Cameras

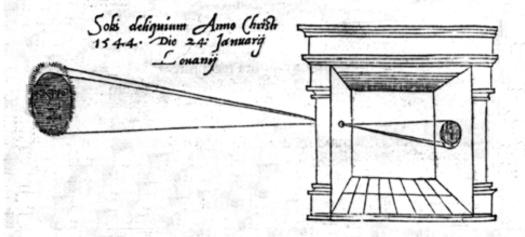
- First photograph due to Niepce
- First on record shown in the book 1822
- Basic abstraction is the pinhole camera
 - lenses required to ensure image is not too dark
 - various other abstractions can be applied

Image Formation

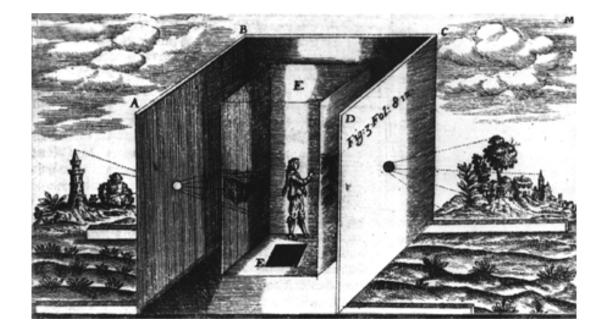
- Optics (geometry)
- Photometry (physics)

La "camera ottica"

• Conosciuta sin dall'antichita' (Aristotele ne accenna l'esistenza nel 330 a.C.), e' l'antenato della moderna macchina fotografica

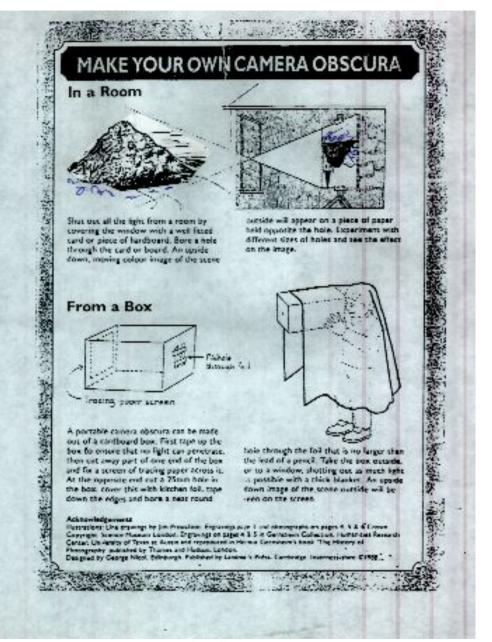


Camere oscure negli USA


Camera Obscura, Reinerus Gemma-Frisius, 1544

illum in tabula per radios Solis, quâm in cœlo contingit: hoc eft,fi in cœlo fuperior pars deliquiũ patiatur,in radiis apparebit inferior deficere,vt ratio exigit optica.

Sic nos exacté Anno . 1544 . Louanii eclipsim Solis observauimus, inuenimusq; deficere paulò plus g dex-


