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The “classical” clustering problem

Given:
v'a set of n “objects”

v'an n X n matrix A of pairwise similarities

Goal: Partition the vertices of the G into maximally homogeneous groups (i.e., clusters).

} = an edge-weighted graph G

Usual assumption: symmetric and pairwise similarities (G is an undirected graph)




Applications

Clustering problems abound in many areas of computer science and engineering.
A short list of applications domains:

Image processing and computer vision
Computational biology and bioinformatics
Information retrieval

Document analysis

Medical image analysis

Data mining

Signal processing

For a review see, e.g., A. K. Jain, "Data clustering: 50 years beyond K-means,” Pattern
Recognition Letters 31(8):651-666, 2010.



Basic 1deas of grouping in humans:
The Gestalt school

Wertheimer Gestalt properties

elements in a collection of elements
can have properties that result from
relationships

Koehler

. Gestaltqualitat

A series of factors affect whether
elements should be grouped
together

» GGestalt factors



Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region
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Clustering
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Segmentation as clustering

» Cluster similar pixels (features) together

Source: K. Grauman



Segmentation as clustering

Point-Cluster distance

Cluster together (pixels, tokens,

etc.) that belong together — single-link clustering
Agglomerative clustering — complete-link clustering
— attach closest to cluster it 1s — group-average clustering
closest to  Dendrograms
— Trepeat — yield a picture of output as
Divisive clustering clustering process continues

— split cluster along best
boundary

— repeat
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K-Means

An iterative clustering algorithm

— Initialize:
Pick K random points as cluster centers

— Alternate:
1. Assign data points to closest cluster center

2. Change the cluster center to the average of its assigned points

— Stop when no points’ assignments change

Note: Ensure that every cluster has at least one data point. Possible techniques for doing this include
supplying empty clusters with a point chosen at random from points far from their cluster centers.



K-means clustering: Example

2 i
Initialization:
Pick K random points as
ol cluster centers
Shown here for K=2
|

Adapted from D. Sontag



K-means clustering: Example

Iterative Step 1:
Assign data points to
closest cluster center

Adapted from D. Sontag



K-means clustering: Example

2 L
Iterative Step 2:

ol Change the cluster center to
the average of the assigned
points

-2t

Adapted from D. Sontag



K-means clustering: Example

Repeat until convergence

Adapted from D. Sontag



K-means clustering: Example

Final output

Adapted from D. Sontag



Image Clusters on intensity Clusters on color

K-means clustering using intensity alone and color alone



Properties of K-means

Guaranteed to converge in a finite number of steps.

Minimizes an objective function (compactness of clusters):

2
> > - u
i€clusters | j&elements of i'th cluster

where w; is the center of cluster i.

Running time per iteration:
Assign data points to closest cluster center: O(Kn) time
*Change the cluster center to the average of its points: O(n) time



Properties of K-means

e Pros

Very simple method
Efficient

e Cons

Converges to a local minimum
of the error function

Need to pick K

Sensitive to initialization
Sensitive to outliers

Only finds “spherical” clusters

outher

outher

e

(B): Ideal clusters



Images as graphs

Node for every pixel

Edge between every pair of pixels (or every pair of
“sufficiently close” pixels)

Each edge is weighted by the affinity or similarity of the
two nodes

Source: S. Seitz



Graph-theoretic (pairwise) clustering

* Represent tokens using a weighted graph.

— affinity matrix

e Cut up this graph to get subgraphs with strong interior
links



Graphs and matrices
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Source: D. Sontag









Measuring affinity

« Suppose we represent each pixel by a feature vector
X, and define a distance function appropriate for this
feature representation

e Then we can convert the distance between two
feature vectors into an affinity with the help of a
Gaussian kernel:

1 ..
exp(— > dist (xi,xj)zj



Scale affects affinity

« Small o: group only nearby points
« Large o: group far-away points
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Eigenvector-based clustering

Let us represent a cluster using a vector x whose k-th entry captures the
participation of node £ in that cluster. If a node does not participate in a
cluster, the corresponding entry is zero.

We also impose the restriction that x’x = 1

We want to maximize:

n n

E E w,;j)C,;Xj = XTAX

i=1 j=1

which 1s a measure for the cluster’s cohesiveness.

This is an eigenvalue problem!
Choose the eigenvector of A with largest eigenvalue



Example eigenvector
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More than two segments

 Two options

— Recursively split each side to get a tree, continuing till the
eigenvalues are too small

— Use the other eigenvectors



AN e

Clustering by eigenvectors: Algorithm

Construct (or take as input) the affinity matrix 4
Compute the eigenvalues and eigenvectors of 4
Repeat
Take the eigenvector corresponding to the largest unprocessed eigenvalue
Zero all components corresponding to elements that have already been clustered

Threshold the remaining components to determine which elements belong to
this cluster

If all elements have been accounted for, there are sufficient clusters
Until there are sufficient clusters



Clustering as graph partitioning

Let G=(V, E, w) a weighted graph.

