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Succinct Games 

Describing a game in normal form entails listing all payoffs for all players and 
strategy combinations. In a game with n players, each facing m pure strategies, 
one need to store nmn numbers! 

A succinct game (or a succinctly representable game) is a game which may be 
represented in a size much smaller than its normal-form representation. 

Examples. 

Sparse games. Most of the payoffs are zero. 

Graphical games. The payoffs of each player depends on the actions of very few 
(at most d) other players. The number of payoffs needed to describe this game is 
nmd+1. 

Symmetric games. All players are identical, so in evaluating the payoff of a 
combination of strategies, all that matters is how many of the n players play each 
of the s strategies. 

Polymatrix Games 

A polymatrix game (a.k.a. multimatrix game) is a non-cooperative game in 
which the relative influence of the selection of a pure strategy by any one 
player on the payoff to any other player is always the same, regardless of 
what the rest of the players do. 

Formally: 

  There are n players each of whom can use m pure strategies 

  For each pair (i,j) of players there is an m x m payoff matrix Aij 

  The payoff of player i for the strategy combination s1,…,sn is given by 

The number of payoff values required to represent such a game is O(n2m2). 

The problem of finding a Nash equilibrium in a polymatrix game is PPAD-
complete. 

  

€ 

ui(s1,,sn ) = Asi s j
ij

j≠ i
∑
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Context helps … 

… but can also deceive! 
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What do you see? 

From: A. Oliva and A. Torralba, “The role of context in object recognition”, Trends in Cognitive Sciences, 2007. 

Context and the Brain 

From: M. Bar, “Visual objects in context”, Nature Reviews Neuroscience, August 2004. 
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The (Consistent) Labeling Problem 

A labeling problem involves: 

  A set of n objects B = {b1,…,bn} 

  A set of m labels Λ =  {1,…,m} 

The goal is to label each object of B with a label of Λ. 

To this end, two sources of information are exploited: 

  Local measurements which capture the salient features of each object 
viewed in isolation 

  Contextual information, expressed in terms of a real-valued n2 x m2 
matrix of compatibility coefficients R = {rij(λ,μ)}. 

The coefficient rij(λ,μ) measures the strenght of compatibility between the 
two hypotheses: “bi is labeled λ” and “bj is labeled μ“. 

Relaxation Labeling Processes 

The initial local measurements are assumed to provide, for each object bi∈B, 
an m-dimensional (probability) vector: 

with pi
(0)(λ) ≥ 0 and ∑λ  pi

(0)(λ) = 1. Each pi
(0)(λ) represents the initial, non-

contextual degree of confidence in the hypothesis “bi is labeled λ”. 

By concatenating vectors p1
(0),…,pn

(0) one obtains an (initial) weighted labeling 
assignment p(0)∈ℜnm. 

The space of weighted labeling assignments is  

where each ∆ is the standard simplex of ℜn. Vertices of IK represent 
unambiguous labeling assignments 

A relaxation labeling process takes the initial labeling assignment p(0) as input 
and iteratively updates it taking into account the compatibility model R. 

€ 

  

€ 

IK = Δ ×…×Δ
m times

     

  

€ 

pi
(0) = pi

(0)(1),, pi
(0)(m)( )

T
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Relaxation Labeling Processes 

€ 

In a now classic 1976 paper, Rosenfeld, Hummel, and Zucker introduced 
heuristically the following update rule (assuming a non-negative 
compatibility matrix): 

€ 

pi
(t+1)(λ) =

pi
( t )(λ)qi

( t )(λ)
pi
( t )(µ)qi

( t )(µ)
µ

∑

€ 

qi
(t )(λ) = rij (

µ

∑ λ,µ)
j
∑ pi

( t )(µ)

where 

quantifies the support that context gives at time t to the hypothesis “bi is 
labeled with label λ”. 

See (Pelillo, 1997) for a rigorous derivation of this rule in the context of a 
formal theory of consistency. 

Applications 

€ 

Since their introduction in the mid-1970’s relaxation labeling algorithms 
have found applications in virtually all problems in computer vision and 
pattern recognition: 

  Edge and curve detection and enhancement 
  Region-based segmentation 
  Stereo matching 
  Shape and object recognition 
  Grouping and perceptual organization 
  Graph matching 
  Handwriting interpretation 
  … 

Further, intriguing similarities exist between relaxation labeling processes 
and certain mechanisms in the early stages of biological visual systems (see 
Zucker, Dobbins and Iverson, 1989, for physiological and anatomical 
evidence).  
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Hummel and Zucker’s Consistency 

€ 

  

€ 

pi(λ)qi(λ)
λ

∑ ≥ vi(λ)qi(λ)
λ

∑       i =1…n

In 1983, Bob Hummel and Steve Zucker developed an elegant theory of 
consistency in labeling problem. 

By analogy with the unambiguous case, which is easily understood, they 
define a weighted labeling assignment p∈IK consistent if:   

for all labeling assignments v∈IK.  
If strict inequalities hold for all v ≠ p, then p is said to be strictly consistent. 