Camera Obscura, Athanasius Kircher, 1646

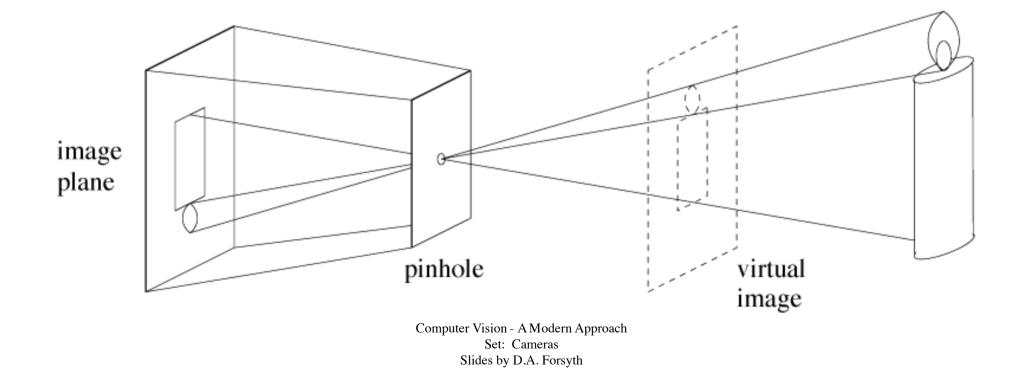
- Camera oscura a
- San Francisco

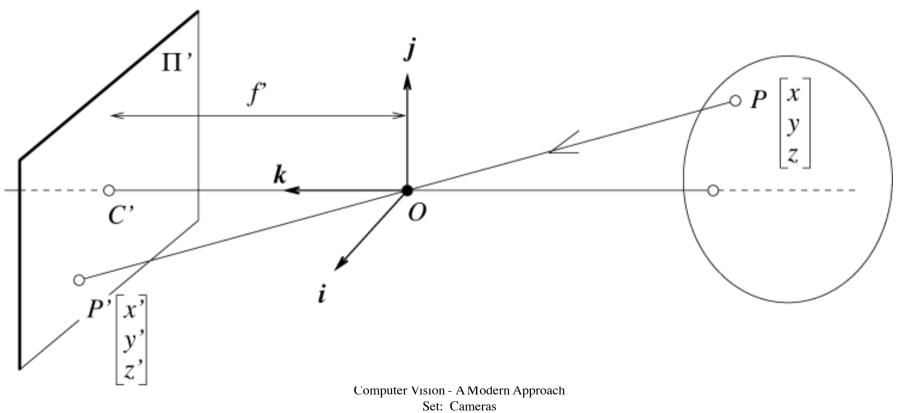
Set: Cameras Slides by D.A. Forsyth

Camere oscure nel mondo ...

