
Marcello	Pelillo	
University	of	Venice,	Italy	

	
	

Artificial	Intelligence	
a.y.	2018/19	

Statistical	Learning	Teory	and	
Support	Vector	Machines	

	

The	formal	setup	
SLT	deals	mainly	with	supervised	learning	problems.		
	
Given:	

ü  an	input	(feature)	space:	X		
ü  an	output	(label)	space:	Y		 	(typically	Y	=	{ -1, +1 })	

the	 question	 of	 learning	 amounts	 to	 estimating	 a	 functional	
relationship	between	the	input	and	the	output	spaces:	

f	:	X → Y
	
Such	a	mapping	f	is	called	a	classifier.		
	
In	order	to	do	this,	we	have	access	to	some	(labeled)	training	data:		
	

(X1,Y1), … , (Xn,Yn)	∈	X × Y		
	
A	classification	algorithm	is	a	procedure	that	takes	the	training	data	
as	input	and	outputs	a	classifier	f.		

Assumptions	

In	SLT	one	makes	the	following	assumptions:	
	
ü  there	exists	a	joint	probability	distribution	P	on	X × Y	

ü  the	training	examples	(Xi,Yi)		are	sampled	independently	from	P	(iid	
sampling).	

In	particular:		
	
1.  No	assumptions	on	P	

2.  The	distribution	P	is	unknown	at	the	time	of	learning	

3.  Non-deterministic	labels	due	to	label	noise	or	overlapping	classes	

4.  The	distribution	P	is	fixed	

Losses	and	risks	

We	need	to	have	some	measure	of	“how	good”	a	function	f	is	when	used	as	
a	classifier.	A	loss	function	measures	the	“cost”	of	classifying	instance	X∈X	
as	Y∈Y.

The	 simplest	 loss	 function	 in	 classification	 problems	 is	 the	 0-1	 loss	 (or	
misclassication	error):

The	 risk	 of	 a	 function	 is	 the	 average	 loss	 over	 data	 points	 generated	
according	to	the	underlying	distribution	P:	
	
	
	
The	best	classifier	is	the	one	with	the	smallest	risk	R(f).	
	

Bayes	classifiers	

Among	all	possible	classifiers,	the	“best”	one	is	the	Bayes	classifier:		

In	practice,	it	is	impossible	to	directly	compute	the	Bayes	classifier	as	the	
underlying	probability	distribution	P	is	unknown	to	the	learner.		
	
The	idea	of	estimating	P	from	data	doesn’t	usually	work	…	
	

Bayes’	theorem	

«[Bayes’	theorem]	is	to	the	theory	of	probability	what	
Pythagoras’	theorem	is	to	geometry.»	

	
Harold	Jeffreys		

Scientific	Inference	(1931)	

ü  P(h):		prior	probability	of	hypothesis	h	
ü  P(h	|	e):		posterior	probability	of	hypothesis	h	(in	the	light	of	evidence	e)	
ü  P(e	|	h):		“likelihood”	of	evidence	e	on	hypothesis	h	

€

P(h | e) =
P(e | h)P(h)

P(e)
=

P(e | h)P(h)
P(e | h)P(h) + P(e |¬h)P(¬h)

Given:	

ü  a	set	training	points	(X1,Y1), … , (Xn,Yn)	∈	X × Y drawn	iid	from	an	
unknown	distribution	P		

ü  a	loss	functions	

Determine	a	function	f	:	X → Y	which	has	risk	R(f)	as	close	as	possible	to	
the	risk	of	the	Bayes	classifier.	

The	classification	problem	

Caveat.	Not	only	is	it	impossible	to	compute	the	Bayes	error,	but	also	the	
risk	of	a	function	f	cannot	be	computed	without	knowing	P.		
	
A	desperate	situation?	
	

«Early	in	1966	when	I	first	began	teaching	at	Stanford,	a	student,	
Peter	Hart,	walked	into	my	office	with	an	interesting	problem.	He	
said	that	Charles	Cole	and	he	were	using	a	pattern	classification	
scheme	which,	for	lack	of	a	better	word,	they	described	as	the	

nearest	neighbor	procedure.		
This	scheme	assigned	to	an	as	yet	unclassified	observation	the	

classification	of	the	nearest	neighbor.	Were	there	any	good	
theoretical	properties	of	this	procedure?»	