Given a “cut” (4, B), with B =V'\ A4, define:

cut(A, B) = ééw(i, J)

iTA 1B

Minimum Cut Problem

Among all possible cuts (4, B),
find the one which minimizes cut(A4, B)




MinCut clustering

Good news
Solvable in polynomial time

Bad news
Favors highly unbalanced clusters (often with isolated vertices)
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Graph terminology

Degree of nodes

d; = Z Wi
z

VYolume of a set

vol(A) = Zd,.,A =V

icA

20 40 60 80 100 120 140

Adapted from D. Sontag



Normalized Cut

4

1 1
Neut(A, B) = cut(A, B) =+ j
cut(4, B) = cul( )1vol(A2'| vol(B

Adapted from D. Sontag



Graph Laplacian (unnormalized)

Defined as

Example:

\

2 -1 -1 0 0
—1 4 -1 -1 -1
-1 -1 4 0 -1

0 -1 0 1 0

0 —1 -1 0 3

0 0 -1 0 -1

Assume the weights of edges are 1




Key fact

For all vectors f in R", we have:

Indeed:

f'Lf = f'Df—f'Wf

= Zdiff - Zf?lfjwij
[ (%]
(Z(Z wii ) ff =23 fifjwig+ > (O wij)sz)
J iJ J i
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Properties

* L 1s symmetric (by assumption) and positive semi-definite:
fLf=>0

for all vectors f (by “key fact”)

« Smallest eigenvalue of L is 0; corresponding eigenvector is 1

e Thus eigenvalues are: 0 =4, <A, <... <A,

First relation between spectrum and clusters:

« Multiplicity of eigenvalue A, = 0 1s the number of connected
components of the graph

« eigenspace is spanned by the characteristic functions of these
components (so all eigenvectors are piecewise constant)



Normalized graph Laplacians

 Row sum (random walk) normalization:

L., =D'L

'w

=[1-D'W
* Symmetric normalization:

L — D—I/ZL D—I/Z

sym

— [_D—l WD—I/Z

Spectral properties of both matrices similar to the ones of L.



Solving Ncut

Any cut (4, B) can be represented by a binary indicator vector x:

i

_) 1l ified
-1 ifieB
Rayleigh quotient
[t can be shown that: yleigh q

minNcut(x):miriy(D_W)yé
X y o :

subject to the constraint that y’D1 =) . y.d. = 0 (with y.e{l, -b}).

This i1s NP-hard!



Ncut as an eigensystem

If we relax the constraint that y be a discrete-valued vector and allow it to
take on real values, the problem

miny (D_ W)y
v y'Dy

1s equivalent to:

miny'(D-W)y subjectto y'Dy=1
y

This amounts to solving a generalized eigenvalue problem:

Laplacian N( D - ij = IDy

Lessnsnnnnnnnnn®

Note: Equivalent to a standard eigenvalue problem using the normalized
Laplacian: L, = D''L = [-D'W.



2-way Ncut

Compute the affinity matrix /7, compute the degree matrix D
Solve the generalized eigenvalue problem (D — W)y = ADy

Use the eigenvector associated to the second smallest eigenvalue to
bipartition the graph into two parts.

Why the second smallest eigenvalue?
Remember, the smallest eigenvalue of Laplacians is always 0
(corresponds to the trivial partition 4 =V, B = {})



= W T T T T T L1 g% &= T [ T T T x
LI o u « : o . & at . % .
3 — -
8- * . . Qe A 1
kS - x = = i e &i " L
= N =
Tk} " 3
® oo " o X * b & A A »
. = -
B* x 2 ¥E . . . = 87, A AT, ’ = . =
® = b, Fu & = L
?i‘ % £ £ " w ?'_. i o ) & % ® K
i | LI = £y E & . &80 S X . £ £
% i . ;
E—:. H . i, _,. . 1 ﬁ'rl = A opd % g » . 1
»
3 » 3 ~ LY A W
EL * # . % J 5F & 4 & « ]
* u x 4
® k3 o % "
'4_ A M " % b " ® T 4_.:" o ) = £ . 1
Tow A ¥ = « L 4 & « . x ®
— ] B " - O & o, o ¥ -
3 Eom o kY I % H 3_'5' &oAaT 5 b . x %
W 13 x L9 e " . ® S
. 3 LY :
2' - = X W h 2} . £ £ = = = 1
E :-cx Mooy v . ® -E-._ A oA B ” x =
10w . . . 4 1 a® . aa a . . 3
I L ¥ w % w s ] a a W . ® E |
® d A
# WoE | i i = i I I fa S g = k1 I i I

(a) (b)

Fig. 5. (a) Point set generated by two Poisson processes, with densities of 2.5 and 1.0 on the left and right clusters respectively, (b) /. and x indicate
the partition of point set in (a). Parameter settings: ox =5, r = 3.



The effect of relaxation

Ideal solution
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How to choose the splitting point?

