
Introduction	to	Neural	
Networks	

Marcello	Pelillo	
University	of	Venice,	Italy	

	
	

Artificial	Intelligence	
a.y.	2018/19	

DARPA	Neural	Network	Study	(1989)	

“Over	the	history	of	computing	science,	two	advances	have	matured:	High	
speed	numerical	processing	and	knowledge	processing	(Artificial	Intelligence).	

Neural	networks	seem	to	offer	the	next	necessary	ingredient	for	intelligent	
machines	−	namely,	knowledge	formation	and	organization.”	

DARPA	Neural	Network	Study	(1989)	

Two	key	features	which,	it	is	widely	believed,	distinguish	neural	
networks	from	any	other	sort	of	computing	developed	thus	far:	
	
Neural	networks	are	adaptive,	or	trainable.	Neural	networks	are	
not	so	much	programmed	as	they	are	trained	with	data	−	thus	
many	believe	that	the	use	of	neural	networks	can	relieve	today’s	
computer	programmers	of	a	significant	portion	of	their	present	
programming	load.	Moreover,	neural	networks	are	said	to	
improve	with	experience	−	the	more	data	they	are	fed,	the	more	
accurate	or	complete	their	response.	
	
Neural	networks	are	naturally	massively	parallel.	This	suggests	
they	should	be	able	to	make	decisions	at	high-speed	and	be	fault	
tolerant.	

History	
Early	work	(1940-1960)	

•  McCulloch	&	Pitts 	 	(Boolean	logic)	
•  Rosenblatt 	 	 	 	(Learning)	
•  Hebb 	 	 	 	 	(Learning)	

	
Transition	(1960-1980)	

•  Widrow	–	Hoff	 	 	(LMS	rule)	
•  Anderson	 	 	 	(Associative	memories)	
•  Amari	

	
Resurgence	(1980-1990’s)	

•  Hopfield 	 	 	 	(Ass.	mem.	/	Optimization)	
•  Rumelhart	et	al. 	 	(Back-prop)	
•  Kohonen	 	 	 	(Self-organizing	maps)	
•  Hinton	,	Sejnowski 	 	(Boltzmann	machine)	

	
New	resurgence	(2012	-)	

•  CNNs,	Deep	learning,	GAN’s	….	
	

A	Few	Figures	

The	human	cerebral	cortex	is	composed	of	about		
	

100	billion	(1011)	neurons	
	
of	many	different	types.	
	
	
Each	neuron	is	connected	to	other	1000	/	10000	neurons,	wich	yields	
	

	 	 																	1014/1015		connections	
	
	
	
The	cortex	covers	about	0.15	m²	
and	is	2-5	mm	thick 	 	 	 		

The	Neuron	

Cell	Body	(Soma):	5-10	microns	in	diameter	

Axon:	Output	mechanism	for	a	neuron;	one	axon/cell,	but	thousands	of	
branches	and	cells	possible	for	a	single	axon	

Dendrites:	Receive	incoming	signals	from	other	nerve	axons	via	synapse		

Neural	Dynamics	
The	transmission	of	signal	in	the	cerebral	cortex	is	a	complex	process:	
	

	 		electrical																				chemical														electrical	

	
			Simplifying	:	
	
			1) 	The	cellular	body	performs	a	“weighted	sum”	of	the	incoming	signals	

			
			2) 	If	the	result	exceeds	a	certain	threshold	value,	then	it	produces	an		

	“action	potential”	which	is	sent	down	the	axon	(cell	has	“fired”),	
	otherwise	it	remains	in	a	rest	state	

	
			3)				When	the	electrical	signal	reaches	the	synapse,	it	allows	the	

	“neuro-transmitter”	to	be	released	and	these	combine	with	the	
	“receptors”	in	the	post-synaptic	membrane	

	
			4)			The	post-synaptic	receptors	provoke	the	diffusion	of	an	electrical		
									signal	in	the	post-synaptic	neuron	 	 		

		

→ →

Synapses	
	 		

	
	
	
	
	
	
	
	
	
	
	
	
	
	

		
	
	
	
	
		 	SYNAPSE	is	the	relay	point	where	information	is	conveyed	by	chemical	transmitters	from	neuron	
		 	to	neuron.	A	synapse	consists	of	two	parts:	the	knowblike	tip	of	an	axon	terminal	and	the	receptor	
		 	region	on	the	surface	of	another	neuron.	The	membranes	are	separated	by	a	synaptic	cleft	some	
		 	200	nanometers	across.	Molecules	of	chemical	transmitter,	stored	in	vesicles	in	the	axon	terminal,	
		 	are	released	into	the	cleft	by	arriving	nerve	impulses.	Transmitter	changes	electrical	state	of	the	
		 	receiving	neuron,	making	it	either	more	likely	or	less	likely	to	fire	an	impulse.		
	