ABERYSTWYTH	WALES	1985	12".5 f20 IN PURPOSE-BUILT TOWER
AIKEN	USA	CURRENT	IN DUPONT PLANETARIUM, SOUTH CAROLINA, PINHOLE TYPE
ALTADENA	USA	CURRENT	PRIVATELY-OWNED, 6" 15
BIEL	SWITZE RLAND	CURRENT	AT MUSEUM NEUHAUS
BRADFORD	ENGLAND		VARIOUS SMALL CAMERA OBSCURAS
		1000	TENT CAMERA OBSCURA 4"LENS f26. PORT ABLE
BRIGHTON & HOVE	ENGLAND	1996	
BRISTOL	ENGLAND	1829	5" LENS, IN A CONVERTED SNUFF MILL
CADIZ	SPAIN	1994	12" LENS f17. IN WATCH TOWER
CAMBERVVELL	ENGLAND	1992	8" LENS 125, PRIVATELY-OWNED
CHESTER	ENGLAND	C1993	5" LENS f14? RESITING OF STOKE OPTICS (Q.V.).
DUDLEY	ENGLAND	CURRENT	AT DUDLEY ZOO & CASTLE
DUMERIES	SCOTLAND	1836	9" LENS f16. IN CONVERTED WINDMILL
EDINBURGH	SCOTLAND	1947*	COMPLEX LENS, OPENED 1853 (* NEW OPTICS)
EGER	HUNGARY	1700s ONWARDS	IN ASTRONOMICAL TOWER, 6" LENS 9ft FOCAL LENGTH
ENDINGEN	SWITZE RLAND	1995	(ONE OF TWO IN SWITZERLAND!!)
FRANKFURT	GERMANY	1995	IN TENT CAMERA OBSCURA, IN MUSEUM
GRAHAMSTOWN	SAFRICA	1882/83	5" LENS (STOPPED DOWN FROM 9")
GREENPORT, NY	USA	1997	SEMI-PORTABLE, PLYWOOD BUILDING, 4ft SCREEN, 2"LENS fl. 78"
GREENWICH	ENGLAND	1994	8" LENS f34. AT OLD GREENWICH OBS.
HAINICHEN	GERMANY	1883	REOPENED 1985
ILFR ACOMBE	ENGLAND	1993?	WATERMOUTH CASTLE. IN GNOMELAND
KIRRIEMUIR	SCOTLAND	1929	7" LENS f15. IN CRICKET PAMLON
KNIGHTON	WALES	1994	13" LENS f15. IN ASTRONOMICAL OBSERVATORY
KYOTO	JAPAN	?	AT THE NAKAGAWA PHOTO MUSEUM OR MUSEUM OF KYOTO
LISBON	PORTUGAL	1997	12.25" LENS FL 7.25 METRES, ST GEORGE'S, CASTLE, BY SINDEN
LONG MELFORD	ENGLAND	1993>	PINHOLE CAMERA & WITH SMALLENS, AT KENTWELL HALL.
LLANDUDNO	WALES	?	4"LENS, RECENT,
LOS ANGELES	USA	1953?	10" LENS f12, FIXED-MEW, SIMPLE LENS
MANCHESTER	ENGLAND	1995	MUSEUM OF SCIENCE & INDUSTRY, INDOOR VIEWS, 'UNEXCITING'.
MIDDLE WALLOP	ENGLAND	1997	8.125" LENS WITH FL OF 16th, INTERACTIVE SCIENCE CENTRE
MONT ST. MICHEL	FRANCE	?	NOT IN ABBE Y, AT LEAST 20 YEARS OLD.
MÜLHEIM	GERMANY	1992	51/2" LENS 165. IN OLD RAILWAY WATERTOWER.
NAPIER	NZ	1970s	IN AQUARIUM, AUTOMATED, THREE-LENS SYSTEM 8"
NEVADA	USA	ANNUALLY	AT BURNING MAN FESTIVAL, TEMP,
OXFORD	ENGLAND	?	70mm LENS (1 DIOPTRE), CURIOXITY MUSEUM.
OYBIN	GERMANY	1983	8" LENS 114.8, REPLACE 1852 CAMERA OBSCURA.
PARMA	ITALY	2	IN FONTANELLATO CASTLE.
PALMERSTON NORTH	NZ	CURRENT	OLD MENISCUS LENS, RE-CREATED.
PORTLAND	UŜA	1994	12" TRIPLE STOPPED TO 7.123 AT CHILDREN'S MUSEUM
PORTMEIRION	WALES	1922?	LENS FROM SUBMARIN
PORTSLADE	ENGLAND	1991	12"LENS f18. IN WATEROVER, FROM GATESHEAD(Q.V.).
PRETORIA	SA	CURRENT	AT THE EXPLORATORIUM, UNIVERSITY OF PRETORIA
RADLETT	ENGLAND	CURRENT	NEW SITE FOR DALL'S LUTON CAMERA OBSCURA
RIVERSIDE	USA	1989	CALIFORNIA MUSE UM OF PHOTOGRAPHY
ROCHESTER	USA	CURRENT	GEORGE EASTMAN HOUSE.
SAN FRANCISCO	USA	1989	PRIVATE , ON TELEGRAPH HILL, 6" LENS 130.
SAN FRANCISCO	USA	1948/49	8" LENS (19, IN CAMERA-SHAPED BUILDING.
SANTA MONICA	USA	1955	BUILT 1899 ON DIFFERENT SITE.
SOUTHAMPTON	USA	1955	MR WAKEFIELD, IN ROOF OF HOUSE .61/2121.
STOKE-ON-TRENT	ENGLAND	1997	TEMP OR ARY, STAFF, UNIVERSITY, 4" LENS 115, Ms J.GRIGGS.
TODMORDEN	ENGLAND	?	5"LENS (22, AT AMATEUR ASTRO, CENTRE, BEING RENOVATED.
TODMORDEN	ENGLAND	1995	5"LENS 111. IN ROOF OF WORKSHOP.
WORTHING	ENGLAND	1996	PORTABLE, PRIVATE.
MONT ST, MICHEL	FRANCHE	1000	
GOTHACASTLE	GERMANY		
EGGER	HUNGARY		
PARMA	ITALY		
TOOWOMBA	AUSTRALIA		
NAPIER	ENGLAND		

