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The “classical” clustering problem

Given:

v asetof n “objects” ; = an edge-weighted graph G
v an n x n matrix A of pairwise similarities

Goal: Partition the vertices of the G into maximally homogeneous groups (i.e.,
clusters).

Usual assumption: symmetric and pairwise similarities (G is an undirected graph)




Applications

Clustering problems abound in many areas of computer science and engineering.
A short list of applications domains:

Image processing and computer vision
Computational biology and bioinformatics
Information retrieval

Document analysis

Medical image analysis

Data mining

Signal processing

For a review see, e.g., A. K. Jain, "Data clustering: 50 years beyond K-means,”
Pattern Recognition Letters 31(8):651-666, 2010.



Basic 1deas of grouping in humans:
The Gestalt school

Wertheimer Gestalt properties

elements in a collection of elements
can have properties that result from

relationships

Koehler

. Gestaltqualitat

A series of factors affect whether
elements should be grouped
together

e Gestalt factors




Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region
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Clustering

Figure 1: How many groups?
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Segmentation as clustering

» Cluster similar pixels (features) together

R=255
R= G=200
G= ; B=250
B=20 » _ (R=245J

G=220

Source: K. Grauman



Segmentation as clustering

Cluster together (pixels, tokens, Point-Cluster distance

etc.) that belong together — single-link clustering
Agglomerative clustering — complete-link clustering
— attach closest to cluster it is — group-average clustering
closest to e Dendrograms
— Tepeat — yield a picture of output as
Divisive clustering clustering process continues

— split cluster along best
boundary

— repeat
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K-Means

An iterative clustering algorithm

— Initialize:

Pick K random points as cluster centers
— Alternate:
1. Assign data points to closest cluster center

2. Change the cluster center to the average of its assigned points

— Stop when no points’ assignments change

Note: Ensure that every cluster has at least one data point. Possible techniques for doing this include
supplying empty clusters with a point chosen at random from points far from their cluster centers.



K-means clustering: Example

2 i
Initialization:
Pick K random points as
ol cluster centers
Shown here for K=2
!

Adapted from D. Sontag



K-means clustering: Example

Iterative Step 1:
Assign data points to
closest cluster center

Adapted from D. Sontag



K-means clustering: Example

2 L
Iterative Step 2:

ol Change the cluster center to
the average of the assigned
points

2t

Adapted from D. Sontag



K-means clustering: Example

Repeat until convergence

Adapted from D. Sontag



K-means clustering: Example

Final output

Adapted from D. Sontag



Image Clusters on intensity Clusters on color

K-means clustering using intensity alone and color alone



Properties of K-means

Guaranteed to converge 1n a finite number of steps.

Minimizes an objective function (compactness of clusters):

> |

iEclusters { j€elements of i'th cluster

v, - u,

where y; 1s the center of cluster .

Running time per iteration:
« Assign data points to closest cluster center: O(Kn) time
* Change the cluster center to the average of its points: O(n) time



Properties of K-means

Pros

— Very simple method
— Efficient

outher

Cons

— Converges to a local minimum

of the error function
— Need to pick K

— Sensitive to initialization

outher

— Sensitive to outliers

— Only finds “spherical” clusters

(B): Ideal clusters



Images as graphs

Node for every pixel

Edge between every pair of pixels (or every pair of
“sufficiently close” pixels)

Each edge is weighted by the affinity or similarity of the
two nodes

Source: S. Seitz



Graph-theoretic (pairwise) clustering

* Represent tokens using a weighted graph.
— affinity matrix

e Cut up this graph to get subgraphs with strong interior
links



Graphs and matrices
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Source: D. Sontag









Measuring affinity

« Suppose we represent each pixel by a feature vector
X, and define a distance function appropriate for this
feature representation

« Then we can convert the distance between two
feature vectors into an affinity with the help of a
Gaussian kernel:

|
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exp| - — dist(xl.,xj)z)



affinity

Scale affects affinity

« Small o: group only nearby points
« Large o: group far-away points
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Eigenvector-based clustering

Let us represent a cluster using a vector X whose k-th entry captures the
participation of node k in that cluster. If a node does not participate in a
cluster, the corresponding entry 1s zero.