	
Thomas	Cover	(1982)	

An	example:	
The	nearest	neighbor	(NN)	rule	

How	good	is	the	NN	rule?	

Variations:	
	
ü  k-NN	rule:	use	the	k	nearest	neighbors	and	take	a	majority	vote		
ü  kn-NN	rule:	the	same	as	above,	for	kn	growing	with	n	
	
Theorem	 (Stone,	 1977)	 If	 n → ∞ and k → ∞,	 such	 that	 k/n → 0,	 then	 for	 all	
probability	 distributions	 R(kn-NN)	 → R(fBayes)	 (that	 is,	 the	 kn-NN	 rule	 is	
“universally	Bayes	consistent”).

Cover	and	Thomas	showed	that:	
	
	
where	R∞	denotes	the	expected	error	rate	of	NN	when	the	sample	size	tends	to	
infinity.	
	
We	cannot	say	anything	stronger	as	there	are	probability	distributions	for	which	
the	performance	of	the	NN	rule	achieves	either	the	upper	or	lower	bound.	

€

R(fBayes) ≤ R∞ ≤ 2R(fBayes)

Empirical	Risk	Minimization	

«At	the	end	of	the	1960’s,	the	theory	of	Empirical	Risk	Minimization	
(ERM)	for	the	pattern	recognition	problem	was	constructed.	

This	theory	included	both	(a)	the	general	qualitative	theory	of	
generalization	that	described	the	necessary	and	sufficient	conditions	

for	consistency	of	the	ERM	induction	principle	[…];		
and	(b)	the	general	quantitative	theory	that	described	the	bounds	on	

the	probability	of	the	(future)	test	error.»	
	

Vladimir	Vapnik	
Statistical	Learning	Theory	(1998)	

	

The	ERM	principle	

Instead	of	 looking	for	a	 function	which	minimizes	the	true	risk	R(f),	we	try	to	
find	one	which	minimizes	the	empirical	risk:	

Given	training	data	(X1,Y1), … , (Xn,Yn)	∈	X × Y,	a	function	space	F,	and	a	loss	
function,	we	define	the	classifier	fn	as:

This	 approach	 is	 called	 the	 empirical	 risk	 minimization	 (ERM)	 induction	
principle,	the	motivation	of	which	comes	from	the	law	of	large	numbers.	
	
Note.	Same	as	least-squares/ML	methods	(but…	binary	vs.	real	functions!).	

A	key	question	

What	has	to	be	true	of	the	function	class	F	so	that,	no	matter	what	the	
unknown	 background	 probability	 distribution,	 ERM	 eventually	 does	 as	
well	as	possible	with	respect	to	the	rules	in	F?		
	
A	 fundamental	 result	 of	 SLT	 is	 that	 the	 set	 of	 rules	 in	F	 cannot	be	 too	
rich,	where	the	richness	of	F	is	measured	by	its	VC	dimension.	

Estimation	vs.	approximation	

[von	Luxburg	and	Schölkopf,	2008]	

Ideally	we	want	to	make	R(fn) − R(fBayes)	as	small	as	possible,	as	n → ∞.		
	
Denoting	by	fF	the	best	classifier	in	F,	the	difference	can	be	decomposed	as:	

Underfitting	vs.	overfitting	

[von	Luxburg	and	Schölkopf,	2008]	

underfitting ←→ overfitting

ü  small	complexity	of	F		⇒	small	estimation	error,	large	approximation	error	(underfitting)	
ü  large	complexity	of	F	 	⇒	large	estimation	error,	small	approximation	error	(overfitting)		
	
The	best	overall	risk	is	achieved	for	“moderate”	complexity	

Model	selection	

Shattering	
A	set	of	n	instances	X1,…, Xn from	the	input	space	X is	said	to	be	shattered	
by	a	function	class	F if	all	the	2n	labelings	of	them	can	be	generated	using	
functions	from	F.	

