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Given: 
ü  a set of n “objects” 
ü  an n × n matrix A of pairwise similarities  

 
Goal: Partition the vertices of the G into maximally homogeneous groups (i.e., 
clusters). 
 
Usual assumption: symmetric and pairwise similarities (G is an undirected graph) 

= an edge-weighted graph G 

The “classical” clustering problem



Clustering problems abound in many areas of computer science and engineering. 
 
A short list of applications domains: 
 

 Image processing and computer vision 
 Computational biology and bioinformatics 
 Information retrieval 
 Document analysis 
 Medical image analysis 
 Data mining 
 Signal processing 
 … 

 
 
For a review see, e.g., A. K. Jain, "Data clustering: 50 years beyond K-means,” 
Pattern Recognition Letters 31(8):651-666, 2010.  

Applications



Basic ideas of grouping in humans: �
The Gestalt school

Gestalt properties
elements in a collection of elements 
can have properties that result from 
relationships

•  Gestaltqualitat

Koffka 

Koehler 

Wertheimer 

A series of factors affect whether 
elements should be grouped 
together

•  Gestalt factors







Clustering



Source: K. Grauman 

Segmentation as clustering



Segmentation as clustering

•  Cluster together (pixels, tokens, 
etc.) that belong together

•  Agglomerative clustering
–  attach closest to cluster it is 

closest to
–  repeat

•  Divisive clustering
–  split cluster along best 

boundary
–  repeat

•  Point-Cluster distance
–  single-link clustering
–  complete-link clustering
–  group-average clustering

•  Dendrograms
–  yield a picture of output as 

clustering process continues





K-Means

An iterative clustering algorithm

– Initialize:
Pick K random points as cluster centers

– Alternate:
1. Assign data points to closest cluster center
2. Change the cluster center to the average of its assigned points

– Stop when no points’ assignments change

Note:  Ensure that every cluster has at least one data point. Possible techniques for doing this include 
supplying empty clusters with a point  chosen at random from points far from their cluster centers.



K-means clustering: Example

Initialization:
Pick K random points as 
cluster centers

Shown here for K=2

Adapted from D. Sontag



Iterative Step 1:
Assign data points to
closest cluster center

K-means clustering: Example

Adapted from D. Sontag



Iterative Step 2:
Change the cluster center to 
the average of the assigned 
points

K-means clustering: Example

Adapted from D. Sontag



Repeat until convergence

K-means clustering: Example

Adapted from D. Sontag



K-means clustering: Example

Final output

Adapted from D. Sontag



K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color



Properties of K-means

Guaranteed to converge in a finite number of steps. 
 
Minimizes an objective function (compactness of clusters): 
             
 
 
 
where µi is the center of cluster i. 
 
Running time per iteration: 
•  Assign data points to closest cluster center: O(Kn) time 
•  Change the cluster center to the average of its points: O(n) time 
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•  Pros 
–  Very simple method 
–  Efficient 
 

•  Cons 
–  Converges to a local minimum  

 of the error function 
–  Need to pick K 
–  Sensitive to initialization 
–  Sensitive to outliers 
–  Only finds “spherical” clusters 

Properties of K-means



Images as graphs 

•  Node for every pixel 
•  Edge between every pair of pixels (or every pair of 

“sufficiently close” pixels) 
•  Each edge is weighted by the affinity or similarity of the 

two nodes 

wij 
i 

j 

Source: S. Seitz 



Graph-theoretic (pairwise) clustering

•  Represent tokens using a weighted graph.
–  affinity matrix

•  Cut up this graph to get subgraphs with strong interior 
links



Graphs and matrices

Source: D. Sontag 







Measuring affinity 

•  Suppose we represent each pixel by a feature vector 
x, and define a distance function appropriate for this 
feature representation 

•  Then we can convert the distance between two 
feature vectors into an affinity with the help of a 
Gaussian kernel: 
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Scale affects affinity 
•  Small σ: group only nearby points 
•  Large σ: group far-away points 



Eigenvector-based clustering

Let us represent a cluster using a vector x whose k-th entry captures the 
participation of node k in that cluster. If a node does not participate in a 
cluster, the corresponding entry is zero. 