Pick a constant value (0 or 0.5)

Pick the median value as splitting point

Look for the splitting point that has
minimum Ncut value:

1. Choose n possible splitting points
2. Compute Ncut value
3. Pick minimum



Random walk intepretation

Construct a Markov chain where each data point is a state, connected to
all other states with some probability.

With our affinity /7 and degree D, the stochastic matrix is:
P=D1'Ww

which 1s the row-normalized version of W, so each entry P(i, j) is a
probability of “walking” to state j from state i.

Adapted from Y. Weiss



Random walk intepretation

Probability of a walk through states (s,,..., s,,) 1s given by:

P(Sl""’SZ):P(Sl)ép(si’si—l)

Suppose we divide the states into two groups, and minimize the
probability of jumping between the two groups.

Formulate this as an eigenvector problem:
Py =My
where the component of vector y will give the segmentation.

Adapted from Y. Weiss



Random walk intepretation

P 1s a stochastic matrix

The largest eigenvalue 1s 1, and its eigenvector is the all-one vector 1.
Not very informative about segmentation

The second largest eigenvector is orthogonal to the first, and its
components indicate the strongly connected sets of states

Meila and Shi (2001) showed that minimizing the probability of
jumping between two groups in the Markov chain is equivalent to
minimizing Ncut

Adapted from Y. Weiss



Random walk intepretation

Proposition. (A, y) is a solution to Py = Ay if and only if
] — A 1s an eigenvalue of (D — W)y = ADy
*y 1s an eigenvector of (D — W)y = ADy

Proof.

Py =1y —Py=-21y
y—Py=y-—Aiy
(I1=-Py=Q-Mly
(D"'D-D'W)y=(1- 1D 'Dy
D(D - W)y =D"!(1 - A)Dy
(D —W)y=(1-21Dy

R I A

Adapted from Y. Weiss



Random walk intepretation

Problem: Finding a cut (4, B) in a graph G such that a random walk does
not have many opportunities to jump between the two clusters.

This is equivalent to the Ncut problem due to the following relation:

Ncut(A, B)=P(A |B) + P(B| A)

(Meila and Shi, 2001)



Ncut: More than 2 clusters

Approach #1: Recursive two-way cuts

1.Given a weighted graph G = (V, E, w), summarize the information into matrices W
and D

2.Solve (D — W)y = ADy for eigenvectors with the smallest eigenvalues

3.Use the eigenvector with the second smallest eigenvalue to bipartition the graph
by finding the splitting point such that Ncut 1s minimized

4.Decide if the current partition should be subdivided by checking the stability of
the cut, and make sure Ncut is below the prespecified value

5.Recursively repartition the segmented parts if necessary

Note. The approach is computationally wasteful; only the second eigenvector is used, whereas
the next few small eigenvectors also contain useful partitioning information.



Ncut: More than 2 clusters

Approach #2: Using first k£ eigenvectors

1. Construct a similarity graph and compute the unnormalized graph
Laplacian L.

2. Compute the £ smallest generalized eigenvectors uy, us, - -+, up of
the generalized eigenproblem Lu = ADu.

3. Let U = [uj uy --- uy | € RP¥F,

4. Let y; € R* be the vector corresponding to the ith row of U.

_ - -
Uil U2 v Uik Y1
T
U221 U2 -+ Uk Yo
U p— p— .
T
| Un1 Up2 - Unk | L Yn

5. Thinking of y;’s as points in R*, cluster them with k-means algorithms.



Fig. 2. A gray level image of a baseball game.
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Fig. 3. Subplot (a) plots the smallest eigenvectors of the generalized eigernvalue system (11). Subplots (b)-(i) show the eigenvectors corresponding
the second smallest to the ninth smallest eigenvalues of the system. The eigenvectors are reshaped to be the size of the image.



(b)

(e) (f) (9) (h)

Fig. 4. (a) shows the original image of size 80 = 100. Image intensity is normalized to lie within 0 and 1. Subplots (b)-(h) show the components of the
partition with Ncut value less than 0.04. Parameter setting: o; = 0.1, oy = 4.0, r = 5.



(f) (9)

Fig. 8. (a) shows a 126 = 106 weather radar image. (b)-(g) show the components of the partition with Newl value less than 0.08. Parameter setting:
op= 0007, 7, = 150, r = 1L
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(e) (f) (9) (h)

Fig. 10. (a) shows an image of a zebra. The remaining images show the major compaonents of the partition. The texture features used correspond to

convolutions with DOOG filters [16] at six orientations and five scales.



Spectral clustering

. Construct a similarity graph and compute the normalized graph
Laplacian Lgym,.

. Compute the k smallest eigenvectors uy, ua, -+, ug of Lgypm,.
cLet U=[ujup - up] € R™*F,

. Normalized the rows of U to norm 1.
Us;.
Ok U2

Uz’j <

. Let y; € R* be the vector corresponding to the ith row of U.

. Thinking of y;’s as points in R”, cluster them with k-means algorithms.