... e in Italia (Rocca di Sanvitale, Fontanellato, Parma)



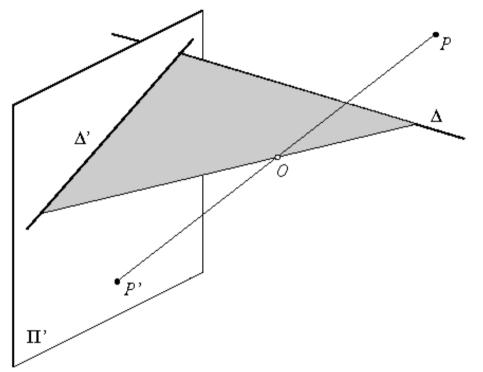


Pinhole cameras

- Abstract camera model box with a small hole in it
- Pinhole cameras work in practice

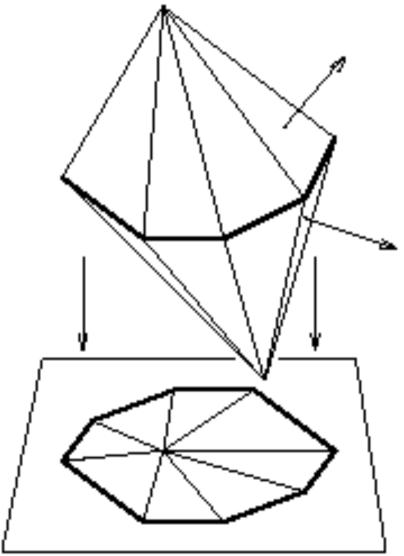
The equation of projection

Slides by D.A. Forsyth

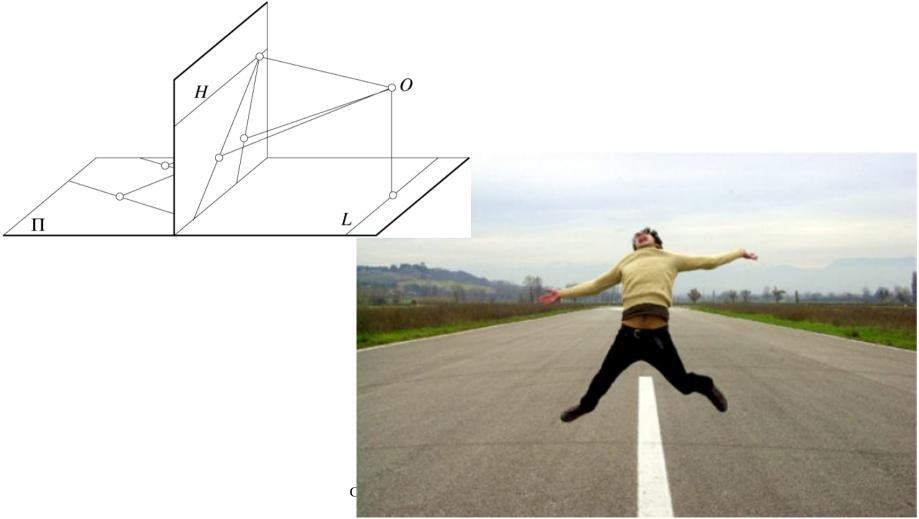

The equation of projection

- Cartesian coordinates:
 - We have, by similar triangles, that (x, y, z) -> (f x/z, f y/z, -f)
 - Ignore the third coordinate, and get