Generalization of classical constraint 
satisfaction problems!  

Geometrical interpretation.  
The support vector q points away 
from all tangent vectors at p (it has 
null projection in IK). 

Characterizations 

€ 

Theorem (Hummel and Zucker, 1983). A labeling p∈IK is consistent if and 
only if, for all i = 1…n, the following conditions hold: 

1.  qi(λ) = ci whenever pi(λ) > 0 

2.  qi(λ) ≤ ci whenever pi(λ) = 0 

for some constants c1…cn. 

The “average local consistency” of a labeling p∈IK is defined as: 

€ 

A(p) = pi(λ)qi(λ)
λ

∑
i
∑

Theorem (Hummel and Zucker, 1983). If the compatibility matrix R is 
symmetric, i.e., rij(λ,μ)=rji(μ,λ), then any local maximizer p∈IK of A is 
consistent. 
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Understanding the “1976-rule” 

€ 

Using the Baum-Eagon inequality it is easy to prove the following result, 
concerning the original Rosenfeld-Hummel-Zucker (RHZ) update rule. 

Theorem (Pelillo, 1997). The RHZ relaxation operator is a “growth 
transformation” for the average local consistency A, provided that 
compatibility coefficients are symmetric. In other words, the algorithm 
strictly increases the average local consistency on each iteration, i.e., 

A(p(t+1)) > A(p(t)) 

for t = 0,1,… until a fixed point is reached. 

Theorem (Elfving and Eklundh, 1982; Pelillo, 1997). Let p∈IK be a strictly 
consistent labeling. Then p is an asymptotically stable equilibrium point for 
the RHZ relaxation scheme, whether or not the compatibility matrix is 
symmetric. 

€ 

As observed by Miller and Zucker (1991) the consistent labeling problem is 
equivalent to a polymatrix game. 

Indeed, in such formulation we have: 

  Objects = players 
  Labels = pure strategies 
  Weighted labeling assignments = mixed strategies  
  Compatibility coefficients = payoffs 

and: 

  Consistent labeling = Nash equilibrium 
  Strictly consistent labeling = strict Nash equilibrium 

Further, the RHZ update rule corresponds to discrete-time multi-population 
“replicator dynamics” used in evolutionary game theory (see previous talk). 

Relaxation Labeling and  
Polymatrix Games 
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Semi-Supervised Learning 

€ 

Unsupervised learning 
 - Learning with unlabeled data 

Supervised learning  
 - Learning with labeled data 
 - Finding a mapping from the feature space to the label space  

Semi-supervised learning 
 - Learning with labeled and unlabeled data 

 - labeled data:                                     �
      - unlabeled data:                                 

Can we find a better classifier from both labeled and unlabeled data?   

{x1, . . . ,xn}

{(x1, y1, . . . ,xn, yn)}
f : X → Y

{(x1, y1), . . . ,x!, y!)}
{x!+1, . . . ,xn}

Unlabeled Points Can Help… 

Adapted from: O. Duchene, J.-Y. Audibert, R. Keriven, J. Ponce, and F. Ségonne. Segmentation by 
transduction. CVPR 2008. 
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Graph Transduction 

Given a set of data points grouped into:  
  labeled data:  
  unlabeled data:�

Express data as a graph G=(V,E) 

  V : nodes representing labeled and unlabeled points 
  E : pairwise edges between nodes weighted by the similarity between the 

corresponding pairs of points 

Goal: Propagate the information available at the labeled nodes to unlabeled ones 
in a “consistent” way. 

Cluster assumption: 
  The data form distinct clusters 
  Two points in the same cluster are expected to be in the same class 

{(x1, y1), . . . ,x!, y!)}
{x!+1, . . . ,xn} !! n

An Application: 
Interactive Image Segmentation 

Segmentation by transduction: “Given a set of user-supplied seeds representative 
of each region to be segmented in an image, generate a segmentation of the entire 
image that is consistent with the seeds.” 

From: O. Duchene, J.-Y. Audibert, R. Keriven, J. Ponce, and F. Ségonne. 
Segmentation by transduction. CVPR 2008. 
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A Special Case: 
Unweighted Undirected Graphs 

A simple case of graph transduction in which the graph G is an unweighted 
undirected graph: 

  An edge denotes perfect similarity between points 
  The adjacency matrix of G is a 0/1 matrix 

The cluster assumption: Each node in a connected component of the graph 
should have the same class label. 

A Special Case: 
Unweighted Undirected Graphs 

This toy problem can be formulated as a (binary) constraint satisfaction problem 
(CSP) as follows: 

  The set of variables: V = {v1, …, vn} 

  Domains:  

  Binary constraints: ∀i,j: if aij = 1, then vi = vj �
                               e.g. for a 2-class problem 

Each assignment of values to the variables satisfying all the constraints is a 
solution of the CSP, thereby providing a consistent labeling for the unlabeled 
points. 