(a)	 (b)	

Example.		
F	=	linear	decision	functions	(straight	lines)	in	the	plane	
	
(a)	 	Any	set	of	3	non-collinear	points	shatters	F	
(b)	 	No	set	of	4	points	can	shatter	F		
	

The	VC	dimension	

The	VC	dimension	of	a	function	class	F,	denoted	VC(F),	is	the	largest	integer	
h	such	that	there	exists	a	sample	of	size	h	which	is	shattered	by	F.	
	
If	arbitrarily	large	samples	can	be	shattered,	then	VC(F)	=	∞.	

Examples.	

ü F	=	linear	decision	functions	in	R2	 	 	 	 	⇒ 	VC(F)	=	3	

ü F	=	linear	decision	functions	(hyperplanes)	in	Rn			 	⇒	 	VC(F)	=	n + 1

ü F	=	multi-layer	perceptrons	with	W	weights	 	 	⇒	 	VC(F)	=	O(W log W)

ü F	=	nearest	neighbor	classifiers	 	 	 	 	 	⇒	 	VC(F)	=	∞

«In	algebraic	representation,	the	dimension	of	the	set	of	curves	depends	
upon	the	number	of	parameters	whose	values	we	may	freely	choose.		

	
	
	
	
	

Karl	Popper	
The	Logic	of	Scientific	Discovery	(1959)	

VC	dimension	vs.	number	of	parameters	

We	can	therefore	say	that	the	number	of	freely	
determinable	parameters	of	a	set	of	curves	by	which	a	
theory	is	represented	is	characteristic	for	the	degree	of	

falsifiability	(or	testability)	of	that	theory.»	

Note.	The	VC	dimension	 is	 in	general	not	related	
to	the	number	of	free	parameters	of	a	model	
(e.g.,		fα(x) = sgn(sin(αx)): 1	parameter,	VCdim	=	∞).	

Fundamental	results	

With	 probability	 approaching	 1,	 no	 matter	 what	 the	 unknown	
probability	 distribution,	 given	 more	 and	 more	 data,	 the	 expected	
error	 for	 the	 functions	 that	ERM	endorses	at	each	stage	eventually	
approaches	the	minimum	value	of	expected	error	of	the	functions	in	
F	if	and	only	if	F	has	finite	VC	dimension.	

€

R(f) ≤ Remp(f)+
h(log(2n /h)+1)− log(δ / 4)

n

For	all	f ∈F, with	probability	at	least	1 – δ, we have:

where	h	=	VC(F),	and	n	is	the	sample	size.	

ERM	takes	only	care	of	the	estimation	error	(variance)	but	it	is	not	concerned	
with	the	approximation	error	(bias).		
	
The	optimal	model	is	found	by	striking	a	balance	between	the	empirical	risk	
and	the	capacity	of	the	function	class	F	(e.g.,	the	VC	dimension).	

Structural	risk	minimization	

Basic	idea	of	Structural	Risk	Minimization	(SRM):	

1.  Construct	a	nested	structure	for	family	of	function	classes	F1	⊂F2⊂…	
with	non-decreasing	VC	dimensions	(VC(F1)	≤	VC(F2)	≤	…)	

2.  For	each	class	Fi,	find	the	solution fi	that	minimizes	the	empirical	risk		

3.  Choose	the	function	class	Fi,	and	the	corresponding	solution fi		that	
minimizes	the	risk	bound	(=	empirical	risk	+	VC	confidence)	

	

Structural	risk	minimization	

U.	von	Luxburg	and	B.	Schölkopf.	Statistical	learning	theory:	Models,	concepts	and	results	
(2008).	

	
S.	Kulkarni	and	G.	Harman.	Statistical	learning	theory:	A	tutorial	(2011).		
	
	

Further	readings	

Support	Vector	Machines	

Several	possible	decision	boundaries	

All	get	100%	accuracy	on	this	training	set!	

