store 
            Pmax " 0.15N 
 If p < 0.15N, almost perfect recall 

•! If memory patterns are orthogonal vectors instead of random 
 patterns, then more patterns can be stored. However, this is  
 not useful. 

•! Evoked memory is not necessarily the memory pattern that is  

 most similar to the input pattern 

•! All patterns are not remembered with equal emphasis, some  
 are evoked inappropriately often 

•! Sometimes the network evokes spurious states 



Hopfield Model – Continuous Case 

The Hopfield model can be generalized using continuous activation functions. 
More plausible model. 
In this case: 

where       is a continuous, increasing, non linear function. 

Examples 



Funzione di attivazione 

-1 

+1 



Updating Rules 

Several possible choices for updating the units : 

  Asynchronous updating: one unit at a time is selected to have its output set 

  Synchronous updating: at each time step all units have their output set 

  Continuous updating: all units continuously and simultaneously change their outputs     



Continuous Hopfield Models  

Using the continuous updating rule, the network evolves according to the following  
set of (coupled) differential equations:  

         where       are suitable time constants (     > 0). 

         Note         When the system reaches a fixed point (   /     = 0          ) we get   

         Indeed, we study a very similar dynamics   



The Energy Function 

As the discrete model, the continuous Hopfield network has an “energy” function, 
provided that W = WT : 

Easy to prove that 

with equality iff the net reaches a fixed point. 



Modello di Hopfield continuo 
(energia) 

Perché       è monotona crescente e           . 

N.B. 

cioè      è un punto di equilibrio 
   



Modello di Hopfield continuo 
(relazione con il modello discreto) 

Esiste una relazione stretta tra il modello continuo e quello discreto. 
Si noti che : 

quindi : 

Il 2o termine in E diventa : 

L’integrale è positivo (0 se Vi=0). 
Per             il termine diventa trascurabile, quindi la funzione E del modello continuo 
diventa identica a quello del modello discreto 



Optimization Using Hopfield Network 

!! Energy function of Hopfield network 

!! The network will evolve into a (locally / globally) minimum energy state 

!! Any quadratic cost function can be rewritten as the Hopfield network Energy 
 function. Therefore, it can be minimized using Hopfield network. 

!! Classical Traveling Salesperson Problem (TSP) 

!! Many other applications 
•! 2-D, 3-D object recognition 
•! Image restoration 
•! Stereo matching 
•! Computing optical flow 



The Traveling Salesman Problem 

Problem statement: A travelling salesman must visit every city in his territory exactly 
once and then return to his starting point. Given the cost of travel between all pairs 
of cities, find the minimum cost tour. 

!! NP-Complete Problem 

!! Exhaustive Enumeration: 
   nodes,      enumerations, 
            distinct enumerations 

            distinct undirected enumerations 

 Example: 
 n = 10, 19!/2 = 1.2 x 1018  
       



The Traveling Salesman Problem 

TSP: find the shortest tour connecting a set of cities. 

Following Hopfield & Tank (1985) a tour can be represented by a permutation  
matrix: 



The Traveling Salesman Problem 

     The TSP, showing a good (a) and a bad (b) solution to the same problem 

     Network to solve a four-city TSP. Solid  
     and open circles denote units that  are  
     on and off respectively when the net is 

    representing the tour 3-2-4-1. 

     The connections are shown only for unit  
     n22; solid lines are inhibitory connections  
     of strength –dij, and dotted lines are uni- 
     form inhibitory connections of strength –#.  
     All connections are symmetric. Thresholds  
     are not shown. 



Artificial Neural Network Solution 

Solution to n-city problem is presented in an n x n permutation matrix V 

 X = city 

 i = stop at wich the city is visited 

 Voltage output: VX,i 

 Connection weights: TXi,Yj 

 n2 neurons 

 VX,i = 1 if city X is visited at stop i 

 dXY = distance between city X and city Y 



Artificial Neural Network Solution 

•! Data term: 
 We want to minimize the total distance 

•! Constraint terms: 
 Each city must be visited once  

 Each stop must contain one city 

 The matrix must contain n entries 



Artificial Neural Network Solution 

•! A, B, C, and D are positive constants 

•! Indici modulo n 

Total cost function 

La funzione energia della rete di Hopfield è: 



Network Weights 

The coefficients of the quadratic terms in the cost function define the weights  
of the connections in the network 

     {Inhibitory connection in each row} 

     {Inhibitory connection in each column} 

     {Global inhibition} 

     {Data term}  

      

     {External current}   

    



Experiments 
•! 10-city problem, 100 neurons 

•! Locations of the 10 cities are chosen randomly with uniform p.d.f. in unit square 

•! Parameters: A = B = 500, C = 200, D = 500 

•! The size of the squares correspond to the value of the voltage output  
 at the corresponding neurons. 