We also impose the restriction that x’x = 1

We want to maximize:

n

n
E E WijXiXj = X7 Ax

i=1 j=1

which 1s a measure for the cluster’s cohesiveness.

This is an eigenvalue problem!
Choose the eigenvector of A with largest eigenvalue



Example eigenvector
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More than two segments

e Two options

— Recursively split each side to get a tree, continuing till the
eigenvalues are too small

— Use the other eigenvectors



AN O A W N

Clustering by eigenvectors: Algorithm

Construct (or take as input) the affinity matrix A
Compute the eigenvalues and eigenvectors of A
Repeat
Take the eigenvector corresponding to the largest unprocessed eigenvalue
Zero all components corresponding to elements that have already been clustered

Threshold the remaining components to determine which elements belong to
this cluster

If all elements have been accounted for, there are sufficient clusters

Until there are sufficient clusters



Clustering as graph partitioning

Let G=(V, E, w) a weighted graph.

Given a “cut” (A, B), with B =V'\ A, define:

cut(A,B) = E E w(i, j)

iCA jEB

Minimum Cut Problem

Among all possible cuts (A, B),
find the one which minimizes cut(A, B)




MinCut clustering

Good news
Solvable in polynomial time

Bad news
Favors highly unbalanced clusters (often with isolated vertices)
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Graph terminology

Degree of nodes

g.= Zw,._j
r

40 62 8c 100 120 140

Volume of a set

vol(A) = Zd,.,A cV

ieA

Adapted from D. Sontag



Normalized Cut

| 1
Neur(4,B) = cur(4, )I\IVOZ(A)jWE-).‘)

Adapted from D. Sontag



Graph Laplacian (unnormalized)

Defined as

h
1

D-W

Example:

(2—1—100
-1 4 -1 -1 -1
-1 -1 4 0 -1
0o -1 0 1 0
0O -1 -1 0 3
\0 0O -1 0 -1

Assume the weights of edges are +




Key fact

For all vectors f in R”, we have:

FTLf =5 3 wylfi— £5)?

19=1

Indeed:

f'Lf = f'Df-f'Wf

2
= Zdifi _Zfi.fjwij

1 E
= 5 (E E wii ) ff — 2 g fifjwi; + E wij) f7)
L]



Properties

L is symmetric (by assumption) and positive semi-definite:
fLf=0

for all vectors f (by “key fact™)

Smallest eigenvalue of L is 0; corresponding eigenvector is 1

Thus eigenvalues are: 0 =A, <A, <.. <A,

First relation between spectrum and clusters:

Multiplicity of eigenvalue A, = 0 is the number of connected
components of the graph

eigenspace 1s spanned by the characteristic functions of these
components (so all eigenvectors are piecewise constant)



Normalized graph Laplacians

e Row sum (random walk) normalization:

L, =D'L
=[-D'W

e Symmetric normalization:

L = D121 D12
sym
[-D'WD'”?

Spectral properties of both matrices similar to the ones of L.



Solving Ncut

Any cut (A, B) can be represented by a binary indicator vector x:

i

_] +1 ifti€A
-1 ifieB
Rayleigh quotient
It can be shown that: yielga d

min Ncut(x) = miné
: Y Yy Dy

subject to the constraint that y’D1 =3 . y,d. = 0 (with y,e{1, -b}).

This 1s NP-hard!



Ncut as an eigensystem

If we relax the constraint that y be a discrete-valued vector and allow it to
take on real values, the problem

y y'Dy

is equivalent to:

miny'(D-W)y subjectto y'Dy=1
y

This amounts to solving a generalized eigenvalue problem:

Note: Equivalent to a standard eigenvalue problem using the normalized
Laplacian: L., = D'L = I -D'W.