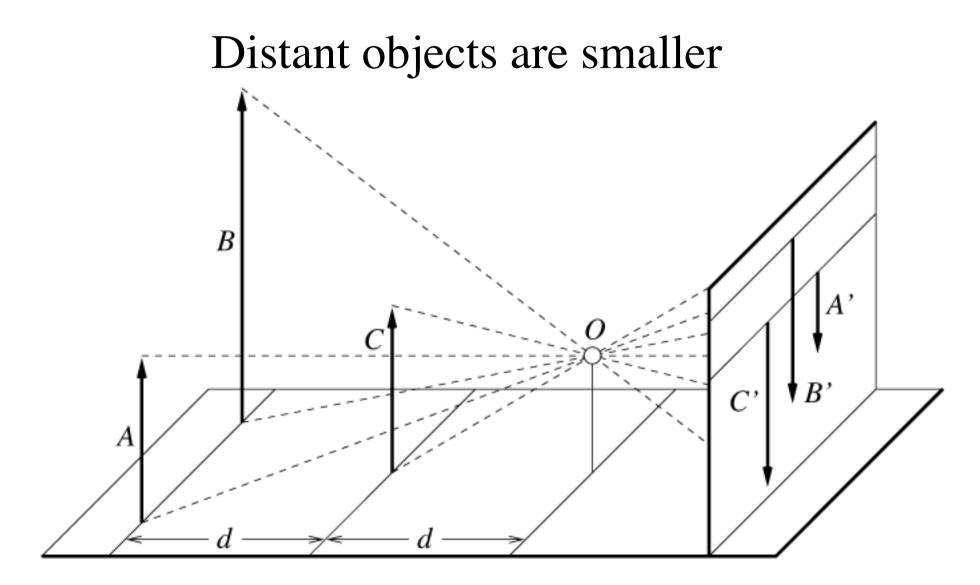
$$(x, y, z) \mapsto (f \frac{x}{z}, f \frac{y}{z})$$

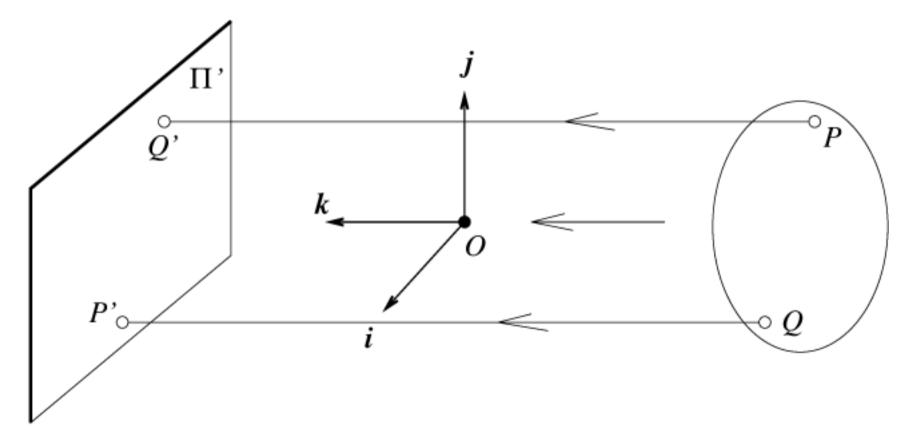

Geometric properties of projection

- Points go to points
- Lines go to lines
- Planes go to whole image
- Polygons go to polygons
- Degenerate cases
 - line through focal point to point
 - plane through focal point to line