We also impose the restriction that xTx = 1

We want to maximize: 

which is a measure for the cluster’s cohesiveness.

This is an eigenvalue problem!
Choose the eigenvector of A with largest eigenvalue



Example eigenvector

points

matrix

eigenvector



More than two segments

•  Two options
–  Recursively split each side to get a tree, continuing till the 

eigenvalues are too small
–  Use the other eigenvectors



Clustering by eigenvectors: Algorithm

1. Construct (or take as input) the affinity matrix A 
2. Compute the eigenvalues and eigenvectors of A
3. Repeat
4. Take the eigenvector corresponding to the largest unprocessed eigenvalue
5. Zero all components corresponding to elements that have already been clustered
6. Threshold the remaining components to determine which elements belong to 

this cluster
7. If all elements have been accounted for, there are sufficient clusters
8. Until there are sufficient clusters



Clustering as graph partitioning

cut(A, B) = w(i, j)
j∈B
∑

i∈A
∑

Minimum Cut Problem

Among all possible cuts (A, B),
find the one which minimizes cut(A, B)

Let G=(V, E, w) a weighted graph.

Given a “cut” (A, B), with B =V \ A, define:

A
B



MinCut clustering

Bad news
     Favors highly unbalanced clusters (often with isolated vertices)

Good news
     Solvable in polynomial time



Graph terminology

Adapted from D. Sontag

Degree of nodes

Volume of a set



Normalized Cut

Ncut(A, B) = cut(A, B) 1
vol(A)

+
1

vol(B)
⎛

⎝
⎜

⎞

⎠
⎟

A

B

Adapted from D. Sontag



Graph Laplacian (unnormalized)
Defined as

L = D – W

Example:

Assume the weights of edges are 1	



Key fact
For all vectors  f  in Rn, we have: 

 

 

Indeed: 



Properties

•  L is symmetric (by assumption) and positive semi-definite:

f’L f  ≥ 0 

for all vectors f  (by “key fact”)

•  Smallest eigenvalue of L is 0; corresponding eigenvector is 1

•  Thus eigenvalues are:  0 = λ1 ≤ λ2 ≤ ... ≤ λn

First relation between spectrum and clusters:

•  Multiplicity of eigenvalue λ1 = 0 is the number of connected 
components of the graph

•  eigenspace is spanned by the characteristic functions of these 
components (so all eigenvectors are piecewise constant)



Normalized graph Laplacians

•  Row sum (random walk) normalization:

       Lrw  =  D−1 L

=  I – D−1 W

•  Symmetric normalization:

     Lsym  =  D−1/2 L D−1/2

=  I – D−1 W D−1/2

Spectral properties of both matrices similar to the ones of L.



Solving Ncut
Any cut (A, B) can be represented by a binary indicator vector x:

min
x

Ncut(x) = min
y

y '(D−W )y
y 'Dy

xi = +1 if i ∈ A
−1 if i ∈ B

⎧
⎨
⎩

This is NP-hard!

It can be shown that:

subject to the constraint that y’D1 = ∑i yi di = 0 (with yi∈{1, -b}).

Rayleigh quotient



Ncut as an eigensystem

Note: Equivalent to a standard eigenvalue problem using the normalized 
Laplacian: Lrw  =  D−1 L  =  I – D−1 W.