Ng, Jordan and Weiss (2002)



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with
non-convex boundaries.

Points of two clusters Points of two clusters
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Both perform same Spectral clustering is superior

Adapted from A. Singh



K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with

non-convex boundaries.

Points of two clusters
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K-means vs Spectral clustering

Applying k-means to Laplacian eigenvectors allows us to find cluster with

non-convex boundaries.
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Examples

sqguiggles, 4 clusters
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Examples (choice of k)

threecirclas—joined, 2 clusters

threecircles—joined, 2 clusters
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Choosing k

The eigengap heuristic: Choose £ such that all eigenvalues A,,..., A, are
very small, but A, is relatively large

Histogram of the sample
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Four 1D Gaussian clusters with increasing variance and corresponding eigevalues of L., (von Luxburg, 2007).
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Dominant Sets



The Need for Non-exhaustive Clusterings

Figure fu. Three prominent blobs are perceived immediately and wish little effort. Loeally, the
blobs are similar to the background contours. (adopted from Mahoney (1986)

Figure f. Intersections were added to illustrate that the blobs are not distingmished by virtue
of their intersections with the background curves.




Separating Structure from Clutter
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Figure 2. A circle in a background of 200 randomly placed and oriented segments The circle is
still perceived immediately although its contour is fragmented.

Figure 3. An edge image of a car in a cluttered background. Our attention is drawn immediately
to the region of interest. It seems that the car need not be recognized to attract our
attention. The car also remains salient when paralle] lines and small blobs are removed,
and when the less textured region surrounding parts of the car is filled in with more

texture.



Separating Structure from Clutter
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One-class Clustering

“[...] in certain real-world problems, natural groupings are found
among only on a small subset of the data, while the rest of the data
shows little or no clustering tendencies.

In such situations it is often more important to cluster a small
subset of the data very well, rather than optimizing a clustering
criterion over all the data points, particularly in application
scenarios where a large amount of noisy data is encountered.”

for mining dense cluster. ACM Trans. Knowl. Discov. Data (2008).




When Groups Overlap

B

Does O belong to AD or to BC (or to none)?




The Need for Overlapping Clusters

Partitional approaches impose that each element cannot belong to more than one
cluster. There are a variety of important applications, however, where this requirement
is too restrictive.

Examples:
v" clustering micro-array gene expression data
v" clustering documents into topic categories
v’ perceptual grouping
v segmentation of images with transparent surfaces

References:
v N. Jardine and R. Sibson. The construction of hierarchic and non-hierarchic
classifications. Computer Journal, 11:177-184, 1968
v" A. Banerjee, C. Krumpelman, S. Basu, R. J. Mooney, and J. Ghosh. Model-based
overlapping clustering. KDD 2005.

v K. A. Heller and Z. Ghahramani. A nonparametric Bayesian approach to modeling
overlapping clusters. AISTATS 2007.



The Symmetry Assumption

«Similarity has been viewed by both philosophers and psychologists as a
prime example of a symmetric relation. Indeed, the assumption of
symmetry underlies essentially all theoretical treatments of similarity.

Contrary to this tradition, the present paper provides empirical evidence
for asymmetric similarities and argues that similarity should not be
treated as a symmetric relation.»

Amos Tversky
“Features of similarities,” Psychol. Rev. (1977)

Examples of asymmetric (dis)similarities
v'Kullback-Leibler divergence
v'Directed Hausdorff distance

v'Tversky’s contrast model




What is a Cluster?

No universally accepted (formal) definition of a “cluster” but, informally, a cluster
should satisfy two criteria:

Internal criterion

III

all “objects” inside a cluster should be highly similar to each other

External criterion

III

all “objects” outside a cluster should be highly dissimilar to the ones inside




The Notion of “Gestalt”

«In most visual fields the contents of particular areas “belong together” as
circumscribed units from which their surrounding are excluded.»

W. Kbhler, Gestalt Psychology (1947)
«In gestalt theory the word “Gestalt” means any segregated whole.»

- \\V. K6hler (1929)
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Data Clustering:
Old vs. New

By answering the question “what is a cluster?” we get a novel way of looking
at the clustering problem.

Clustering old(V,A, k)
v1l,v2,...,Vk <- My favorite partitioning algorithm(V,A, k)
return V1,V2,...,Vk

Clustering new (V,A)
v1l,v2,...,Vk <- Enumerate all clusters(V,A)
return V1,V2,...,Vk

Enumerate_all clusters (V,A)
repeat
Extract a cluster (V,A)
until all clusters have been found

return the clusters found




A Special Case:
Binary Symmetric Affinities

Suppose the similarity matrix is a binary (0/1) matrix.

Given an unweighted undirected graph G=(V,E):

A cligue is a subset of mutually adjacent vertices
A maximal clique is a clique that is not contained in a larger one

In the 0/1 case, a meaningful notion of a cluster is that of a maximal clique.