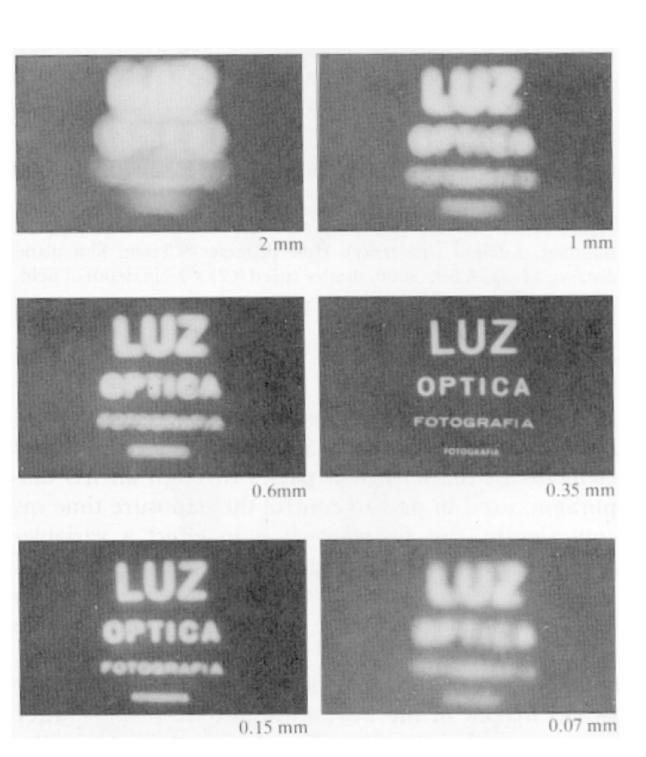


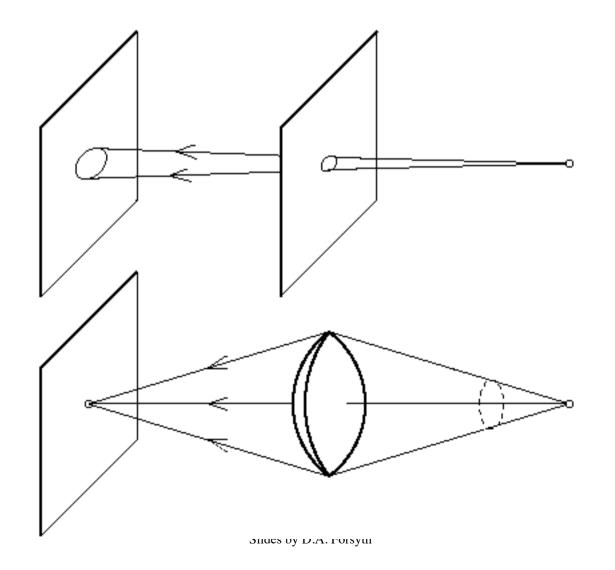
Polyhedra project to polygons


• (because lines project to lines)

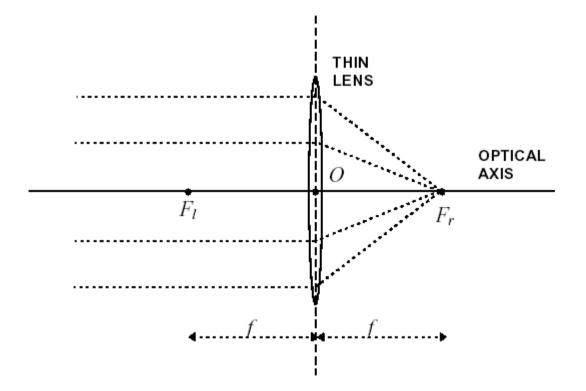

Parallel lines converge

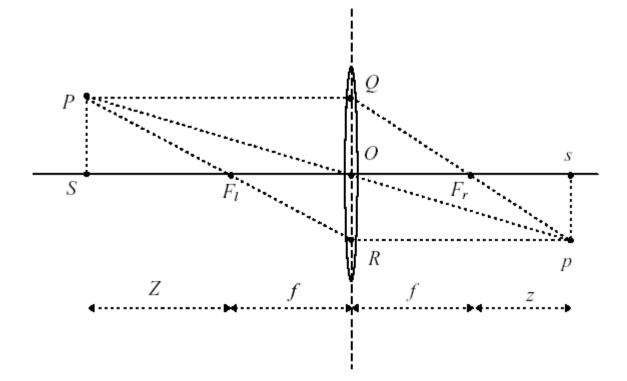
Slides by D.A. Forsyth


Orthographic projection


Pinhole too big many directions are averaged, blurring the image

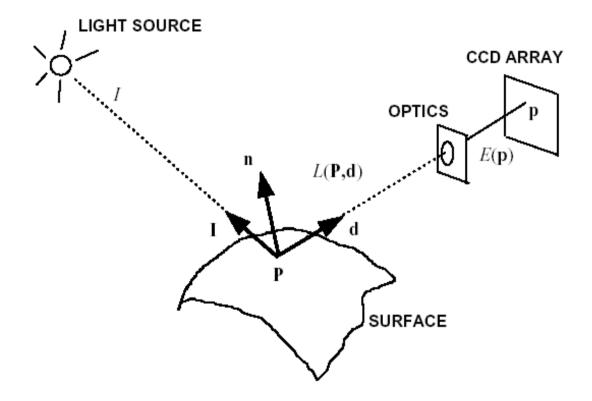
Pinhole too smalldiffraction effects blur the image


Generally, pinhole cameras are *dark*, because a very small set of rays from a particular point hits the screen.