If we relax the constraint that y be a discrete-valued vector and allow it to 
take on real values, the problem

min
y

y '(D−W )y
y 'Dy

is equivalent to:

min
y

y '(D−W )y   subject to  y 'Dy =1

This amounts to solving a generalized eigenvalue problem:

(D−W )y = λDyLaplacian



2-way Ncut

1.  Compute the affinity matrix W, compute the degree matrix D

2.  Solve the generalized eigenvalue problem (D – W)y = λDy

3.  Use the eigenvector associated to the second smallest eigenvalue to 
bipartition the graph into two parts.

Why the second smallest eigenvalue?
Remember, the smallest eigenvalue of Laplacians is always 0

(corresponds to the trivial partition A = V, B = {})





The effect of relaxation

How to choose the splitting point?

•  Pick a constant value (0 or 0.5)

•  Pick the median value as splitting point

•  Look for the splitting point that has 
minimum Ncut value:

1.  Choose n possible splitting points
2.  Compute Ncut value
3.  Pick minimum



Random walk intepretation
Construct a Markov chain where each data point is a state, connected to 
all other states with some probability.

With our affinity W and degree D, the stochastic matrix is:

P = D−1 W

which  is  the  row-normalized  version  of  W,  so  each  entry  P(i,  j)  is  a 
probability of “walking” to state j from state i.

Adapted from Y. Weiss



Problem: Finding a cut (A, B) in a graph G such that a random walk does 
not have many opportunities to jump between the two clusters.

This is equivalent to the Ncut problem due to the following relation:

Ncut(A, B) = P(A | B) + P(B | A)

(Meila and Shi, 2001)

Random walk intepretation



Approach #1: Recursive two-way cuts

1.  Given a weighted graph G = (V, E, w), summarize the information into 
matrices W and D

2.  Solve (D − W)y = λDy for eigenvectors with the smallest eigenvalues

3.  Use the eigenvector with the second smallest eigenvalue to bipartition the 
graph by finding the splitting point such that Ncut is minimized

4.  Decide if the current partition should be subdivided by checking the stability of 
the cut, and make sure Ncut is below the prespecified value

5.  Recursively repartition the segmented parts if necessary

Note. The approach is computationally wasteful; only the second eigenvector is used, whereas 
the next few small eigenvectors also contain useful partitioning information.

Ncut: More than 2 clusters



Ncut: More than 2 clusters
Approach #2: Using first k eigenvectors













Spectral clustering

Ng, Jordan and Weiss (2002)



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with 
non-convex boundaries.

Adapted from A. Singh



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with 
non-convex boundaries.

Adapted from A. Singh



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with 
non-convex boundaries.

Adapted from A. Singh



Examples



Examples (choice of k)



Choosing k
The eigengap heuristic: Choose k such that all eigenvalues λ1,…, λk  are 
very small, but λk+1  is relatively large

 Four 1D Gaussian clusters with increasing variance and corresponding eigevalues of Lrw (von Luxburg, 2007).
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Dominant	Sets	



The Need for Non-exhaustive Clusterings 



Separating Structure from Clutter 



Separating Structure from Clutter 

NCut 

K-means Our approach 



One-class Clustering 

“[…] in certain real-world problems, natural groupings are found 
among only on a small subset of the data, while the rest of the data 
shows little or no clustering tendencies.  
In such situations it is often more important to cluster a small 
subset of the data very well, rather than optimizing a clustering 
criterion over all the data points, particularly in application 
scenarios where a large amount of noisy data is encountered.” 

G. Gupta and J. Ghosh. Bregman bubble clustering: A robust framework 
for mining dense cluster. ACM Trans. Knowl. Discov. Data  (2008). 



When Groups Overlap 

Does O belong to AD or to BC (or to none)? 

O 



The Need for Overlapping Clusters 

Partitional approaches impose that each element cannot belong to more than one 
cluster. There are a variety of important applications, however, where this 
requirement is too restrictive.  
 
Examples: 
ü  clustering micro-array gene expression data 
ü  clustering documents into topic categories 
ü  perceptual grouping  
ü  segmentation of images with transparent surfaces 

 
References: 
ü  N. Jardine and R. Sibson. The construction of hierarchic and non-hierarchic 

classifications. Computer Journal, 11:177–184, 1968 

ü  A. Banerjee, C. Krumpelman, S. Basu, R. J. Mooney, and J. Ghosh. Model-
based overlapping clustering. KDD 2005. 