•! Path: D-H-I-F-G-E-A-J-C-B 



TSP – A Second Formulation 

Another way of formulating the TSP constraints (i.e., permutation matrix) is the 
following 

     row constraint 

   
     column constraint 

The energy function becomes : 

Advantage : less parameters (A,B,D) 



The N-queen Problem  

Build an n x n network whose neuron ( i, j ) is active if and only if  
a queen occupies position ( i, j ) 

There are 4 constraints : 

1.! Only one queen on each row 

2.! Only one queen on each column 

3.! Only one queen on each diagonal 

4.! Exactly n queens on the chessboard 



Network Weights 

Following Hopfield’s idea for the TSP, the weights become: 

A $ inhibitory connection on each row 
B $ inhibitory connection on each column 
C $ “global” inhibitory connection 
D $ inhibitory connection on each diagonal 

 

"Ti j,k l = A 1"# j l( )#i k +

B # j l 1"#i k( ) +

C +

D #i+ j,k+l +#i" j,k"l( ) 1"#i k( )



Hopfield’s Networks for Optimization 

Shortcomings of the original formulation : 

 1) number of connection is O(n4) and number of units O(n2) 

 2) not clear how to determine the parameters A, B, C, D 

 3) no theoretically guarantee that the solutons obtained are indeed “permutation 
matrices” 

 4) not clear how to avoid local minima 

 5) the relation between the original (discrete) problem and the continuous one 
holds only in one direction (that is, although each “discrete” solution 
corresponds to a solution in the continuous space, the converse needs not be 
true) 



The Maximum Clique Problem (MCP) 

You are given: 

•! An undirected graph G = (V,E) , where  
  - V = {1,….,n} 
  - E     V x V 

and are asked to  

•! Find the largest complete subgraph (clique) of G 

The problem is known to be NP-hard, and so is problem of determining just  
the size of the maximum clique. Pardalos and Xue (1994) provide a review  
of the MCP with 260 references. 



Some Notation 

Given an arbitrary graph G = (V,E) with n nodes: 

•! If C     V, xc will denote its characteristic vector which is defined as 

•! Sn is the standard simplex in Rn : 

•! A=(aij) is the adjacency matrix of G: 



The Lagrangian of a graph 

Consider the following “Lagrangian” of graph G: 

Where a prime (‘) denotes transposition and A is the adjacency matrix of G. 

Example:  



The Motzkin-Straus Theorem 





Spurious Solutions 

All points on the segment joining x’ and x’’  

are “spurious” solutions. 

Solution: add ! over the main diagonal of A   



The regularized Motzkin-Straus Theorem 

THEOREM (Bomze, 1997)      

 Given  C     V  with characteristic vector xc we have: 

 - C is a maximum clique of  G  IFF   xc is a global maximizer of     in 

 - C is a maximal clique of  G  IFF   xc is a local maximizer of     in 

   - all local/global maximizers are strict and have the form of a characteristic 
vector of some subset of vertices (that is, no spurious solutions) 



Evolutionary Games 

Developed in evolutionary game theory to model the evolution of behavior in  

animal conflicts. 

Assumptions 

•! A large population of individuals belonging to the same species which 

 compete for a particular limited resource  

•! This kind of conflict is modeled as a game, the players being pairs of 

 randomly selected population members 

•! Players do not behave “rationally” but act according to a pre-programmed 

 behavioral pattern, or pure strategy 

•! Reproduction is assumed to be asexual 

•! Utility is measured in terms of Darwinian fitness, or reproductive success                



Notations 

•!                        is the set of pure strategies 

•!              is the proportion of population members playing strategy    at time     

•! The state of population at a given instant is the vector 

•! Given a population state     , the support of    , denoted           , is defined as 
 the set of positive components of    , i.e., 



Payoffs 

Let                 be the          payoff (or fitness) matrix. 

       represents the payoff of an individual playing strategy    against an opponent 
playing strategy                    . 

If the population is in state    , the expected payoff earnt by an    – strategist is:   

while the mean payoff over the entire population is: 



Replicator Equations 

Developed in evolutionary game theory to model the evolution of behavior in 
animal conflicts (Hofbauer & Sigmund, 1998; Weibull, 1995). 

Let                    be a non-negative real-valued          matrix, and let 

Continuous-time version:  

Discrete-time version: 



Replicator Equations & Fundamental Theorem of Selection 

     is invariant under both dynamics, and they have the same stationary points. 

Theorem:   If              , then the function  

  is strictly increasing along any non-constant trajectory of  
  both continuous-time and discrete-time replicator dynamics   



Mapping MCP’s onto Relaxation Nets 

To (approximately) solve a MCP by relaxation, simply construct a net having   
units, and a           -weight matrix given by 

where A is the adjacency matrix of G. 

Example:  

The system starting from x(0) will maximize the Motzkin-Straus function and will 
converge to a fixed point x* which corresponds to a (local) maximum of the 
Lagrangian. 



Experimental Setup  

Experiments were conducted over random graphs having: 

•! size:     = 10, 25, 50, 75, 100 

•! density:     = 0.10, 0.25, 0.50, 0.75, 0.90 

Comparison with Bron-Kerbosch (BK) clique-finding algorithm (1974). 
For each pair (    ,    ) 100 graphs generated randomly with size     and density 



Graph Isomorphism 





Results 




