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Introduction

Machine learning algorithms are strongly
data-driven, especially deep learning models!
The more data we have the more happy we are!
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Introduction

GooglLeNet (Szegedy et al., 2014a) on ImageNet.
Error rate of 6.67%! Human-level performance of 5.1%.
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Explaining and Harnessing Adversarial Examples, lan J. Goodfellow and Jonathon Shlens and Christian Szegedy, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings 2015 .
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Introduction CHT

Adversarial Examples aimed to mislead classification or detection at test time. JEEE
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Explaining and Harnessing Adversarial Examples, lan J. Goodfellow and Jonathon Shlens and Christian Szegedy, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings 2015
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https:/www.voutube.com/watch?v=zQ uMenoBCk&feature=youtu.be CEEE

https:/www.youtube.com/watch?v=piYnd wYIT8 0

(a) Image (b) Prediction

Adversarial Examples for Semantic Image Segmentation, Volker Fischer and Mummadi Chaithanya Kumar and Jan Hendrik Metzen and Thomas Brox 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings 2017
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Introduction

Security is an arms race, and the security of machine learning and pattern
recognition systems is not an exception!

Example: The spam arms race.

Violating a model can be seen as a game between the designer and the attacker!

Reactive Proactive
Designer

Adversaryq Designer Designer
1. Analyze system 4.Develop countermeasure | | 1, Model adversary 4.Develop countermeasure

(e.g., add features, retraining) (if the attack has a relevant impact)

‘ 2. Devise attack# i 3. Analyze attack ‘ 2. Slmulate attack h : Evaluate attack’s impact ‘ .===




Notation

Sample and label spaces: X% )
Training data: D = (5137;, yz’)?:1

Loss function L (D, w)for classifier f: X — Y

The classification function f is learned by

minimizing an objective function: £(D, w)



2. Modeling Threats




-t If you know the enemy and
know yourself, you need

not fear the result of a = _;:E;EEE;E:
hundred battles. m sEmmEE EE ="

- Sun Tzu, The Art of War " mmgEEEEEEuas




Attacker's Goal and Knowledge

Attacker's Goal:

Security violation: integrity, availability and privacy
Attack Specificity: targeted or indiscriminate
Error Specificity: specific or generic

Attacker’'s Knowledge:

Perfect-Knowledge \White-Box Attacks 0px = (D, X, f,w)
Limited-Knowledge Gray-Box Attacks 60rx_sp = (D, X, f, )
Zero-Knowledge Black-Box Attacks 0z5 = (D, X, f,

w) "



Attacker’s Goal

Misclassifications that do
not compromise normal
system operation

Misclassifications that
compromise normal
system operation

Attack Example

Training data (no poisoning)

Attacker’s Capability

Training data (poisoned)
Test data Evasion (a.k.a. adversarial -

examples)

Training data

Poisoning (to allow subsequent
intrusions) — e.g., backdoors or
neural network trojans

Poisoning (to maximize
classification error)
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Backdoored stop sign = LR 6.31 11.

(labeled as speedlimit) =
E
i

Backdoor / poisoning integrity attacks place mislabeled training points in a region of the -~ SVMp 2.51 5.19
feature space far from the rest of training data. The learning algorithm labels such g
region as desired, allowing for subsequent intrusions / misclassifications at test time =
O

EEEEEeeeoraE  J  DT! 0.82 331
‘h P"‘:"" : 8
speedllmlt 0. 947 ! =
o

2 “ kNNE 11,75 | 42.89
k J DNN LR SVM DT KNN
Target Machine Learning Technique

n Nicolas Papernot and Patrick D. McDaniel and lan J. Goodfellow. Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial
Samples, 2016.

Availability Privacy / Confidentiality

Querying strategies that reveal
confidential information on the
learning model or its users

Model extraction / stealing
and model inversion (a.k.a.
hill-climbing attacks)



Attacker's Capacity and Strategy

Attacker’s capacity:

Attack Influence: poisoning and evasion

Data Manipulation: constraints on the feature values

Attacker’s Strategy:

* /
D, € arg max.A(D.,,0)
D.e®(D,)
This high-level formulation encompasses both evasion and

poisoning attacks against supervised learning algorithms.



3. Simulate Attacks
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Fvasion Attacks

Manipulate input data to evade a trained classifier at test

time. Ex: manipulate images to mislead object recognition.

Error generic: the attacker is interested in misleading
classification. There isn't a specific target.

Error specific: the attacker aims to mislead classification,
but she requires the adversarial examples to be

misclassified as a specific class.