Synaptic	Efficacy	
	

												It’s	the	amount	of	current	that	enters	into	the	post-synaptic	neuron,	
												compared	to	the	action	potential	of	the	pre-synaptic	neuron.	
	 	 			
	

					Learning	takes	place	by	modifying	the	synaptic	efficacy.	
	
	
					Two	types	of	synapses:	
	

•  		Excitatory	:	 	favor	the	generation	of	action	potential	
	 	 	 	in	the	post-synaptic	neuron	

	
•  		Inhibitory	: 	hinder	the	generation	of	action	potential		

	
	 		

		

The	McCulloch	and	Pitts	Model	(1943)	
The	McCulloch-Pitts	(MP)	Neuron	is	modeled	as	a	binary	threshold	unit	

	

																																			

																																														

																																			

	

	

				
	
	

	
The	unit	“fires”	if	the	net	input																			reaches	(or	exceeds)	the	unit’s	threshold	T:						
	
	
	
	
	
If	neuron	is	firing,	then	its	output	y	is	1,	otherwise	it	is	0.	
	
	
g	is	the	unit	step	function:	
	
	
Weights	wij	represent	the	strength	of	the	synapse	between	neuron	j	and	neuron	i	

	

wjj∑ I j

y = g wj
j
∑ I j −T
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

g(x) = 0 if x < 0
1 if x ≥ 0

⎧
⎨
⎩

Properties	of	McCulloch-Pitts	Networks	
						

By	properly	combining	MP	neurons	one	can	simulate	the	behavior	of	any	
Boolean	circuit.	
	
	

								
	
	
	
	
								

	 									Three	elementary	logical	operations	(a)	negation,	(b)	and,	(c)	or.	In	each	diagram		
	 									the	states	of	the	neurons	on	the	left	are	at	time	t	and	those	on	the	right	at	time	t	+1.	

	
	
	
	
	
	
	
																																						

	 	 	 		
	 	 	 		
	 	 	 	The	construction	for	the	exclusive	or	

Network	Topologies	and	Architectures	
	

•  Feedforward	only	vs.	Feedback	loop	(Recurrent	networks)	
•  Fully	connected	vs.	sparsely	connected	
•  Single	layer	vs.	multilayer	
	
																	Multilayer	perceptrons,	Hopfield	networks,	
																	Boltzman	machines,	Kohonen	networks,	…	

	
	
	
	
	
	
	
	
	
	
																																										(a)	A	feedforward	network	and	(b)	a	recurrent	network	

	 					
	 												
	 	 		

	

Classification	Problems	
	

	

					 	 					Given	: 	 		

															1)					some		“features”: 														

	 										2)					some		“classes”:																											

	 			

	

	

						 	 					Problem	:	

								To	classify	an	“object”	according	to	its	features	

	 		

		

n21 fff ,....,,
m1 cc ,....,

Example	#1	
	

												To	classify	an	“object”	as	:	

	 	 	 	=		“	watermelon	”	

	 	 	 	=		“	apple	” 		

	 	 	 	=		“	orange	” 	 		

					

						According	to	the	following	features	: 		

	 	 		 	 	=		“	weight	”	

	 	 	 	=		“	color	”	

	 	 	 	=		“	size	”	

								

							Example	:	

	 	 	weight		=		80	g	

	 	 	color					=		green																																														 	 	
	 	size						=		10	cm³ 		

	

	

1c
2c
3c

1f

2f
3f

“apple”

Example			#2	
																																																																																													

															Problem:				Establish	whether	a	patient	got	the	flu	

	 	 	 		

	 	 	 		

•  Classes	:	 	{	“	flu	”	,	“	non-flu	”	}	

	