The	SVM	finds	this	one	–	the	boundary	furthest	from	the	two	clusters	

Distance	to	the	closest	training	point	is	called	the	margin	
(equal	on	both	sides	of	the	boundary)	

margin	

Several	possible	decision	boundaries	

margin	

The	SVM	finds	this	one	–	the	boundary	furthest	from	the	two	clusters	

Distance	to	the	closest	training	point	is	called	the	margin	
(equal	on	both	sides	of	the	boundary)	

Several	possible	decision	boundaries	

margin	

The	SVM	finds	this	one	–	the	boundary	furthest	from	the	two	clusters	

Several	possible	decision	boundaries	

The	circled	points	are	called		
SUPPORT	VECTORS	

All	other	points	can	move	freely.	
Solution	only	dependent	on	SVs.	

Basic	geometric	facts	

f (x) =wTx+ b

w

f = 0

f > 0

f < 0

b
w

x2

x

x1

f (x)
w

Distance	of	plane		
from	origin	

Proof	

f (x) =wTx+ b

w x

r

x1

x2

x = x⊥ + r
w
w

Which	yields:	

x⊥

x⊥ = x− r
w
w

Since							belongs	to	the	plane:	x⊥

wTx⊥ + b = 0

wT x− r w
w

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+ b = 0

wTx− rw
Tw
w

+ b = 0

wTx− r w + b = 0 r = f (x)
w

⇒

f = 0

Normalizing	the	weights	

Note	that		wTx + b = 0		and		c(wTx + b) = 0		define	the	same	plane.		
	
Hence	we	have	the	freedom	to	chose	the	normalization	of	w	and	b.
	
Choose	normalization	such	that	(canonical	form):	
	

•  wTx + b = +1 for	the	positive	support	vectors	

•  wTx + b = −1 for	the	negative	support	vectors	

	

Support	Vector	Machines		

1
w

1
w

Learning	SVM’s	

Learning	the	SVM	can	be	formulated	as	an	optimization	problem:	

or,	equivalently:	

This	is	a	(convex)	quadratic	optimization	problem	subject	to	linear	constraints	
and	there	is	a	unique	minimum!	

L(w,b,Λ) = 1
2
w 2

− λi yi w
Txi + b()−1⎡

⎣
⎤
⎦

i=1

N

∑

The	problem	of	margin	maximization	

minimize 1
2
w

2

subject to yi (w
Txi +b) ≥1, i =1,…,N

To	solve	this	constrained	optimization	problem,	we	introduce	N	Lagrange	
multipliers	λi	≥	0 (one	for	each	constraint)	giving	the	Lagrangian	function:	

where	Λ = (λ1,…, λN) is	the	vector	of	Lagrange	multipliers.		

The	problem	of	margin	maximization	

Setting	the	derivatives	of	L(w, b, Λ) to	zero	we	obtain:	

∂L(w,b,Λ)
∂w

=w− λi yixi
i=1

N

∑ = 0

∂L(w,b,Λ)
∂b

= λi yi
i=1

N

∑ = 0

⇒ w = λi yixi
i=1

N

∑

The	dual	representation	

Eliminating	 w	 and	 b	 from	 L(w, b, Λ)	 using	 these	 conditions,	 gives	 the	 dual	
representation	of	the	maximum	margin	problem:	

maximize LD (λ1,...,λN) = λi −
i=1

N

∑ 1
2

λiλ j yiyjxi
Tx j

j=1

N

∑
i=1

N

∑

subject to λi yi
i=1

N

∑ = 0

λi ≥ 0, for all i =1...N

Note:	the	training	vectors	xi	appear	only	as	dot	products	(useful	later	on!).	

The	dual	representation	

If	Λ = (λ1,…, λN)	is	the	solution	of	the	dual	optimization	problem,	then:	
	
•  The	weight	vector	of	the	maximum	margin	hyperplane	is:	

w = ∑i yi λi xi	
	
•  The	corresponding	discriminant	function	is:	

f(x) = wTx + b
 = ∑i yi λi xi

T
 x + b	

	
•  The	linear	SVM	classifier	g : Rn →	{ −1, +1 }	is:	

g(x) = sgn(∑i yi λi xi
T

 x + b)

Note:	vector	b	is	implicitly	given	by	the	constraints.	