ü  K. A. Heller and Z. Ghahramani. A nonparametric Bayesian approach to 
modeling overlapping clusters. AISTATS 2007. 

 



The Symmetry Assumption 

«Similarity has been viewed by both philosophers and psychologists 
as a prime example of a symmetric relation. Indeed, the assumption 

of symmetry underlies essentially all theoretical treatments of 
similarity.  

 
Contrary to this tradition, the present paper provides empirical 

evidence for asymmetric similarities and argues that similarity should 
not be treated as a symmetric relation.» 

 
Amos Tversky  

“Features of similarities,” Psychol. Rev. (1977) 

Examples of asymmetric (dis)similarities 
ü  Kullback-Leibler divergence 

ü  Directed Hausdorff distance 

ü  Tversky’s contrast model 



What is a Cluster? 

No universally accepted (formal) definition of a “cluster” but, informally, a 
cluster should satisfy two criteria: 
 
Internal criterion 

 all “objects” inside a cluster should be highly similar to each other 
 
External criterion 

 all “objects” outside a cluster should be highly dissimilar to the ones inside 



The Notion of “Gestalt” 
 

«In most visual fields the contents of particular areas “belong together” as 
circumscribed units from which their surrounding are excluded.» 

 
W. Köhler, Gestalt Psychology  (1947) 

«In gestalt theory the word “Gestalt” means any segregated whole.» 
 

W. Köhler (1929) 



Data Clustering: 
Old vs. New 

Clustering_old(V,A,k) 
   V1,V2,...,Vk <- My_favorite_partitioning_algorithm(V,A,k) 

   return V1,V2,...,Vk   

−−−−−− 
 
Clustering_new(V,A) 

   V1,V2,...,Vk <- Enumerate_all_clusters(V,A) 

   return V1,V2,...,Vk 

 

Enumerate_all_clusters(V,A) 
   repeat 

      Extract_a_cluster(V,A) 

   until all clusters have been found 

   return the clusters found  

By answering the question “what is a cluster?” we get a novel way of 
looking at the clustering problem. 



A Special Case: 
Binary Symmetric Affinities 

 
Suppose the similarity matrix is a binary (0/1) matrix. 
 
Given an unweighted undirected graph G=(V,E): 
 
A clique is a subset of mutually adjacent vertices 
A maximal clique is a clique that is not contained in a larger one 
 
 
In the 0/1 case, a meaningful notion of a cluster is that of a maximal clique. 
 
 NCut 

New approach 



Advantages of the New Approach 

ü  No need to know the number of clusters in advance (since we extract 
them sequentially) 

ü  Leaves clutter elements unassigned (useful, e.g., in figure/ground 
separation or one-class clustering problems) 

ü  Allows extracting overlapping clusters 

Need a partition? 
 

Partition_into_clusters(V,A) 

  repeat 

     Extract_a_cluster 

     remove it from V 

  until all vertices have been clustered 



What is Game Theory? 

“The central problem of game theory was posed by von 
Neumann as early as 1926 in Göttingen. It is the following: 
If n players, P1,…, Pn, play a given game Γ, how must the ith 

player, Pi, play to achieve the most favorable result for himself?” 
 

Harold W. Kuhn 
Lectures on the Theory of Games (1953) 

 

A few cornerstones in game theory 

1921−1928: Emile Borel and John von Neumann give the first modern formulation of a 
mixed strategy along with the idea of finding minimax solutions of normal-form games. 

1944, 1947: John von Neumann and Oskar Morgenstern publish Theory of Games and 
Economic Behavior. 

1950−1953: In four papers John Nash made seminal contributions to both non-cooperative 
game theory and to bargaining theory. 