•  (Potential)	Features	: 	 	 	 	 		

	 	 	 		:					Body	temperature		

	 	 	 		:						Headache	? 	 	(yes	/	no)	

	 	 	 		:						Throat	is	red	? 	(yes	/	no	/	medium)	

	 	 	 		:	

							 	 	 	 		

	

1f

2f
3f
4f

Example	#3	
Hand-written	digit	recognition	

Example	#4:	
Face	Detection	

Geometric Interpretation

Example:		
Classes				=		{	0	,	1	}	
Features			=			x	,	y	:					both	taking	value	in	[0	,	+∞	[

	

Idea:	Objects	are	represented	as	“point”	in	a	geometric	space	

	 		

	

Neural	Networks	for	Classification	

A	neural	network	can	be	used	as	a	classification	device	.	

	

	Input	 			≡					features	values			

	Output				≡					class	labels	

		

Example	:																						3	features	,		2	classes	

Thresholds	

We	can	get	rid	of	the	thresholds	associated	to	neurons	by	adding	an		

extra	unit	permanently	clamped	at	-1	(or	+1).	

	

In	so	doing,	thresholds	become	weights	and	can	be	adaptively	adjusted				

during	learning.		

The	Perceptron		

A	 network	 consisting	 of	 one	 layer	 of	 M&P	 neurons	 connected	 in	 a	
feedforward	way		(i.e.	no	lateral	or	feedback	connections).	

	

			

		

	

	

	

	

	

•  Discrete	output	(+1	/	-1)	

•  Capable	of	“learning”	from	examples	(Rosenblatt)	

•  They	suffer	from	serious	computational	limitations	

The	Geometry	of	the	Perceptron	

Illustration	 of	 the	 hyperplane	 (in	 this	 example,	 a	
straight	 line)	 as	 decision	 boundary	 for	 a	 two-
dimensional,	 two-class	 pattern-classification	
problem.	

The	Perceptron	Learning	Algorithm	

The	Perceptron	Learning	Algorithm	

Decision	Regions	

It’s	an	area	wherein	all	examples	of	one	class	fall.	

	

Examples:		

	

			

		

	

	

	

	

	

	

	

	

Linear	Separability	

A	classification	problem	is	said	to	be	linearly	separable	if	the	decision	regions	
can	be	separated	by	a	hyperplane.	

	

Example: 	AND	

	

	

		

	

	

	

	

	

	

	

	

X Y X AND Y

0 0 0

0 1 0

1 0 0

1 1 1

Limitations	of	Perceptrons	

It	has	been	shown	that	perceptrons	can	only	solve	linearly	separable		

problems.	

	

Example: 	XOR				(exclusive	OR)	

	

	

		

	

	

	

	

	

	

	

	

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

The	Perceptron	Convergence	Theorem	

Theorem	(Rosenblatt,	1960)	
	
If	the	training	set	is	 linearly	separable,	the	perceptron	learning	algorithm	
always	 converges	 to	 a	 consistent	 hypothesis	 after	 a	 finite	 number	 of	
epochs,	for	any	η	>	0.	
	
If	 the	 training	 set	 is	 not	 linearly	 separable,	 after	 a	 certain	 number	 of	
epochs	the	weights	start	oscillating.	

A	View	of	the	Role	of	Units	

Multi–Layer	Feedforward	Networks	

•  Limitation	of	simple	perceptron:	can	implement	only	linearly	separable	
functions	

	
•  Add	“	hidden”	layers	between	the	input	and	output	layer.	A	network	

with	just	one	hidden	layer	can	represent	any	Boolean	functions	including	
XOR	

	
•  Power	of	multilayer	networks	was	known	long	ago,	but	algorithms	for	

training	or	learning,	e.g.	back-propagation	method,	became	available	
only	recently	(invented	several	times,	popularized	in	1986)	

	
•  Universal	approximation	power:	Two-layer	network	can	approximate	

any	smooth	function		(Cybenko,	1989;	Funahashi,	1989;	Hornik,	et	al..,	
1989)	

	
•  Static	(no	feedback)	

	

	

Sigmoid	(or	logistic)	

Continuous-Valued	Units	

Continuous-Valued	Units	

Hyperbolic	tangent	

Back-propagation	Learning	Algorithm	
	

•  An	algorithm	for	learning	the	weights	in	a	feed-forward	network,	
	given	a	training	set	of	input-output	pairs	

•  The	algorithm	is	based	on	gradient	descent	method.	
	