The	role	of	support	vectors	

In	the	dual	representation,	the	maximum	margin	hyperplane	is	given	by:		

yiλixi
Tx

i=1

N

∑ + b = 0

x1

x2

	

At	first	sight	the	dual	 form	appears	to	have	the	disadvantage	of	k-NN	
classifiers	—	it	requires	the	training	data	points	xi.		
	
However,	many	of	the	λi’s	are	zero	(sparse	solution).		
	
The	coefficients	λi > 0	are	the	support	vectors!		

Finding	the	b	parameter	

For	support	vectors	we	have	
	

yi (∑i yi λi xi
T

 x + b) = 1

which	yields	
	

b = 1 / yi − ∑i yi λi xi
T

 x
	
	
Considering	all	support	vectors	we	obtain	a	more	stable	solution:	
	
	
	
	
	
where	SV	is	the	set	of	support	vectors.	

b = 1
SV

yi − yj
j=1

N

∑ λ jx j
Txi

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i∈SV
∑

SVM’s	and	the	VC	dimension	

Theorem	(Vapnik)	
	
Consider	hyperplanes	wTx + b = 0	in	canonical	form,	that	is	such	that:		
	
	
	
	
Then	 the	 set	 of	 decision	 functions	 g(x) = sgn(wTx + b)	 that	 satisfy	 the	
constraint	||w|| < γ	has	a	VC	dimension	h	satisfying:	
	

h ≤ R2 γ2

	
where	R	is	the	smallest	radius	of	the	sphere	around	the	origin	containing	
all	the	training	points.	

min
1≤i≤N

wTxi + b =1

Note:	 Dropping	 the	 condition	 ||w|| < γ leads	 to	 a	 VC	 dimension	 equal	 to	 n+1.
Hence,	the	constraint	allows	us	to	work	in	high-dimension	spaces.	

SVM’s	and	SLT	

From	the	previous	theorem	and	from	
	
	
	
we	have:	
	
•  By	maximizing	the	margin,	or	equivalently	by	minimizing	||w||,	we	are	in	

fact	minimizing	the	VC	dimension	of	the	SVM.	

•  The	minimization	of	the	expected	risk	depends	on	both	minimizing	the	
empirical	risk	and	the	confidence	interval	

•  The	confidence	interval	depends	mainly	on	the	ratio	h/n

•  SVM	algorithm	minimizes	both	the	empirical	risk	and	the	confidence	
interval	

•  SVM	directly	implements	the	structural	risk	mimimization	principle	

€

R(f) ≤ Remp(f)+
h(log(2n /h)+1)− log(δ / 4)

n

How	to	manage	outliers:	Slack	variables	
(aka	soft	margins)	

	

outlier	

ξ j = 0.6

ξi =1.3

How	to	manage	outliers:	Slack	variables	
(aka	soft	margins)	

	

minimize 1
2
w

2
+C ξi

i=1

N

∑

subject to yi (w
Txi +b) ≥1−ξi

The	only	parameter	C	controls	the	tradeoff	between	the	accuracy	w.r.t.	to	
the	training	data	and	the	maximization	of	the	margin.		
	
It	can	be	interpreted	also	as	a	regularization	term:	
•  small	C	allows	constraints	to	be	easily	ignored		→		large	margin	
•  large	C	makes	constraints	hard	to	ignore		→		narrow	margin	
•  C = ∞	enforces	all	constraints:	hard	margin	

How	to	manage	outliers:	Slack	variables	
(aka	soft	margins)	

i =1,…,N
ξi ≥ 0

The	dual	representation	

maximize LD (λ1,...,λN) = λi −
i=1

N

∑ 1
2

λiλ j yiyjxi
Tx j

j=1

N

∑
i=1

N

∑

subject to λi yi
i=1

N

∑ = 0

0 ≤ λi ≤C, for all i =1...N

Notes:	 The	 hyperplane	whose	weight	 vector	 solves	 this	 quadratic	 oprimization	
problem	is	called	the	soft	margin	hyperplane	
	
The	 soft-margin	 optimization	 problem	 is	 equivalent	 to	 that	 of	 the	 maximum	
margin	hyperplane	with	the	additional	constraint	λi ≤ C (Box	constraints).	
	
