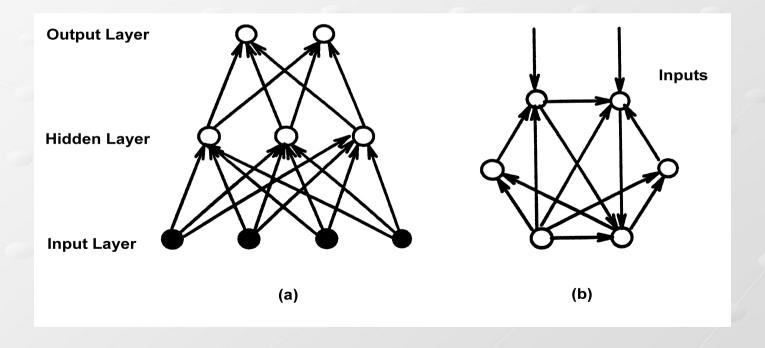
Network Topologies / Architectures

- Feedforward only vs. Feedback loop (Recurrent networks)
- Fully connected vs. sparsely connected
- Single layer vs. multilayer

Multilayer perceptrons, Hopfield network, Boltzman machines, Kohonen network



Classification Problems

Given :

- 1) some "features" $(f_1, f_2, ..., f_n)$
- 2) some "classes" (c_1, \ldots, c_m)

Problem :

To classify an "object" according to its features

Example #1

To classify an "object" as :

 $C_1 =$ "watermelon" $C_2 =$ "apple" $C_3 =$ "orange"

According to the following features : $f_1 = \text{``weight''}$ $f_2 = \text{``color''}$ $f_3 = \text{``size''}$



Example #2

Problem : Establish whether a patient got the flu

- Classes : { " flu " , " non-flu " }
- (Potential) Features :
 - f_1 :Body temperature f_2 :Headache ? f_3 :Throat is red ? f_4 :

Example #3

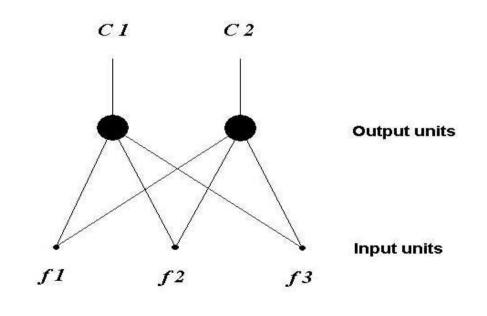
Classes = $\{0, 1\}$ Features = x, y: both taking value in [0, + ∞ [Idea : Geometric Representation × × × × = class 1 = class 0

Neural Networks for Classification

A neural network can be used as a classification device .

Input	Ξ	features values
Output	Ξ	class labels

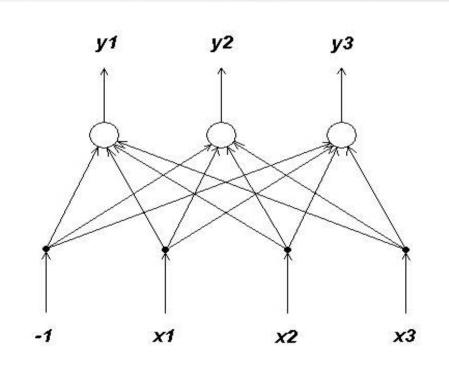
Example : 3 features , 2 classes



Thresholds

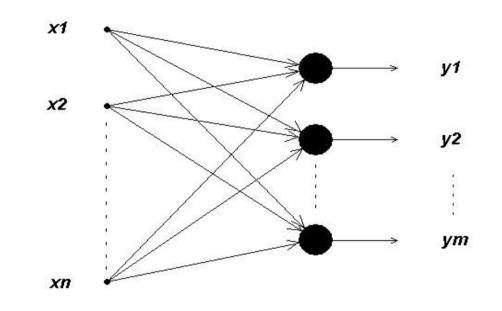
We can get rid of the thresholds associated to neurons by adding an extra unit permanently clamped at -1.

In so doing, thresholds become weights and can be adaptively adjusted during learning.



Simple Perceptrons

A network consisting of one layer of M&P neurons connected in a feedforward way (i.e. no lateral or feedback connections).