1972−1982: John Maynard Smith applies game theory to biological problems thereby 
founding “evolutionary game theory.” 

late 1990’s −: Development of algorithmic game theory… 

 

 

 



“Solving” a Game 

 
Player 2 

 
Left 

 
Middle 

 
Right 

 
 
 
 
 
 
 

Player 1 

 
Top 

 
3 , 1 

 

 
2 , 3 

 
10 , 2 

 
High 

 
4 , 5 

 

 
3 , 0 

 
6 , 4 

 
Low 

 
2 , 2 

 

 
5 , 4 

 

 
12 , 3 

 

 
Bottom 

 
5 , 6 

 
4 , 5 

 

 
9 , 7 

 



Basics of (Two-Player, Symmetric) 
Game Theory 

Assume: 
–  a (symmetric) game between two players  
–  complete knowledge  
–  a pre-existing set of pure strategies (actions) O={o1,…,on} available 

to the players. 

Each player receives a payoff depending on the strategies selected by him 
and by the adversary. Players’ goal is to maximize their own returns. 
 

  

€ 

Δ = x ∈ Rn :  ∀i =1…n : xi ≥ 0, and xi =1
i=1

n

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

A mixed strategy is a probability distribution x=(x1,…,xn)T over the strategies. 



Nash Equilibria 

ü  Let A be an arbitrary payoff matrix: aij is the payoff obtained by playing i 
while the opponent plays j. 

ü  The average payoff obtained by playing mixed strategy y while the 
opponent plays x, is: 

ü  A mixed strategy x is a (symmetric) Nash equilibrium if �
                        
 
 

for all strategies y. (Best reply to itself.) 

€ 

ʹ y Ax = aij yix j
j
∑

i
∑

€ 

x'Ax ≥ ʹ y Ax

Theorem (Nash, 1951). Every finite normal-form game admits a mixed-
strategy Nash equilibrium. 



Evolution and the Theory of Games 

“We repeat most emphatically that our theory is thoroughly static. 
A dynamic theory would unquestionably be more complete and 
therefore preferable.  
But there is ample evidence from other branches of science that it 
is futile to try to build one as long as the static side is not 
thoroughly understood.” 
 
John von Neumann and Oskar Morgenstern  
Theory of Games and Economic Behavior (1944) 

“Paradoxically, it has turned out that game theory is more readily 
applied to biology than to the field of economic behaviour for 

which it was originally designed.”  
 

John Maynard Smith 
Evolution and the Theory of Games (1982) 

 



Evolutionary Games and ESS’s 

Assumptions: 

ü  A large population of individuals belonging to the same species which 
compete for a particular limited resource 

ü  This kind of conflict is modeled as a symmetric two-player game, the 
players being pairs of randomly selected population members 

ü  Players do not behave “rationally” but act according to a pre-
programmed behavioral pattern (pure strategy) 

ü  Reproduction is assumed to be asexual 

ü  Utility is measured in terms of Darwinian fitness, or reproductive 
success 

 

A Nash equilibrium x is an Evolutionary Stable Strategy (ESS) if, for all 
strategies y: 



ESS’s as Clusters 

We claim that ESS’s abstract well the main characteristics of a cluster: 
 
 
ü  Internal coherency: High mutual support of all elements within the 

group. 

ü  External incoherency: Low support from elements of the group to 
elements outside the group. 

 



Basic Definitions 

Let S ⊆ V be a non-empty subset of vertices, and i∈S. 
 
The (average) weighted degree of i w.r.t. S is defined as: 
 
 

€ 

awdegS (i) =
1

| S |
aij

j∈S
∑

j i 

S 

Moreover, if j ∉ S, we define: 
 

€ 

φS (i, j) = aij −  awdegS (i)

Intuitively, φS(i,j) measures the similarity between vertices j and i, with 
respect to the (average) similarity between vertex i and its neighbors in S. 



Assigning Weights to Vertices 

Let S ⊆ V be a non-empty subset of vertices, and i∈S. 
 