Dvi
=

{yi} for all 1! i ! l      

Y for all l +1! i ! n

"
#
$

%$

R
ij
=

1 0

0 1

!

"
#

$

%
&

Goal: Generalize to real-valued (soft) constraints 
Idea: Use consistency criterion of relaxation labeling (= Nash equilibrium) 
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The Graph Transduction Game 

Assume: 
  the players participating in the game correspond to the vertices of the 

graph  
  the set of strategies available to each player denote the possible 

hypotheses about its class membership 

       - labeled players                               �
   - unlabeled players 

Labeled players choose their strategies at the outset: 
  each player               always play its kth pure strategy.  

The transduction game is in fact played among the unlabeled players to choose 
their memberships. 

Iu

I! = {I!|1, . . . , I!|c}

i ∈ Il|k

By assuming that only pairwise interactions are allowed, we obtain a polymatrix 
game that can be solved used standard relaxation labeling / replicator algorithms.  

Defining the Payoffs 

If the fixed choices of labeled players are considered, the payoff function is: 

But how to specify partial payoff matrices? 

If A = (Aij) represent partial payoff matrices in block form, we define  

e.g., for a 3-class problem: 

ui(x) =
∑

j∈IU

xT
i Aijxj +

c∑

k=1

∑

j∈ID|k

xT
i (Aij)k

A = Ic ⊗W

Aij =




wij 0 0
0 wij 0
0 0 wij





We end up with a generalization of the binary CSP  
for the toy transduction problem! 
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Example Results: 
Symmetric Symilarities 

Data set used:  USPS, YaleB, Scene, 20-news 

Methods compared: 
  Gaussian fields and harmonic functions (GFHF) (Zhu et al., 2003) 
  Spectral Graph Transducer (SGT) (Joachims, 2003) 
  Local and global consistency (LGC) (Zhou et al., 2004) 
  Laplacian Regularized Least Squares (LapRLS) (Belkin et al., 2006) 

the digits 1 to 4 from the training and test sets were selected, which gave a total

of 3874 data points.

• YaleB is composed of face images of 10 subjects captured under varying poses

and illumination conditions. As in (Breitenbach and Grudic, 2005), each image

is down-sampled to 30×40 pixels and considered a subset of 1755 images which

corresponds to the individuals 2, 5 and 8.

• Scene is a scene classification data set consisting of 2688 natural scene images

classified into one of 8 classes. Each image is represented with a 512-dimensional

GIST descriptor (Oliva and Torralba, 2001) which combines the outputs of Gabor-

like filters specifically designed to capture the structural properties of a scene.

• 20-news is the text classification data set used in (Zhou et al., 2004), which con-

tains 3970 newsgroup articles selected from the 20-newsgroups data set, all be-

longing to the topic recwhich is composed of the subjects autos, motorcycles,

sport.baseball and sport.hockey. As described in (Zhou et al., 2004),

each article is represented in 8014-dimensional space based on the TFIDF repre-

sentation scheme.

Table 1 shows the summary of the data sets. For USPS and YaleB, each image

pixel is treated as a single feature, thus each example was represented in 256-, and

1200-dimensional space, respectively. The similarity between two examples di and dj

is computed using the Gaussian kernel as wij = exp(−dist(di ,dj)2

2σ2 ) where dist(di, dj)

is the distance between di and dj and σ is the kernel width parameter. Among several

choices for the distance measure dist(·), the Euclidean distance ‖di − dj‖ is evaluated

for USPS, YaleB and Scene, and the cosine distance dist(di, dj) = 1 − 〈di,dj〉
‖di‖‖dj‖

is eval-

uated for 20-news.

USPS YaleB Scene 20-news

# objects 3874 1755 2688 3970

# dimensions 256 1200 512 8014

# classes 4 3 8 4

Table 1: The data sets used in the experiments with symmetric similarities.

16

Example Results: 
Symmetric Symilarities 
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In short… 

Graph transduction can be formulated as a (polymatrix) non-cooperative game 
(i.e., a consistent labeling problem). 

The proposed game-theoretic framework can cope with symmetric, negative 
and asymmetric similarities (none of the existing techniques is able to deal with 
all three types of similarities). 

Experimental results on standard datasets show that our approach is not only 
more general but also competitive with standard approaches. 

A. Erdem and M. Pelillo. Graph transduction as a non-cooperative game. 
Neural Computation (in press) (preliminary version in GbR 2011). 

Extensions 

The approach described here can be naturally extended along several 
directions: 

  Using more powerful algorithms than “plain” replicator dynamics (e.g., 
Porter et al., 2008; Rota Bulò and Bomze, 2010) 

  Dealing with high-order interactions (i.e., hypergraphs) (e.g., Agarwal et al., 
2006; Rota Bulò and Pelillo, 2009) 

  From the “homophily” to the “Hume” similarity principle? 

  Introducing uncertainty in “labeled” players 
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