2-way Ncut

Compute the affinity matrix W, compute the degree matrix D
Solve the generalized eigenvalue problem (D — W)y = ADy

Use the eigenvector associated to the second smallest eigenvalue to
bipartition the graph into two parts.

Why the second smallest eigenvalue?
Remember, the smallest eigenvalue of Laplacians is always 0
(corresponds to the trivial partition A=V, B ={})
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Fig. 5. (a) Point set generated by two Poisson processes, with densities of 2.5 and 1.0 on the left and right clusters respectively, (b) /. and x indicate
the partition of point set in (a). Parameter settings: oy = 5, r = 3.



The effect of relaxation

Ideal solution
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How to choose the splitting point?

* Pick a constant value (0 or 0.5)
*  Pick the median value as splitting point

* Look for the splitting point that has
minimum Ncut value:

1. Choose n possible splitting points
2. Compute Ncut value
3. Pick minimum



Random walk intepretation

Construct a Markov chain where each data point is a state, connected to
all other states with some probability.

With our affinity W and degree D, the stochastic matrix 1s:
P=D1W

which 1s the row-normalized version of W, so each entry P(i, j) is a
probability of “walking” to state j from state i.

Adapted from Y. Weiss



Random walk intepretation

Problem: Finding a cut (A, B) in a graph G such that a random walk does
not have many opportunities to jump between the two clusters.

This 1s equivalent to the Ncut problem due to the following relation:

Ncut(A, B) = P(A | B) + P(B | A)

(Meila and Shi, 2001)



Ncut: More than 2 clusters

Approach #1: Recursive two-way cuts

1. Given a weighted graph G = (V, E, w), summarize the information into
matrices Wand D

2. Solve (D — W)y = ADy for eigenvectors with the smallest eigenvalues

3. Use the eigenvector with the second smallest eigenvalue to bipartition the
graph by finding the splitting point such that Ncut is minimized

4. Decide if the current partition should be subdivided by checking the stability of
the cut, and make sure Ncut is below the prespecified value

5. Recursively repartition the segmented parts if necessary

Note. The approach is computationally wasteful; only the second eigenvector is used, whereas
the next few small eigenvectors also contain useful partitioning information.



Ncut: More than 2 clusters

Approach #2: Using first k eigenvectors

1. Construct a similarity graph and compute the unnormalized graph
Laplacian L.

2. Compute the k£ smallest generalized eigenvectors uq, us, - -+, up of
the generalized eigenproblem Lu = ADu.

3. Let U = [uy us ---uk]ER”X’“.

4. Let y; € R be the vector corresponding to the ith row of U.

_ - - -
uip U2 ot Uik Y1
T
U1 U2 -+ Uk Yo
U p— p— .
T
i Up1 Up2 - Unk | B Yn i

5. Thinking of v;’s as points in R¥, cluster them with k-means algorithms.



Fig. 2. A gray level image of a baseball game.



() (h) (i)
Fig. 3. Subplot (a) plots the smallest eigenvectors of the generalized eigenvalue system (11). Subplots (b)-(i) show the eigenvectors corresponding
the second smallest to the ninth smallest eigenvalues of the system. The eigenvectors are reshaped to be the size of the image.
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Fig. 4. (a) shows the original image of size 80 x 100. Image intensity is normalized to lie within 0 and 1. Subplots (b)-(h) show the components of the
partition with Ncut value less than 0.04. Parameter setting: o; = 0.1, oy = 4.0, r = 5.



(b)-(g) show the components of the partition with Ncut value less than 0.08. Parameter setting:

Fig. 8. (a) shows a 126 x 106 weather radar image.

= 15.0, r = 10.

a,

-
Iy

o = 0.00



(e) (f) (9) (h)

Fig. 10. (a) shows an image of a zebra. The remaining images show the major components of the partition. The texture features used correspond to
convolutions with DOOG filters [16] at six orientations and five scales.



Spectral clustering

. Construct a similarity graph and compute the normalized graph
Laplacian Lgym, .