Frror Generic Evasion Attack

max A(z',0) = (a) = max fi(z) — fi(z)

s.t. d(wax,) < dmam, Tip = x’ = Tub

fr () Denotes the discriminant function associated to the

true class k of the source sample x.

max fi(z) |s the closest competing class

d(z,z') < dmee Maximum input perturbation for x

zp = ' < x, Box constraint which bounds the values of the =

attack



Error Specific Evasion Attack

max A(¢/,0) = ~Q() = fi(2) ~ max fi(a)

s.t. d(wax,) < dnaz, T = ' =< Ty
fr () Denotes the discriminant function associated to the
Targeted class, so the class which the adversarial example
should be (wrongly) assigned to.
Maximize the confidence assigned to wrong target class

minimizing the probability of the correct classification.
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Frror Generic and Specific Evasion

Error-Specific Error-Generic

In the error-specific case, the initial (blue) sample is shifted towards the green class .===

(selected as target). In the error-generic case, instead, it is shifted towards the red H 11

class, as it is the closest class to the initial sample. | =
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Application: Error—speoﬁc Eva5|on o

|CubWorld28

.-0 SVM
©-@ SVM-RBFH
Bl SVM-adv

290.03 - ap3 Noise (290.03)

1.0

o
©

o
>

accuracy

o
IS
i

00 100 200 300 400 500
dmax 0 100 150 200
250.00 - cup3

100 150 200
500.00 - cup3

0.00 - laundry-detergent3 0 100.00 - laundry-detergent3

50 100 150 200 0 50 100 150 200

50 100 150 200

50 100 150 200 .....
n EEEN

Adversarial examples against ICub humanoid, based on a deep network. Trained HEN
multiclass linear SVM, SYM-RBF and a SVM-adv. Classification accuracy decreases m ST T
against an increasing maximum admissible perturbation d_max. Notably, SVM-adv is EEEE
only effective for low input perturbations. Deep space makes high perturbations
indistinguishable from deep features of the targeted class.
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Poisoning Attacks

Increase the number of misclassified samples at test time
by injecting a small fraction of poisoning samples into the
training data.

Error-Generic: the attacker aims to cause a denial of
service, by inducing as many misclassifications as possible.

Error-Specific: the attacker aims to cause specific
misclassifications.
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Frror Generic Poisoning Attack

D: € arg max A(D.,0) = L(Dyy,w*)
D.e¢(D,)

s.t w* € arg min L(Dy UD.,w')
w'ew

Outer optimization maximized the attacker's objective A
Inner optimization amounts to learning the classifier on the
poisoned training data

D, and D,, Data set available to the attacker “.“
Dy, UD, Used to train the learner on poisoned data mEmE
Dy, Used to evaluate its performance on untainted data = SEEm
: EEEN

through the loss function  L(Dyq, w*) mEEEE
111
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Error Specific Poisoning Attack
D ¢ arg maxA(D.,0) = —L(Dyy,w")
D.€2(D.)

s.t w* € arg min L(Dy UD.,w')
w'ew

D' a1 Contains the same samples as Dy but their labels are
chosen by the attacker according to the desired
misclassification

The objective L is then taken with opposite sign as the

attacker effectively aims to minimize the loss on her desired .

labels.



Application: Poisoning Attacks
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The fraction of poisoning points injected into the training set is reported on top of each
plot, along with the test error (in parentheses) of the poisoned classifier. Poisoning EEEN
points are initialized by cloning the training points denoted with white crosses and L1
flipping their label. The gradient trajectories (black dashed lines) are then followed up m T 1
to some local optima to obtain the final poisoning points (highlighted with black circles). 1 11



4. Security Measures for = " b
Learning Algorithms
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Defenses strategies

How to react to past attacks and prevent future ones.

Reactive defenses: aim to counter past attacks

Proactive defenses: aim to prevent future attacks

/ Reactive Defenses ﬂ

1. timely detection of attacks
2. frequent retraining
3. decision verification

- J

Proactive Defenses

Security-by-Design Defenses
against white-box attacks (no probing)

1. secure/robust learning
2. attack detection

Effect on decision boundaries:
noise -specific margin,

Kenclosure of legitimate training classes

Security-by-Obscurity Defenses

5

against gray-box and black-box attacks (probing)

1. information hiding, randomization

2. detection of probing attacks

J
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Reactive defenses

TO correctly detect recently-reported attacks, the classifier
should be frequently retrained on newly-collected data,
and novel features and attack detectors may also be
considered.

Issue: how to involve humans in the loop in a more
coordinated manner, to supervise and verify the correct

functionality of learning system.



P.Defenses: Security by Design

Develop from the top a secure system.

Poisoning attacks: data sanitization (outliers)

Evasion attacks countered retraining the classifier on the
simulated attacks. Similar to adversarial training.

Or using game theory: Zero-sum games to learn invariant
transformations like feature insertion, deletion and

rescaling.



P.Defenses: Security by Design

Another line: detect and reject samples which are

sufficiently far from the training data in feature space.

SVM-RBF (no reject) SVM-RBF (reject) SVM-RBF (higher rejection rate)
I I I 1 I I I U I

=
EEEEEEEEEEN
EEEEEEEEEEE
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P.Defense: Security by Obscurity

Hide information to the attacker to improve security
Examples:

Randomizing collection of training data

Using difficult to reverse-engineer classifiers

Denying access to the actual classifier or training data

Randomizing the classifier's output: Gradient masking
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THANKS!

Any questions?

You can find me at:
acina04@gmail.com
@Cinofix



35

CREDITS

Battista Biggio and Fabio Roli. 2018. Wild Patterns: Ten Years After the Rise of Adversarial Machine
Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS "18).

Explaining and Harnessing Adversarial Examples, lan J. Goodfellow and Jonathon Shlens and
Christian Szegedy, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-8, 2015, Conference Track Proceedings 2015