The weight of i w.r.t. S is defined as: 
 
 

€ 

wS (i) =
1 if S =1

φS− i{ }( j,i)wS− i{ }( j)
j∈S− i{ }
∑ otherwise

⎧ 
⎨ 
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S 

j 

i 

S - { i } 

Further, the total weight of S is defined as: 
 
 

€ 

W (S) = wS (i)
i∈S
∑



Interpretation 

Intuitively, wS(i) gives us a measure of the overall (relative) similarity between 
vertex i and the vertices of S-{i} with respect to the overall similarity among the 
vertices in S-{i}.  

w{1,2,3,4}(1) < 0 w{1,2,3,4}(1) > 0 



Dominant Sets 

Definition (Pavan and Pelillo, 2003, 2007). A non-empty subset of vertices S ⊆ 
V such that W(T) > 0 for any non-empty T ⊆ S, is said to be a dominant set if: 

1.  wS(i) > 0, for all i ∈ S  (internal homogeneity) 

2.  wS∪{i}(i) < 0, for all i ∉ S  (external homogeneity) 

 

 

The set {1,2,3} is dominant. 

Dominant sets ≡ clusters 



The Clustering Game 

Consider the following “clustering game.”  
 
ü  Assume a preexisting set of objects O and a (possibly asymmetric) matrix 

of affinities A between the elements of O.  
ü  Two players play by simultaneously selecting an element of O.  
ü  After both have shown their choice, each player receives a payoff 

proportional to the affinity that the chosen element has wrt the element 
chosen by the opponent. 

 
Clearly, it is in each player’s interest to pick an element that is strongly 
supported by the elements that the adversary is likely to choose. 
 
Hence, in the (pairwise) clustering game: 

ü  There are 2 players (because we have pairwise affinities)  
ü  The objects to be clustered are the pure strategies 
ü  The (null-diagonal) affinity matrix coincides with the similarity matrix 



Dominant Sets are ESS’s 

Theorem (Torsello, Rota Bulò and Pelillo, 2006). Evolutionary stable strategies 
of the clustering game with affinity matrix A are in a one-to-one 
correspondence with dominant sets. 
 
Note. Generalization of well-known Motzkin-Straus theorem from graph theory 
(1965). 

Dominant-set clustering 

ü  To get a single dominant-set cluster use, e.g., replicator dynamics (but see 
Rota Bulò, Pelillo and Bomze, CVIU 2011, for faster dynamics) 

ü  To get a partition use a simple peel-off strategy: iteratively find a dominant 
set and remove it from the graph, until all vertices have been clustered 

ü  To get overlapping clusters, enumerate dominant sets (see Bomze, 1992; 
Torsello, Rota Bulò and Pelillo, 2008) 



Special Case: 
Symmetric Affinities 

Given a symmetric real-valued matrix A (with null diagonal), consider the 
following Standard Quadratic Programming problem (StQP): 
 

                 maximize   ƒ(x) = xTAx 
             subject to   x∈∆ 

 
Note. The function ƒ(x) provides a measure of cohesiveness of a cluster (see 
Pavan and Pelillo, 2003, 2007; Sarkar and Boyer, 1998; Perona and Freeman, 
1998). 
 

 
 
 

ESS’s are in one-to-one correspondence  
to (strict) local solutions of StQP 

Note. In the 0/1 (symmetric) case, ESS’s are in one-to-one correspondence to 
(strictly) maximal cliques (Motzkin-Straus theorem). 
 



Replicator Dynamics 

Let xi(t) the population share playing pure strategy i at time t. The state of the 
population at time t is: x(t)= (x1(t),…,xn(t))∈∆. 
 