	
	
	
	
	
	
	
	
	
	

	 												
	 	 		

	

Supervised	Learning	

Supervised	 learning	 algorithms	 require	 the	 presence	 of	 a	 “teacher” who	
provides	the	right	answers	to	the	input	questions.	

		

Technically,	this	means	that	we	need	a	training	set	of	the	form	

	

	

			

		

where	:	

	

	 	 	 	is	the	network	input	vector	

	

	 	 	 	is	the	desired	network	output	vector	

	 		

L = x1, y1() , x p, y p(){ }

xµ µ =1…p()

yµ µ =1…p()

Supervised	Learning	

The	 learning	 (or	 training)	phase	consists	of	determining	a	 configuration	of	
weights	in	such	a	way	that	the	network	output	be	as	close	as	possible	to	the	
desired	output,	for	all	the	examples	in	the	training	set.	

	

Formally,	this	amounts	to	minimizing	an	error	function	such	as	(not	only	
possible	one):	

	

	

			

		

		

where	Ok
μ	is	the	output	provided	by	the	output	unit	k	when	the	network	is	

given	example	μ	as	input.	

E = 1
2 k

∑
µ

∑ yk
µ −Ok

µ()
2

Optimization	by	Gradient	Descent	

Back-Propagation	
To	minimize	the	error	function	E	we	can	use	the	classic		gradient-
descent	algorithm:	

	
	
	

To	compute	the	partial	derivates	we	use	the	error	back	propagation	
algorithm.	

		
It	consists	of	two	stages:	
	

	Forward	pass	:					the	input	to	the	network	is	propagated	
	 	 	layer	after	layer	in	forward	direction	

	
	Backward	pass	:			the	“error”	made	by	the	network	is		
	 	 	propagated	backward,	and	weights		
	 	 	are	updated	properly	
	 	 		

	
	

 η = “learning rate”

Notations	
	

		

	

	

	

	

	

	

	

						Given	pattern	µ,	hidden	unit	j	receives	a	net	input	

		

	

					and	produces	as	output	:	

	

	

∑=
k

kjkj xwh µµ

() ⎟
⎠
⎞

⎜
⎝
⎛== ∑

k
kjkjj xwghgV µµµ

Calculus	Refresher	

Back-Prop:	
Updating	Hidden-to-Output	Weights	

ΔWij = −η
∂E
∂Wij

= −η
∂

∂Wij

1
2 k

∑
µ

∑ yk
µ −Ok

µ()
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=η yk
µ −Ok

µ()
k
∑

µ

∑ ∂Ok
µ

∂Wij

=η yi
µ −Oi

µ()
µ

∑ ∂Oi
µ

∂Wij

=η yi
µ −Oi

µ()
µ

∑ g ' hi
µ() Vj

µ

=η δi
µ

µ

∑ Vj
µ () ()µµµµδ iiii hgOy ' :where −=

E = 1
2 k

∑
µ

∑ yk
µ −Ok

µ()
2

i

j

Wij

Back-Prop:	
Updating	Input-to-Hidden	Weights		(1)	

()

() ()
jk

i
iii

i

jk

i

i
ii

jk
jk

w
hh'gOy

w
OOy

w
Ew

∂
∂

−=

∂
∂

−=

∂
∂

−=Δ

∑ ∑

∑ ∑

µ
µµµ

µ

µ

µ

µµ

η

η

η

()

()
jk

j
jij

jk

j
ij

jk

j
ij

jk

l

l
il

jk

i

w
h

h'gW

w
hg

W

w
V

W

w
VW

w
h

∂

∂
=

∂

∂
=

∂

∂
=

∂

∂
=

∂

∂
∑

µ
µ

µ

µ

µµ

E =
1
2 i

∑
µ

∑ yi
µ −Oi

µ()
2

j

k

wjk

Back-Prop:	
Updating	Input-to-Hidden	Weights		(2)	

	Hence,	we	get:	

µ

µ
µ

k

m
m

jm
jkjk

j

x

xw
ww

h

=

∂
∂

=
∂

∂
∑

() () ()