This	approach	limits	the	effect	of	outliers	(for	which	λi tends	to	be	large).	

8CHAPTER 4. GEOMETRICMODELS II: SUPPORT VECTORMACHINES

will be. A higher value means more the penalty for margin violations is very
severe, hence a stricter SVM solution. A very small value says no penalty for
slack variables, hence we are allowed to make mistakes. The default value is
usually C = 1. The e↵ect is illustrated graphically in figure 4.4.

ξ j = 0.6

ξi =1.3

Figure 4.3: Soft margin SVM. The ⇠ values are optimized by the QP algorithm,

allowing the margin to “soften” at certain points along its length, essentially

allowing the SVM to ignore points that cross over its boundary.

−6 −4 −2 0 2
−7

−6

−5

−4

−3

−2

−1

0

1

2

Linear, C=10

−6 −4 −2 0 2
−7

−6

−5

−4

−3

−2

−1

0

1

2

Linear, C=0.05

Figure 4.4: The e↵ect of C, the slack variable penalty. A large value (left) means

a very strict penalty, so a very strict SVM solution will be found, even if the

margin is small. A smaller value (right) means some data points are allowed to

violate the margins, hence an approximate SVM solution is found, but it has a

larger margin.

Example	

Goal:	Detect	(localize)	standing	humans	in	images	

Application:	Pedestrian	detection	

From:	A.	Zisserman	

Training	data	

From:	A.	Zisserman	

The	algorithm	

Learning	phase	
•  Represent	each	example	window	by	a	HOG	(Histogram	of	Oriented	

Gradients)	feature	vector:	

•  Train	a	linear	SVM	classifier	

Testing	(Detection)	
•  Sliding	window	SVM	

From:	A.	Zisserman	

Nonlinear	SVM’s	

From:	A.	Zisserman	

An	example	

From:	A.	Zisserman	

Cover’s	theorem	

“A	complex	pattern-classification	problem	cast	in	a	high-dimensional	
space	non-linearly	is	more	likely	to	be	linearly	separable	than	in	a	low-

dimensional	space”	
	

Thomas	Cover	(1965)		

	
	Project	into	high	dimensional	space,	and	solve	with	a	linear	model	

		

2D	 3D	

Main	idea	

An	example	

From:	A.	Zisserman	

SVM’s	and	Cover’s	theorem	

The	 power	 of	 SVM’s	 resides	 in	 the	 fact	 that	 they	 represent	 a	
robust	and	efficient	implementation	of	Cover’s	theorem	

Nonlinear	SVM’s	operate	in	two	stages:	
	

•  Perform	 a	 (typically	 implicit)	 non-linear	 mapping	 of	 the	
feature	 vector	 x	 onto	 a	 high-dimensional	 space	 that	 is	
hidden	from	the	inputs	or	the	outputs		

•  Construct	an	optimal	separating	hyperplane	in	the	high-dim	
space		

The	“kernel	trick”	

LD (λ1,...,λN) = λi −
i=1

N

∑ 1
2

λiλ j yiyjxi
Tx j

j=1

N

∑
i=1

N

∑

λi yi
i=1

N

∑ = 0

0 ≤ λi ≤C, for all i =1...N

Note	that	in	the	dual	representation	of	SVM’s	the	inputs	appears	only	in	
a	dot-product	form:	

subject to

maximize

The	discriminant	function	obtained	from	the	solution	is:	

f (x) = yiλixi
Tx

i=1

N

∑ + b

The	“kernel	trick”	

LD (λ1,...,λN) = λi −
i=1

N

∑ 1
2

λiλ j yiyjK(xi,x j)
j=1

N

∑
i=1

N

∑

λi yi
i=1

N

∑ = 0

0 ≤ λi ≤C, for all i =1...N

subject to

maximize

The	discriminant	function	obtained	from	the	solution	becomes:	

f (x) = yiλiK(xi,x)
i=1

N

∑ + b

Suppose	 we	 first	 mapped	 the	 data	 to	 some	 other	 (possibly	 infinite	
dimensional)	Euclidean	space,	using	a	mapping:	

x → Φ(x)	
By	setting	K(x,y) = Φ(x)TΦ(y), we obtain:

No	need	to	compute	Φ(x)!	