Replicator dynamics (Taylor and Jonker, 1978) are motivated by Darwin’s 
principle of natural selection: 

€ 

˙ x i
xi

∝  payoff of pure strategy i −  average population payoff

€ 

˙ x i = xi (Ax)i − xT Ax[ ]

which yields: 

Theorem (Nachbar, 1990; Taylor and Jonker, 1978). A point x∈∆ is a Nash 
equilibrium if and only if x is the limit point of a replicator dynamics 
trajectory starting from the interior of ∆. 
Furthermore, if x∈∆ is an ESS, then it is an asymptotically stable equilibrium 
point for the replicator dynamics. 



Doubly Symmetric Games 

In a doubly symmetric (or partnership) game, the payoff matrix A is 
symmetric (A = AT). 

Fundamental Theorem of Natural Selection (Losert and Akin, 1983).  
For any doubly symmetric game, the average population payoff ƒ(x) = 
xTAx is strictly increasing along any non-constant trajectory of replicator 
dynamics, namely, d/dtƒ(x(t)) ≥ 0 for all t ≥ 0, with equality if and only if 
x(t) is a stationary point. 

Characterization of  ESS’s (Hofbauer and Sigmund, 1988) 

For any doubly simmetric game with payoff matrix A, the following 
statements are equivalent: 

a)  x ∈ ∆ESS 

b)  x ∈ ∆ is a strict local maximizer of ƒ(x) = xTAx over the standard 
simplex ∆ 

c)  x ∈ ∆ is asymptotically stable in the replicator dynamics 



Discrete-time Replicator Dynamics 

€ 

xi(t +1) = xi(t)
A x(t)( )i

x(t)T Ax(t)

MATLAB implementation 

A well-known discretization of replicator dynamics, which assumes non-
overlapping generations, is the following (assuming a non-negative A): 

which inherits most of the dynamical properties of its continuous-time 
counterpart (e.g., the fundamental theorem of natural selection). 



		

A	Toy	Example	



Measuring the Degree of Cluster 
Membership 

The components of the converged vector give us a measure of the participation of 
the corresponding vertices in the cluster, while the value of the objective function 
provides of the cohesiveness of the cluster. 



Application to Image Segmentation 

An image is represented as an edge-weighted undirected graph, where 
vertices correspond to individual pixels and edge-weights reflect the 
“similarity” between pairs of vertices. 
 
For the sake of comparison, in the experiments we used the same similarities 
used in Shi and Malik’s normalized-cut paper (PAMI 2000). 
 
To find a hard partition, the following peel-off strategy was used: 

Partition_into_dominant_sets(G) 
Repeat 

   find a dominant set 

   remove it from graph 

until all vertices have been clustered 

To find a single dominant set we used replicator dynamics (but see Rota 
Bulò, Pelillo and Bomze, CVIU 2011, for faster game dynamics). 



Intensity Segmentation Results 

Dominant sets Ncut   



Intensity Segmentation Results 

Dominant sets                                                     Ncut   



Results on the Berkeley Dataset 
Dominant sets                     Ncut   



Color Segmentation Results 

Original image             Dominant sets                    Ncut   



Dominant sets                     Ncut   

Results on the Berkeley Dataset 



Texture Segmentation Results 

Dominant sets 



Texture Segmentation Results 

NCut 



In a nutshell… 

The game-theoretic/dominant-set approach: 

ü  makes no assumption on the structure of the affinity matrix, being it able to 
work with asymmetric and even negative similarity functions 

ü  does not require a priori knowledge on the number of clusters (since it extracts 
them sequentially) 

ü  leaves clutter elements unassigned (useful, e.g., in figure/ground separation or 
one-class clustering problems) 

ü  allows principled ways of assigning out-of-sample items (NIPS’04) 

ü  allows extracting overlapping clusters (ICPR’08) 

ü  generalizes naturally to hypergraph clustering problems, i.e., in the presence 
of high-order affinities, in which case the clustering game is played by more 
than two players (PAMI’13) 

ü  extends to hierarchical clustering (ICCV’03: EMMCVPR’09) 

ü  allows using multiple affinity matrices using Pareto-Nash notion (SIMBAD’15) 
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