The reason for lenses

Thin lenses



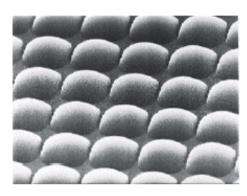
$$Zz = f^2$$

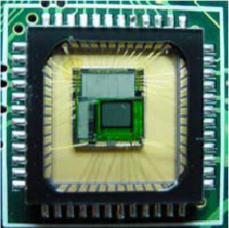
Computer Vision - A Modern Approach Set: Cameras Slides by D.A. Forsyth

Basic radiometry

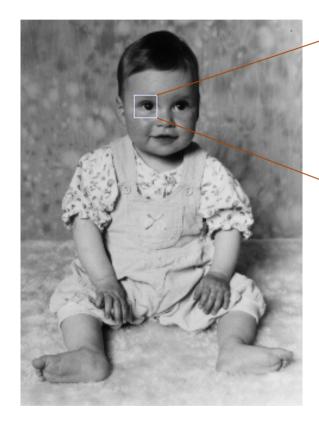
Image Irradiance E: the power of the light, per unit area and at each point p of the image plane.

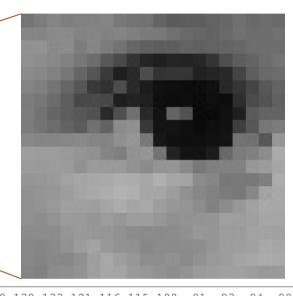
Scene Irradiance L: the power of light, per unit area, ideally emitted by each point **P** of a surface in 3-D space in a given direction d.


The Lambertian model for surface reflectance


$$L = \rho \mathbf{I}^{\top} \mathbf{n}$$

where I is the direction and amount of incident light, n is the normal to the Lambertian surface. ρ is a positive constant called *surface's albedo*, which characterizes the surface's material.


Cameras


- Basic process:
 - photons hit a detector
 - the detector becomes charged
 - the charge is read out as brightness
- Sensor types:
 - CCD (charge-coupled device)
 - most common
 - · high sensitivity
 - · high power
 - cannot be individually addressed
 - blooming
 - CMOS
 - · simple to fabricate (cheap)
 - · lower sensitivity, lower power
 - · can be individually addressed

Digital images

117 125 133 127 130 130 133 121 116 103 112 105 109 106 115 100 133 138 138 132 134 99 106 113 109 113 147 138 140 125 134 99 100 109 110 120 108 144 141 136 109 116 136 129 127 117 120 108 125 115 102 79 113 19 100 99 100 116 109 91 113 119 124 133 133 135 138 133 132 144 150 120 20 115 113 88 150 158 157 157 154 149 145 133 127 146 150 116 28 105 124 128 141 171 155 154 156 155 146 155 154 154 147 139 148 150 138 120 128 129 130 156 165 174 172 167 177 166 164 140 134 120 121 151 154 162 166 167 127 172 149 151 157 165 169 173 179 176 166 166 157 145 136 129 124 120 136 163 168 169 167 144 148 153 160 159 158 165 172 165 169 157 151 149 141 130 140 151 162 144 141 147 155 154 149 156 151 157 157 151 144 147 147 149 159 158 159 166 165 139 140 140 150 153 151 150 146 140 139 138 140 145 151 149 156 156 162 162 161 136 134 138 146 156 164 153 146 145 136 139 139 140 141 149 157 159 161 169 166 136 133 136 135 144 159 168 159 151 142 141 145 139 146 153 156 164 167 172 168 133 129 140 142 146 159 167 165 154 151 146 141 147 154 156 160 161 157 153 154

Slides by D.A. Forsyth