Example	kernels	

Linear	kernel	 	 	K(x,y) = xTy	
	
	
Polynomial	kernel	 	K(x,y) = (1 + xTy)d (for any d > 0)

	
	
Gaussian	kernel 	 	K(x,y) = exp{ −|| x − y ||2 / 2σ2 } (for σ > 0)	

4.5. NON-LINEAR SVMS : THE “KERNEL TRICK” 11

4.5.1 The Kernel Trick

The Representer theorem (Kimeldorf & Wahba, 1971) proved that an opti-

mal linear decision boundary was always of the form w⇤ =
PN

i=1 ↵ixi, for some
set of parameters ↵i, where the xi are the training data vectors. Put another
way, this shows that, the optimal parameters for a linear model are actually a
simple linear combination of the training data points. This result can be plugged
back into our original equation for the linear model, which when operating to
classify a hypothetical test point x0 is of the form,

f(x0) = wTx0 =
n NX

i=1

↵ixi

oT
x0 (4.13)

=
NX

i=1

↵ix
T
i x

0 (4.14)

or if we used our hypothetical �,

f(x0) =
NX

i=1

↵i�(xi)
T�(x0) (4.15)

Notice that the training data points are expressed only as dot products with
the test point, i.e. the result of �(xi)T�(x0) is a scalar quantity. Wouldn’t
it be nice if there was a class of mathematical functions, that would give us
the scalar result that we needed, but without computing the � high dimensional

space? That would seem quite strange, and sounds like wishful thinking, but
it’s true, they are called ‘kernel functions’, and their existence is referred to as
the kernel trick. KERNEL TRICK

K(xi,x
0) = �(xi)

T�(x0) (4.16)

where � is some high dimensional function. So, we can use a kernel function
instead of the dot product, as so:

f(x0) =
NX

i=1

↵iK(xi,x
0). (4.17)

The ↵i parameters that are left will still be learnt via quadratic programming,
so all we have to do is choose an appropriate kernel. Mercer’s Theorem states MERCER’S

THEOREMthat any continuous, symmetric, positive semi-definite function K(xi,x0) is a
valid kernel. We will now meet two examples of this.

Mercer’s	condition	

For	some	kinds	of	kernel	functions,	we	have:	

SVM’s	with	Gaussian	kernels	
(aka	Radial	Basis	Function	SVM’s)	

f(x) = ∑i yi λi exp{ −|| x − xi ||2 / 2σ2 } + b	

Assign	input	vector	to	one	of	K	classes	
	
Goal:	a	decision	rule	that	divides	input	space	into	K	decision	regions	
separated	by	decision	boundaries	

Multi-class	problems	

Train	K−1	classifiers	each	of	which	solves	a	two-class	problem	of	
separating	points	in	a	particular	class	from	points	not	in	that	class	

One-vs-the-rest	classifiers	

Train	K(K−1)/2	binary	classifiers,	one	for	every	possible	pairs	of	classes.	

One-vs-one	classifiers	

Learn:	Train	K	one-vs-the	rest	classifiers	
	
Classification:	choose	the	class	with	the	most	positive	score	

The	typical	approach	

References	

•  C.	 Burges,	 A	 tutorial	 on	 support	 vector	 machines	 for	 pattern	
recogniton.	Data	Mining	and	Knowledge	Discovery	2(2):121-167	(1998)	

•  K.	Muller,	S.	Mika,	G.	Ratsch,	K.	Tsuda	and	B.	Scholkopk.	An	
introduction	to	kernel-based	learning	methods.	IEEE	Transactions	on	
Neural	Networks,	12(2)	(2001)	

•  N.	Cristianini	and	J.	Shawe-Taylor.	An	Introduction	to	Support	Vector	
Machines	and	other	Kernel	Based	Learning	Methods.	Cambridge	
University	Press	(2000)	

•  J.	Shawe-Taylor	and	N.	Cristianini.	Kernel	Methods	for	Pattern	Analysis.	
Cambridge	University	Press,	Cambridge,	UK	(2004)	