NCut

iI New approach

]




Advantages of the New Approach

v" No need to know the number of clusters in advance (since we extract
them sequentially)

v’ Leaves clutter elements unassigned (useful, e.g., in figure/ground
separation or one-class clustering problems)

v Allows extracting overlapping clusters

Need a partition?

Partition into clusters(V,6A)
repeat
Extract a cluster
remove it from V
until all vertices have been clustered




What is Game Theory?

“The central problem of game theory was posed by von Neumann
as early as 1926 in Gottingen. It is the following:

If n players, P,..., P, play a given game I, how must the it" player,
P., play to achieve the most favorable result for himself?”

Harold W. Kuhn
Lectures on the Theory of Games (1953)

A few cornerstones in game theory

1921-1928: Emile Borel and John von Neumann give the first modern formulation of a mixed
strategy along with the idea of finding minimax solutions of normal-form games.

1944, 1947: John von Neumann and Oskar Morgenstern publish Theory of Games and Economic
Behavior.

1950-1953: In four papers John Nash made seminal contributions to both non-cooperative game
theory and to bargaining theory.

1972-1982: John Maynard Smith applies game theory to biological problems thereby founding
“evolutionary game theory.”

late 1990’s —: Development of algorithmic game theory...




“Solving” a Game

Player 2

10, 2 Yy
rl‘”h /

Player 1
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Basics of (Two-Player, Symmetric)
Game Theory

Assume:
— a (symmetric) game between two players
— complete knowledge

— a pre-existing set of pure strategies (actions) O={o,,...,0,} available to the
players.

Each player receives a payoff depending on the strategies selected by him and by

the adversary. Players’ goal is to maximize their own returns.

A mixed strategy is a probability distribution x=(x,...,x,)T over the strategies.

X3

A=ix€R": Vi=1...n:x,=0, and Exl:l
i=1




Nash Equilibria

v' Let A be an arbitrary payoff matrix: a; is the payoff obtained by playing i while
the opponent playsj.

v' The average payoff obtained by playing mixed strategy y while the opponent

plays x, is:
!
y AX = Ezaijyixj
i

v" A mixed strategy x is a (symmetric) Nash equilibrium if
X'AX = y'Ax
for all strategies y. (Best reply to itself.)

Theorem (Nash, 1951). Every finite normal-form game admits a mixed-strategy
Nash equilibrium.




Evolution and the Theory of Games

“We repeat most emphatically that our theory is thoroughly static. A
dynamic theory would unquestionably be more complete and
therefore preferable.

But there is ample evidence from other branches of science that it is
futile to try to build one as long as the static side is not thoroughly
understood.”

John von Neumann and Oskar Morgenstern

Theory of Games and Economic Behavior (1944)

“Paradoxically, it has turned out that game theory is more readily
applied to biology than to the field of economic behaviour for which it
was originally designed.”

John Maynard Smith
Evolution and the Theory of Games (1982)




Evolutionary Games and ESS’s

Assumptions:

v'A large population of individuals belonging to the same species which
compete for a particular limited resource

v'This kind of conflict is modeled as a symmetric two-player game, the players
being pairs of randomly selected population members

v'Players do not behave “rationally” but act according to a pre-programmed
behavioral pattern (pure strategy)

v'Reproduction is assumed to be asexual

v'Utility is measured in terms of Darwinian fitness, or reproductive success

A Nash equilibrium x is an Evolutionary Stable Strategy (ESS) if, for all
strategiesy:

yvAx =x'Ax = x'Ay >y'Ay



ESS’s as Clusters

We claim that ESS’s abstract well the main characteristics of a cluster:

v" Internal coherency: High mutual support of all elements within the group.

v External incoherency: Low support from elements of the group to elements
outside the group.




Basic Definitions

Let S € V be a non-empty subset of vertices, and i€S.

The (average) weighted degree of i w.r.t. S is defined as:

N_ 1 2
awdeg, (i) = m aaq;
IS

Moreover, if j € S, we define:

1(i.j) = a; - awdeg;(7)

Intuitively, d¢(i,j) measures the similarity between vertices j and i, with respect to
the (average) similarity between vertex i and its neighbors in S.



Assigning Weights to Vertices

Let S € V be a non-empty subset of vertices, and i€S.
The weight of i w.r.t. S is defined as:

1 if [§] =1
wi (1) = E gbs_{i}(j,i)ws_{i}(j) otherwise

\ jes-{i}

Further, the total weight of S is defined as:

W (S) = Aws(i)

irS




Interpretation

Intuitively, w¢(i) gives us a measure of the overall (relative) similarity between
vertex i and the vertices of S-{i} with respect to the overall similarity among the
vertices in S-{i}.




Dominant Sets

Definition (Pavan and Pelillo, 2003, 2007). A non-empty subset of vertices S € V
such that W(T) > 0 for any non-empty T C S, is said to be a dominant set if:

1.wd(i) > O, for all i € S (internal homogeneity)

2.wg,3(i) <0, foralli ¢S (external homogeneity)
L
5 e \ 0
3 \
A Ben N
5 7207 L8
23 2 Dominant sets = clusters
20 90
4—3 3

The set {1,2,3} is dominant.