. Compute the k smallest eigenvectors wuy, uz, -+, ug of Lgym,.
. Let U =[ujuy - up ] € RP¥F,

. Normalized the rows of U to norm 1.
U,
(Zk Uz'2k;)1/ 2

Uz’j <

. Let y; € R* be the vector corresponding to the ith row of U.

. Thinking of y;’s as points in R”, cluster them with k-means algorithms.

Ng, Jordan and Weiss (2002)



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with
non-convex boundaries.
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Adapted from A. Singh



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with

non-convex boundaries.

Points of two clusters
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K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with
non-convex boundaries.

Similarity matrix
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Examples (choice of k)

threecrcles—joined, 2 clusters




Choosing &

The eigengap heuristic: Choose & such that all eigenvalues A,"--, A, are
very small, but A, is relatively large

Histogram of the sample
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Four 1D Gaussian clusters with increasing variance and corresponding eigevalues of L, (von Luxburg, 2007).
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Dominant Sets



The Need for Non-exhaustive Clusterings

Figuve fu. Three prominent blobs are perceived immediately and with little effort. Locally, the
blobs are similar to the background contours. (adopted from Mahoney (1986)

Figure fb. Intersections were added to illustrate that the blobs are not distingmigshed by virtue
of their intersections with the background curves.




Separating Structure from Clutter
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Figure 2. A circle in a background of 200 randomly placed and oriented segments The circle is
still perceived immediately although its contour is fragmented.

Figure 3. An edge image of a car in a cluttered background. Our attention is drawn immediately
to the region of interest. It seems that the car need not be recognized to attract our
attention. The car also remains salient when parallel lines and small blobs are removed,
and when the less textured region surrounding parts of the car is filled in with more

texture.



Separating Structure from Clutter
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One-class Clustering

“[...] in certain real-world problems, natural groupings are found
among only on a small subset of the data, while the rest of the data
shows little or no clustering tendencies.

In such situations it is often more important to cluster a small
subset of the data very well, rather than optimizing a clustering
criterion over all the data points, particularly in application
scenarios where a large amount of noisy data is encountered.”

for mining dense cluster. ACM Trans. Knowl. Discov. Data (2008).




When Groups Overlap

C

B

Does O belong to AD or to BC (or to none)?




The Need for Overlapping Clusters

Partitional approaches impose that each element cannot belong to more than one
cluster. There are a variety of important applications, however, where this
requirement is too restrictive.

Examples:
v clustering micro-array gene expression data
v clustering documents into topic categories
v' perceptual grouping
v' segmentation of images with transparent surfaces

References:

v" N. Jardine and R. Sibson. The construction of hierarchic and non-hierarchic
classifications. Computer Journal, 11:177-184, 1968

v A. Banerjee, C. Krumpelman, S. Basu, R. J. Mooney, and ]. Ghosh. Model-
based overlapping clustering. KDD 2005.

v K. A. Heller and Z. Ghahramani. A nonparametric Bayesian approach to
modeling overlapping clusters. AISTATS 2007 .



The Symmetry Assumption

«Similarity has been viewed by both philosophers and psychologists
as a prime example of a symmetric relation. Indeed, the assumption
of symmetry underlies essentially all theoretical treatments of
similarity.

Contrary to this tradition, the present paper provides empirical
evidence for asymmetric similarities and argues that similarity should
not be treated as a symmetric relation.»

Amos Tversky
“Features of similarities,” Psychol. Rev. (1977)

Examples of asymmetric (dis)similarities
v" Kullback-Leibler divergence
v" Directed Hausdorff distance

v" Tversky’s contrast model




What is a Cluster?

No universally accepted (formal) definition of a “cluster” but, informally, a
cluster should satisfy two criteria:

Internal criterion
all “objects” inside a cluster should be highly similar to each other

External criterion
all “objects” outside a cluster should be highly dissimilar to the ones inside




The Notion of “Gestalt”

«In most visual fields the contents of particular areas “belong together” as
circumscribed units from which their surrounding are excluded.»