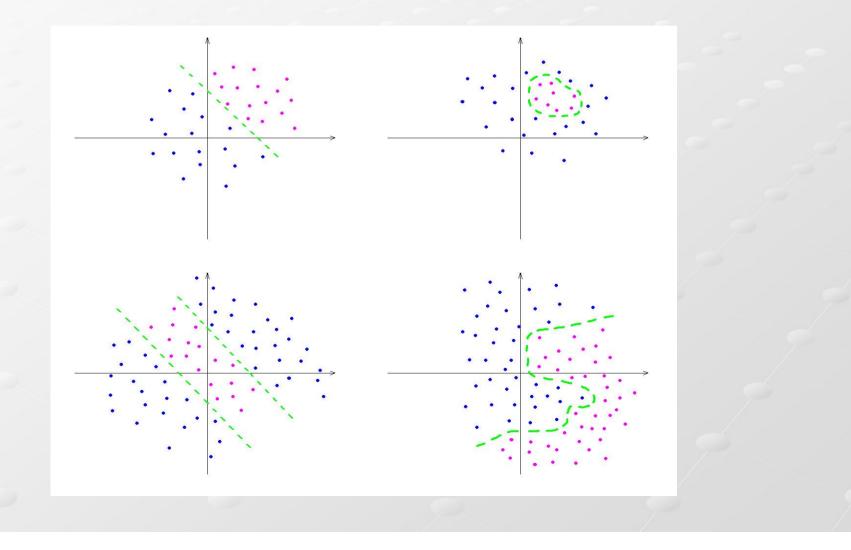


- Capable of "learning" from examples (Rosenblatt)
- They suffer from serious computational limitations (Minsky and Papert, 1969)

Decision Regions

It's an area wherein all examples of one class fall .

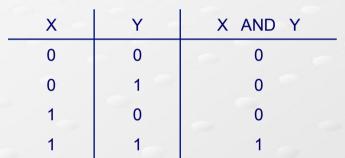
Examples :

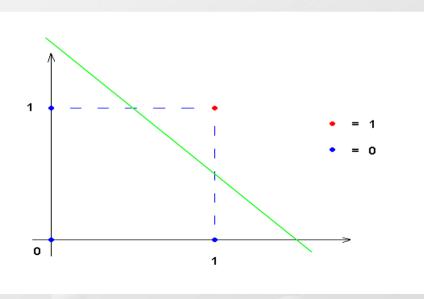


Linear Separability

A classification problem is said to be *linearly separable* if the decision regions can be separated by a hyperplane .

Example : AND



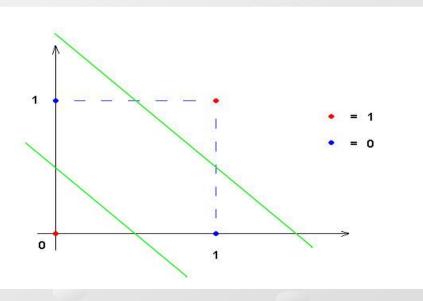


Limitations of Perceptrons

It has been shown that perceptrons can only solve linearly separable problems (Minsky and Papert, 1969).

Example : XOR (exclusive OR)

Х	Y	X XOR Y		
0	0	0		
0	1	1		
1	0	1		
1	1	0		



A View of the Role of Units

Structure	Type of Decision Regions	Exclusive-OR Problem	Classes with Meshed Regions	Most General Region Shapes
Single-layer	Half plane bounded by hyperplane	AL B B A	B	
Two-layers	Convex open or closed regions		B	
Three-layers	Arbitrary (Complexity limited by number of nodes)		B	

Convergence of Learning Algorithms

- If the problem is linearly separable, then the learning rule converges to an appropriate set of weights in a finite number of steps (Nilsson 1965)
- In practice, one does not know whether the problem is linearly separable or not.
 So decrease n with the number of iterations, letting n = 0.
 The convergence so obtained is artificial and does not necessarily yield a valid weight vector that will classify all patterns correctly
- Some variations of the learning algorithm, e.g. Pocket algorithm, (Gallant, 1986)

Multi–Layer Feedforward Networks

- Limitation of simple perceptron: can implement only linearly separable functions
- Add "hidden " layers between the input and output layer. A network with just one hidden layer can represent any Boolean functions including XOR
- Power of multilayer networks was known long ago, but algorithms for training or learning, e.g. back-propagation method, became available only recently (invented several times, popularized in 1986)
- Universal approximation power: Two-layer network can approximate any smooth function (Cybenko, 1989; Funahashi, 1989; Hornik, et al., 1989)

• Static (no feedback)