The Clustering Game

Consider the following “clustering game.”

v'Assume a preexisting set of objects O and a (possibly asymmetric) matrix of
affinities A between the elements of O.

v'Two players play by simultaneously selecting an element of O.

v/ After both have shown their choice, each player receives a payoff proportional to
the affinity that the chosen element has wrt the element chosen by the opponent.

Clearly, it is in each player’s interest to pick an element that is strongly supported
by the elements that the adversary is likely to choose.

Hence, in the (pairwise) clustering game:
v'There are 2 players (because we have pairwise affinities)

v'The objects to be clustered are the pure strategies
v'The (null-diagonal) affinity matrix coincides with the similarity matrix



Dominant Sets are ESS’s

Theorem (Torsello, Rota Bulo and Pelillo, 2006). Evolutionary stable strategies of
the clustering game with affinity matrix A are in a one-to-one correspondence with
dominant sets.

Note. Generalization of well-known Motzkin-Straus theorem from graph theory
(1965).

Dominant-set clustering

v' To get a single dominant-set cluster use, e.g., replicator dynamics (but see Rota
Bulo, Pelillo and Bomze, CVIU 2011, for faster dynamics)

v' To get a partition use a simple peel-off strategy: iteratively find a dominant set
and remove it from the graph, until all vertices have been clustered

v' To get overlapping clusters, enumerate dominant sets (see Bomze, 1992;
Torsello, Rota Bulo and Pelillo, 2008)



Special Case:
Symmetric Affinities

Given a symmetric real-valued matrix A (with null diagonal), consider the following
Standard Quadratic Programming problem (StQP):

maximize f(x) = x"Ax
subject to xeA

Note. The function f(x) provides a measure of cohesiveness of a cluster (see Pavan
and Pelillo, 2003, 2007; Sarkar and Boyer, 1998; Perona and Freeman, 1998).

Note. In the 0/1 (symmetric) case, ESS’s are in one-to-one correspondence to
(strictly) maximal cliques (Motzkin-Straus theorem).



Replicator Dynamics

Let x(t) the population share playing pure strategy i at time t. The state of the
population at time t is: x(t)= (x,(t),...,x,(t))€A.

Replicator dynamics (Taylor and Jonker, 1978) are motivated by Darwin’s principle of
natural selection:

] K payoff of pure strategy i - average population payoff
X.

1

which yields:

X; = xl.[(Ax)l. - xTAx]

Theorem (Nachbar, 1990; Taylor and Jonker, 1978). A point xeA is a Nash

equilibrium if and only if x is the limit point of a replicator dynamics trajectory
starting from the interior of A.

Furthermore, if xeA is an ESS, then it is an asymptotically stable equilibrium point
for the replicator dynamics.




Doubly Symmetric Games

In a doubly symmetric (or partnership) game, the payoff matrix A is
symmetric (A = AT).

Fundamental Theorem of Natural Selection (Losert and Akin, 1983).

For any doubly symmetric game, the average population payoff f(x) = xTAx is
strictly increasing along any non-constant trajectory of replicator dynamics,
namely, d/dtf(x(t)) = 0 for all t > 0, with equality if and only if x(t) is a
stationary point.

Characterization of ESS’s (Hofbauer and Sigmund, 1988)

For any doubly simmetric game with payoff matrix A, the following
statements are equivalent:

a)x € A3
b)x € A is a strict local maximizer of f(x) = xTAx over the standard simplex A

c)x € A is asymptotically stable in the replicator dynamics



Discrete-time Replicator Dynamics

A well-known discretization of replicator dynamics, which assumes non-
overlapping generations, is the following (assuming a non-negative A):

A(x(t))i
x(¢)" Ax(¢)

x,(1+1)=x,(7)

which inherits most of the dynamical properties of its continuous-time
counterpart (e.g., the fundamental theorem of natural selection).

MATLAB implementation

distance=inft;
while distancesepsilon
old x=x;

X = X.*(A*xX) ;

X X./sum(x) ;

distance=pdist ([x,0ld x]");

end




A Toy Example




Measuring the Degree of Cluster
Membership

The components of the converged vector give us a measure of the participation of the
corresponding vertices in the cluster, while the value of the objective function provides
of the cohesiveness of the cluster.




Application to Image Segmentation

An image is represented as an edge-weighted undirected graph, where vertices
correspond to individual pixels and edge-weights reflect the “similarity” between
pairs of vertices.

For the sake of comparison, in the experiments we used the same similarities
used in Shi and Malik’s normalized-cut paper (PAMI 2000).

To find a hard partition, the following peel-off strategy was used:

Partition into dominant sets (G)
Repeat

find a dominant set

remove 1t from graph

until all vertices have been clustered

To find a single dominant set we used replicator dynamics (but see Rota Bulo,
Pelillo and Bomze, CVIU 2011, for faster game dynamics).