W. Kohler, Gestalt Psychology (1947)

«In gestalt theory the word “Gestalt” means any segregated whole.»

W, Kohler (1929)
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Data Clustering:
Old vs. New

By answering the question “what is a cluster?” we get a novel way of
looking at the clustering problem.

Clustering old(V, A, k)
v1l,v2,...,Vk <- My favorite partitioning algorithm(V,A, k)
return V1,V2,...,Vk

Clustering new (V,A)
v1l,v2,...,Vk <- Enumerate all clusters(V,A)
return V1,V2,...,Vk

Enumerate_all clusters(V,A)
repeat
Extract a cluster(V,A)
until all clusters have been found

return the clusters found




A Special Case:
Binary Symmetric Affinities

Suppose the similarity matrix is a binary (0/1) matrix.

Given an unweighted undirected graph G=(V,E):

A clique is a subset of mutually adjacent vertices
A maximal clique is a clique that is not contained in a larger one

In the 0/1 case, a meaningful notion of a cluster is that of a maximal clique.
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Advantages of the New Approach

v No need to know the number of clusters in advance (since we extract
them sequentially)

v" Leaves clutter elements unassigned (useful, e.g., in figure/ground
separation or one-class clustering problems)

v" Allows extracting overlapping clusters

Need a partition?

Partition into clusters(V,6A)
repeat
Extract a cluster
remove it from V
until all vertices have been clustered




What is Game Theory?

“The central problem of game theory was posed by von
Neumann as early as 1926 in Gottingen. It is the following:

If n players, P,,..., P, play a given game I', how must the ith
player, P, play to achieve the most favorable result for himself?”

Harold W. Kuhn
Lectures on the Theory of Games (1953)

A few cornerstones in game theory

1921-1928: Emile Borel and John von Neumann give the first modern formulation of a
mixed strategy along with the idea of finding minimax solutions of normal-form games.

1944, 1947: John von Neumann and Oskar Morgenstern publish Theory of Games and
Economic Behavior.

1950-1953: In four papers John Nash made seminal contributions to both non-cooperative
game theory and to bargaining theory.

1972-1982: John Maynard Smith applies game theory to biological problems thereby
founding “evolutionary game theory.”

late 1990’s —: Development of algorithmic game theory...




“Solving” a Game

Player 2

Player 1

M -



Basics of (Two-Player, Symmetric)
Game Theory

Assume:
— a (symmetric) game between two players
— complete knowledge

— a pre-existing set of pure strategies (actions) O={o,,...,0,} available
to the players.

Each player receives a payoff depending on the strategies selected by him
and by the adversary. Players’ goal is to maximize their own returns.

A mixed strategy is a probability distribution x=(x;,...,x,)T over the strategies.

X3

A=ix€ER": Vi=1...n:x,=0, and Exl:l
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Nash Equilibria
v’ Let A be an arbitrary payoff matrix: a; is the payoff obtained by playing i

while the opponent plays j.

v" The average payoff obtained by playing mixed strategy y while the
opponent plays x, is:

vax-3Sa
i

v A mixed strategy x is a (symmetric) Nash equilibrium if
X'Ax = y'Ax
for all strategies y. (Best reply to itself.)

Theorem (Nash, 1951). Every finite normal-form game admits a mixed-
strategy Nash equilibrium.




Evolution and the Theory of Games

“We repeat most emphatically that our theory is thoroughly static.
A dynamic theory would unquestionably be more complete and

therefore preferable.

But there is ample evidence from other branches of science that it
is futile to try to build one as long as the static side is not
thoroughly understood.”

John von Neumann and Oskar Morgenstern
Theory of Games and Economic Behavior (1944)

“Paradoxically, it has turned out that game theory is more readily
applied to biology than to the field of economic behaviour for
which it was originally designed.”