()
µ

µ

µ

µµ

µ

µ

µµµ

µ

µµ

δη

δη

η

kj

kjij
i

i

kjiji
i

iijk

x

xhgW

xhgWhgOyw

∑

∑

∑

=

=

−=Δ

ˆ

'

''

,

,

() ij
i

ijj Whg ∑= µµµ δδ 'ˆ :where

Locality	of	Back-Prop	

	
Error	Back-Propagation	

	

The	Back-Propagation	Algorithm	

The	Back-Propagation	Algorithm	

The	Role	of	the	Learning	Rate	

The	Momentum	Term	
Gradient	descent	may:	
	
•  Converge	too	slowly	if	η	is	too	small	
•  Oscillate	if	η	is	too	large	
	
	
Simple	remedy:	
	
	
	
	
	
	
	
The	momentum	term	allows	us	to	use	large	values	of	η	thereby	avoiding	
oscillatory	phenomena	
	
																																					Typical	choice:	α	=	0.9,	η	=	0.5	

The	Momentum	Term	

The	Problem	of	Local	Minima	

The	Problem	of	Local	Minima	

Back-prop	cannot	avoid	local	minima.	
	
Choice	of	initial	weights	is	important.	
	
If	they	are	too	large	the	nonlinearities		
tend	to	saturate	since	the	beginning	of	
the	learning	process.	

NETtalk	

NETtalk	

•  A	network	to	pronounce	English	text	

•  7	x	29	(=203)		input	units	

•  1	hidden	layer	with	80	units	

•  26	output	units	encoding	phonemes	

•  Trained	by	1024	words	in	context	

•  Produce	intelligible	speech	after	10	training	epochs	

•  Functionally	equivalent	to	DEC-talk	

•  Rule-based	DEC-talk	was	the	result	of	a	decade	effort	by	many	linguists	

•  NETtalk	learns	from	examples	and,	require	no	linguistic	knowledge	

NETtalk	

Theoretical	/	Practical	Questions	
	

§  How	many	layers	are	needed	for	a	given	task?	

§  How	many	units	per	layer?	

§  To	what	extent	does	representation	matter?	

§  What	do	we	mean	by	generalization?	

§  What	can	we	expect	a	network	to	generalize?	

•  Generalization:	performance	of	the	network	on	data	not	
included	in	the	training	set	

•  Size	of	the	training	set:	how	large	a	training	set	should	be	for	
“good”	generalization?	

•  Size	of	the	network:	too	many	weights	in	a	network	result	in	
poor	generalization 		

	 		

True	vs	Sample	Error	

The	true	error	is	unknown	(and	will	remain	so	forever…).	
On	which	sample	should	I	compute	the	sample	error?	

Training	vs	Test	Set	

Training,	Validation	and	Test	Sets	

Cross-validation	

Leave-one-out:	using	as	many	test	folds	as	there	are	examples	(size	of	test	fold	=	1)	

Early	Stopping	

	

	

	
	

	

	

	

	

	

	

	

		

	
							(a)	A	good	fit	to	noisy	data.(b)	Overfitting	of	the	same	data:	the	fit	is	perfect	on	the		
							“training	set”	(x’s),	but	is	likely	to	be	poor	on	“test	set”	represented	by	the	circle.	

	

	

	

Overfitting	

	

•  The	size	(i.e.	the	number	of	hidden	units)	of	an	artificial		

	neural	network	affects	both	its	functional	capabilities	and		

	its	generalization	performance	

	

•  Small	networks	could	not	be	able	to	realize	the	desired	

	input	/	output	mapping	

	

•  Large	networks	lead	to	poor	generalization	performance	

Size	Matters	

The	Pruning	Approach	

Train	an	over-dimensioned	net	and	then	remove	redundant	nodes	

and	/	or	connections:	

	

•  Sietsma	&	Dow	(1988,	1991)	

•  Mozer	&	Smolensky	(1989)	

•  Burkitt	(1991)	

	

Adavantages:	

	

•  arbitrarily	complex	decision	regions	

•  faster	training		

•  independence	of	the	training	algorithm			

	

	

	

An	Iterative	Pruning	Algorithm	

Consider	(for	simplicity)	a	net	with	one	hidden	layer:	

	

	

	

	

	

	

	

Suppose	that	unit		h	is	to	be	removed:		

	

IDEA:	Remove	unit	h	(and	its	in/out	connections)	and	adjust	the	
remaining	weights	so	that	the	I/O	behavior	is	the	same	

G.	 Castellano,	 A.	 M.	 Fanelli,	 and	 M.	 Pelillo,	 An	 iterative	 pruning	 algorithm	 for	 feedforward	 neural	 networks,	 IEEE	
Transactions	on	Neural	Networks	8(3):519-531,	1997.	