Experimental Setup

The similarity between pixels ¢ and ;7 was measured by:

—||F (i) — F(MI%)

I-.?"}'J_

w(i.j) = exp (

where o is a positive real number which affects the decreasing rate of w,
and:

e F(i) = (normalized) intensity of pixel 7, for intensity segmentation

e F(i) = [v,vssin(h),vscos(h)](7), where h. s, v are the HSV values
of pixel z, for color segmentation

o V(i) =[|I+f1],...,[I*f]](2) is avector based on texture information
at pixel 7, the f; being DOOG filters at various scales and orientations,
for texture segmentation



Intensity Segmentation Results

Dominant sets Ncut



Intensity Segmentation Results

Dominant sets




Results on the Berkeley Dataset

Dominant sets
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Color Segmentation Results
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Results on the Berkeley Dataset
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Texture Segmentation Results
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Texture Segmentation Results
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F-formations

“Whenever two or more individuals in close proximity orient their bodies
in such a way that each of them has an easy, direct and equal access to every
other participant’s transactional segment”

Ciole£< & Kendon (1980)




System Architecture

Kr [
K ~
1< I P . max xTAx
A= Z WiAi
& & 2 = st. x€A
& V4
Persons as Frustum of [~ Bi d Game theoretic Game theoretic
0 Visual attention = e inned scene P — o smoothing o clustering
. Temporal Grou
Frames Feature extraction . P ; p
Integration extraction

Frustrum of visual attention

=A person in a scene is described by his/her position (x,y) and the head
orientation 0

=The frustum represents the area in which a person can sustain a conversation
and is defined by an aperture and by a length




Results

CoffeeBreak (S1+S2) PosterData Gdet
Method Prec Rec F1 Prec Rec F1 Prec Rec F1
IRPM [61],[22] 0.60 0.41 0.49 — — — — — —
HFF [22] 0.82 0.83 0.82 0.93 0.96 0.94 0.67 0.57 0.62
DS ([6], [22])« 0.68 0.65 0.66 0.93 0.92 0.92 — — —
MULTISCALE [46] 0.82 0.77 0.80 — — — — — —
GTCG [47] KL 0.80 0.84 0.82 0.90 0.94 0.92 0.76 0.75 0.75
GTCG [47]]S 0.83 0.89 0.86 0.92 0.96 0.94 0.76 0.76 0.76
R-GTCG SC 0.52 0.59 0.55 0.26 0.27 0.26 0.75 0.75 0.75
R-GTCG 0.86 0.88 0.87 0.92 0.96 0.94 0.76 0.76 0.76
o=02,l=145 o=025,l=115 o=0.71=180
Cocktail Party Synth
Method Prec Rec F1 Prec Rec F1
IRPM [22,61] — — — 0.71 0.54 0.61
HFF ( [7], [46]) 0.59 0.74 0.66 0.73 0.83 0.78
MULTISCALE [46] 0.69 0.74 0.71 0.86 0.94 0.90
GTCG [47] KL 0.85 0.81 0.83 1.00 1.00 1.00
GTCG [47]]S 0.86 0.82 0.84 1.00 1.00 1.00
R-GTCG SC 0.77 0.72 0.74 0.40 0.90 0.56

0=0.6,[=170 0=0.1,1=75
R-GTCG 087 082 0.84 1.00 100 1.00




Results

Qualitative results on the CoffeeBreak dataset compared with the state of the art HFF.

Yellow = ground truth
Green = our method
Red = HFF.




Other Applications of Dominant-Set
Clustering

Bioinformatics
Identification of protein binding sites (Zauhar and Bruist, 2005)
Clustering gene expression profiles (Li et al, 2005)
Tag Single Nucleotide Polymorphism (SNPs) selection (Frommlet, 2010)

Security and video surveillance
Detection of anomalous activities in video streams (Hamid et al., CVPR’05; Al’09)
Detection of malicious activities in the internet (Pouget et al., J. Inf. Ass. Sec. 2006)
Detection of F-formations (Hung and Krdose, 2011)

Content-based image retrieval
Wang et al. (Sig. Proc. 2008); Giacinto and Roli (2007)

Analysis of fMRI data
Neumann et al (Neurolmage 2006); Muller et al (J. Mag Res Imag. 2007)

Video analysis, object tracking, human action recognition
Torsello et al. (EMMCVPR’05); Gualdi et al. (IWVS’08); Wei et al. (ICIP’07)

Feature selection
Hancock et al. (GbR’11; ICIAP’11; SIMBAD’11)

Image matching and registration
Torsello et al. (1JCV 2011, ICCV’09, CVPR’10, ECCV’10)




Extensions
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Capturing Elongated Structures / 2
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Path-Based Distances (PDB’s)

Path-based measure: Given a distance (dissimilarity) matrix D,
the path-based distance measure between objects 1 and j is com-
puted by [FBo3s]

DPAh —  min {max D }, 1
ij ped;(0) L1<iglp| PP (19)

where Py;(0) is the set of all paths from 1 to j. Thereby, the
effective distance between 1 and j is the largest gap of the path
p*, where p* is the path with minimum largest gap among all
admissible paths between 1 and j.