John Maynard Smith
Evolution and the Theory of Games (1982)




Evolutionary Games and ESS’s

Assumptions:

v" A large population of individuals belonging to the same species which
compete for a particular limited resource

v" This kind of conflict is modeled as a symmetric two-player game, the
players being pairs of randomly selected population members

v" Players do not behave “rationally” but act according to a pre-
programmed behavioral pattern (pure strategy)

v" Reproduction is assumed to be asexual

v' Ultility is measured in terms of Darwinian fitness, or reproductive
success

A Nash equilibrium x is an Evolutionary Stable Strategy (ESS) if, for all
strategies vy:

!, !, I oAl . /.
VAX =X Ax = XAy >y Ay
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ESS’s as Clusters

We claim that ESS’s abstract well the main characteristics of a cluster:

v" Internal coherency: High mutual support of all elements within the
group.

v" External incoherency: Low support from elements of the group to
elements outside the group.




Basic Definitions

Let S & V be a non-empty subset of vertices, and i€S.

The (average) weighted degree of i w.r.t. S is defined as:

: 1
aWdegS (l) = m E aij

jES

Moreover, if j € S, we define:

¢s(i,)) = a; — awdeg (i)

Intuitively, @ (i,j) measures the similarity between vertices j and i, with
respect to the (average) similarity between vertex i and its neighbors in S.




Assigning Weights to Vertices

Let S & V be a non-empty subset of vertices, and i€S.

The weight of i w.r.t. S is defined as:

1 if |§]=1
wi(i) = E%_{i}( w3 (j)  otherwise

jes-{i}

Further, the total weight of S is defined as:

W(S)= Y ws()

ies




Interpretation

Intuitively, w(i) gives us a measure of the overall (relative) similarity between
vertex i and the vertices of S-{i} with respect to the overall similarity among the
vertices in S-{/}.
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Dominant Sets

Definition (Pavan and Pelillo, 2003, 2007). A non-empty subset of vertices S &
V such that W(T) > O for any non-empty T & S, is said to be a dominant set if:

1. wgi)>0,forallies$ (internal homogeneity)
2. Wyl <0, forallie€s (external homogeneity)
ll )
" s\ 90
2 2560 ™
5 20— 2/
23 75 Dominant sets = clusters
20 / ()“
; 4 5 3

The set {1,2,3} is dominant.




The Clustering Game

Consider the following “clustering game.”

v Assume a preexisting set of objects O and a (possibly asymmetric) matrix
of affinities A between the elements of O.

v Two players play by simultaneously selecting an element of O.

v After both have shown their choice, each player receives a payoff
proportional to the affinity that the chosen element has wrt the element
chosen by the opponent.

Clearly, it is in each player’s interest to pick an element that is strongly
supported by the elements that the adversary is likely to choose.

Hence, in the (pairwise) clustering game:
v' There are 2 players (because we have pairwise affinities)

v" The objects to be clustered are the pure strategies
v" The (null-diagonal) affinity matrix coincides with the similarity matrix



Dominant Sets are ESS’s

Theorem (Torsello, Rota Bulo and Pelillo, 2006). Evolutionary stable strategies
of the clustering game with affinity matrix A are in a one-to-one
correspondence with dominant sets.

Note. Generalization of well-known Motzkin-Straus theorem from graph theory
(1965).

Dominant-set clustering

v To get a single dominant-set cluster use, e.g., replicator dynamics (but see
Rota Bulo, Pelillo and Bomze, CVIU 2011, for faster dynamics)

v To get a partition use a simple peel-off strategy: iteratively find a dominant
set and remove it from the graph, until all vertices have been clustered

v To get overlapping clusters, enumerate dominant sets (see Bomze, 1992;
Torsello, Rota Bulo and Pelillo, 2008)



Special Case:
Symmetric Affinities

Given a symmetric real-valued matrix A (with null diagonal), consider the
following Standard Quadratic Programming problem (StQP):

maximize f(x) = x"Ax
subjectto x€A

Note. The function f(x) provides a measure of cohesiveness of a cluster (see
Pavan and Pelillo, 2003, 2007; Sarkar and Boyer, 1998; Perona and Freeman,
1998).