This	is	equivalent	to	solving	the	system:	

	

	

	

	

	

																		before																																		after	

	

which	is	equivalent	to	the	following	linear	system	(in	the	unknown	δ’s):	

wij
j=1

nh

∑ yj
(µ) = wij +δij()

j=1
j≠h

nh

∑ yj
(µ)

)()(µµδ hihj
hj

ij ywy =∑
≠

i =1…nO , µ =1…P

i =1…nO , µ =1…P

An	Iterative	Pruning	Algorithm	

	

In	a	more	compact	notation:		

	

	

	

where	

	

But	solution	does	not	always	exists.	

	

Least-square	solution	:	

Ax = b

A ∈ℜPno× no nh−1()

min
x

Ax − b

An	Iterative	Pruning	Algorithm	

Detecting	Excessive	Units			

	

•  Residual-reducing	methods	for	LLSPs	start	with	an	initial	solution	

	x0	and	produces	a	sequences	of	points	{xk}	so	that	the	residuals	

	

	

	decrease:			

	

	

•  Starting	point:		

•  Excessive	units	can	be	detected	so	that									is	minimum		

	

kk rbAx =−
1−≤ kk rr

()brx =⇒= 00 0

b

The	Pruning	Algorithm				
	
1) 	Start	with	an	over-sized	trained	network	
	
2) 	Repeat	
	

	 	2.1)	find	the	hidden	unit	h	for	which									is	minimum	
	 	2.2)	solve	the	corresponding	system	
	 	2.3)	remove	unit	h	

	
	Until		Perf(pruned)	–	Perf(original)	<	epsilon	

	
3) 	Reject	the	last	reduced	network	

b

Example:	4-bit	parity			
Ten	initial	4-10-1	networks	
	

																																									nine		4-5-1	
Pruned	nets	 	 	 	 	5	hidden	nodes	(average)	

	 																				one			4-4-1	

0

10

20

30

40

50

60

70

80

90

100

10 9 8 7 6 5 4 3 2 1

number of hidden units

re
co

gn
iti

on
 r

at
e

(%
)

0

0,05

0,1

0,15

0,2

0,25

M
S

E

recognition rate
MSE

MINIMUM
NET

Example:	4-bit	simmetry			
	
Ten	initial	4-10-1	networks	

																																	
Pruned	nets	 													4.6	hidden	nodes	(average)	

	 								

0

10

20

30

40

50

60

70

80

90

100

10 9 8 7 6 5 4 3 2 1

number of hidden units

re
co

gn
iti

on
 r

at
e

(%
)

0

0,05

0,1

0,15

0,2

0,25

M
S

E

recognition rate
MSE

MINIMUM
NET

Feature	selection		

Using	neural	network	pruning	

Credits:	Alberto	Scalco	

Introduction	
Feature	selection	

•  Classifiers	are	sensitive	to	the	features	used	
•  Removal	of	irrelevant	and	redundant	
information	

•  Improve	generalization	by	overfitting	
reduction	

•  Extract	key	feature	enhancing	the	problem	
interpretation	

Idea:	apply	the	pruning	algorithm	on	the	input	layer	

Experimental	results	
MNIST	

Experimental	results	
MNIST	

•  70,000	images	of	size	28x28	pixel	of	
handwritten	digits	

•  Training	set	48,000,	validation	set	12,000,	test	
set	10,000	

•  Fully	connected	784-256-10	Network	input,	
hidden	and	output	layer	respectively	

•  Categorical	cross-entropy	loss	function	

Experimental	results	
MNIST	–	training	loss	and	recognition	rate	

Experimental	results	
MNIST	–	test	loss	and	recognition	rate	

Experimental	results	
MNIST	–	algorithm	comparison	

Experimental	results	
MNIST	–	selected	features	