B. Fischer and J. M. Buhmann. Path-based clustering for grouping of smooth curves and texture
segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 25(4):513-518, 2003.




Example: Without PBD (o = 2)
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Example: Without PDB (o = 4)
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Example: Without PDB (o = 8)
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Example: With PDB (o = 0.5)
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Finding Overlapping Classes

First idea: run replicator dynamics from different starting points in the
simplex.

Problem: computationally expensive and no guarantee to find them all.




Finding Overlapping Classes:
Intuition




Building a Hierarchy:
A Family of Quadratic Programs

Consider the following family of StQP'’s:

maximize fa(x) =x'(A — al)x
subjectto xe A

where a > O is a parameter and [ is the identity matrix.

The objective function f, consists of:
e adata term (x' Ax) which favors solutions with high internal coherency

e a regularization term (—ax’x) which acts as an entropic factor: it is
concave and, on the simplex A, it is maximized at the barycenter and
it attains its minimum value at the vertices of A




The effects of a
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The Landscape of f,

Key observation: For any fixed «, the energy landscape of f. is populated
by two kinds of solutions:

e solutions which correspond to dominant sets for the original matrix A

e solutions which do not correspond to any dominant set for the original

matrix A, although they are dominant for the scaled matrix A+ o (ee’ —
1)

The latter represent large subsets of points that are not sufficiently coher-
ent to be dominant with respect to A, and hence they should be split.



Sketch of the Hierarchical Clustering Algorithm

Basic idea: start with a sufficiently large « and adaptively decrease it
during the clustering process:

1) let o be a large positive value (e.g., o > |[V| — 1)

2) find a partition of the data into a-clusters

3) for all the a-clusters that are not O-clusters recursively repeat step 2)
with decreased a




Dealing with High-Order Similarities

A (weighted) hypergraph is a triplet H = (V, E, w), where

=V is a finite set of vertices
sk C 2Vis the set of (hyper-)edges (where 2V is the power set of V)

=w : E - Ris a real-valued function assigning a weight to each edge

We will focus on a particular class of hypergraphs, called k-graphs, whose
edges have fixed cardinality k > 2.

. United States

-\_\__\_\__\_\-
e,

.II ® 7

\ il
- _I—'_--

A hypergraph where the vertices are flag colors and the hyperedges are flags.



The Hypergraph Clustering Game

Given a weighted k-graph representing an instance of a hypergraph
clustering problem, we cast it into a k-player (hypergraph) clustering game
where:

v" There are k players
v" The objects to be clustered are the pure strategies

v The payoff function is proportional to the similarity of the
objects/strategies selected by the players

Definition (ESS-cluster). Given an instance of a hypergraph clustering
problem H = (V,E,w), an ESS-cluster of H is an ESS of the corresponding
hypergraph clustering game.

Like the k=2 case, ESS-clusters do incorporate both internal and external
cluster criteria (see PAMI 2013)



ESS’s and Polynomial Optimization

Theorem 3. Let H = (V,E,w) be a hypergraph clustering

problem, I' = (P,V,m) the corresponding clustering game,
and f(x) a function defined as

f(x)=u (}[:k]) = Zw{;ﬁ} ]:[Ij. (11)

Nash equilibria of T' are in one-to-one correspondence with
the critical points® of f(x) over A, while ESSs of T are in
one-to-one correspondence with strict local maximizers of
f(x) over A.




Baum-Eagon Inequality

Theorem 4 (Baum-Eagon). Let Q(x) be a homogeneous
polynomial in the variables x; with nonnegative coefficients,

and let x € A. Define the mapping z = M(x) from A to itself
as follows:

j=1,...,n. (12)

Theorem 5. A point x € A is an ESS-cluster of an instance of a
hypergraph clustering problem if and only if it is an
asymptotically stable equilibrium point (and, hence, a local
attractor) for the nonlinear dynamics (13).



An exampe: Line Clustering
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In 2 nutshell...

The game-theoretic/dominant-set approach:

v

makes no assumption on the structure of the affinity matrix, being it able to work
with asymmetric and even negative similarity functions

does not require a priori knowledge on the number of clusters (since it extracts
them sequentially)

leaves clutter elements unassigned (useful, e.g., in figure/ground separation or
one-class clustering problems)

allows principled ways of assigning out-of-sample items (NIPS’04)
allows extracting overlapping clusters (ICPR’08)

generalizes naturally to hypergraph clustering problems, i.e., in the presence of
high-order affinities, in which case the clustering game is played by more than two
players (PAMI’13)

extends to hierarchical clustering (ICCV’03: EMMCVPR’09)

allows using multiple affinity matrices using Pareto-Nash notion (SIMBAD’15)
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