Note. In the 0/1 (symmetric) case, ESS’s are in one-to-one correspondence to
(strictly) maximal cliques (Motzkin-Straus theorem).



Replicator Dynamics

Let x(t) the population share playing pure strategy i at time t. The state of the
population at time t is: x(t)= (x,(t),...,x,(t) EA.

Replicator dynamics (Taylor and Jonker, 1978) are motivated by Darwin’s
principle of natural selection:

L payoff of pure strategy i — average population payoff
X.

1

which yields:

%, = x| (Ax), - x" Ax]

Theorem (Nachbar, 1990; Taylor and Jonker, 1978). A point x€A is a Nash
equilibrium if and only if x is the limit point of a replicator dynamics
trajectory starting from the interior of A.

Furthermore, if x€A is an ESS, then it is an asymptotically stable equilibrium
point for the replicator dynamics.



Doubly Symmetric Games

In a doubly symmetric (or partnership) game, the payoff matrix A is
symmetric (A = AT).

Fundamental Theorem of Natural Selection (Losert and Akin, 1983).

For any doubly symmetric game, the average population payoff f(x) =
x"Ax is strictly increasing along any non-constant trajectory of replicator
dynamics, namely, d/dtf(x(t)) > O for all t > 0, with equality if and only if
X(t) Is a stationary point.

Characterization of ESS’s (Hofbauer and Sigmund, 1988)

For any doubly simmetric game with payoff matrix A, the following
statements are equivalent:

b) x € A'is a strict local maximizer of f(x) = x"Ax over the standard
simplex A

c) x € Ais asymptotically stable in the replicator dynamics



Discrete-time Replicator Dynamics

A well-known discretization of replicator dynamics, which assumes non-
overlapping generations, is the following (assuming a non-negative A):

A(x(t))i
x(1)" Ax(1)

x(t+1)=x/(1)

which inherits most of the dynamical properties of its continuous-time
counterpart (e.g., the fundamental theorem of natural selection).

MATLAB implementation

distance=inft;
while distancesepsilon
QL X=X

¥ = X.¥(DA*X) »

X X./sum(x) ;

distance=pdist ([x,0ldx]"’);

end
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Measuring the Degree of Cluster
Membership
The components of the converged vector give us a measure of the participation of

the corresponding vertices in the cluster, while the value of the objective function
provides of the cohesiveness of the cluster.




Application to Image Segmentation

An image is represented as an edge-weighted undirected graph, where
vertices correspond to individual pixels and edge-weights reflect the
“similarity” between pairs of vertices.

For the sake of comparison, in the experiments we used the same similarities
used in Shi and Malik’s normalized-cut paper (PAMI 2000).

To find a hard partition, the following peel-off strategy was used:

Partition into dominant sets (G)
Repeat
find a dominant set
remove 1t from graph
until all vertices have been clustered

To find a single dominant set we used replicator dynamics (but see Rota
Bulo, Pelillo and Bomze, CVIU 2011, for faster game dynamics).



Intensity Segmentation Results
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Intensity Segmentation Results
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Results on the Berkeley Dataset

Dominant sets Ncut
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Color Segmentation Results
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Results on the Berkeley Dataset
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Texture Segmentation Results
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Texture Segmentation Results
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In a nutshell...

The game-theoretic/dominant-set approach:

v

makes no assumption on the structure of the affinity matrix, being it able to
work with asymmetric and even negative similarity functions

does not require a priori knowledge on the number of clusters (since it extracts
them sequentially)

leaves clutter elements unassigned (useful, e.g., in figure/ground separation or
one-class clustering problems)

allows principled ways of assigning out-of-sample items (N/IP5’04)
allows extracting overlapping clusters (ICPR’08)

generalizes naturally to hypergraph clustering problems, i.e., in the presence
of high-order affinities, in which case the clustering game is played by more
than two players (PAMI’13)

extends to hierarchical clustering (ICCV’03: EMMCVPR’09)

allows using multiple affinity matrices using Pareto-Nash notion (SIMBAD’15)
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