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Abstract

Previous works on automatic query clustering most gen-
erate a flat, un-nested partition of query terms. In this work,
we are pursuing to organize query terms into a hierarchical
structure and construct a query taxonomy in an automatic
way. The proposed approach is designed based on a hierar-
chical agglomerative clustering algorithm to hierarchically
group similar queries and generate the cluster hierarchies
by a novel cluster partition technique. The search processes
of real-world search engines are combined to obtain highly
ranked Web documents as the feature source for each query
term. Preliminary experiments show that the proposed ap-
proach is effective to obtain thesaurus information for query
terms, and is also feasible to construct a query taxonomy
which provides a basis for in-depth analysis of users’ search
interests and domain-specific vocabulary on a larger scale.

1. Introduction

As Web searching has grown, research interests on min-
ing search engine logs to discover users’ search patterns
and information requests have increased. Query cluster-
ing is a research task aiming to group similar user queries
together. This task is important to discover the common
interests among the users and to exploit the experience of
previous users for the others [10]. Knowledge obtained
with query clustering can be used in the development of
thesauri and recommending systems [9]. The discovered
clusters of queries can assist users in reformulating refined
queries, discovering users’ FAQs for question answering
systems [10], and performing more effective query expan-
sion and term suggestion routines in search engines [1].

Previous works on automatic query clustering most or-
ganize query terms into flat clusters. In this work, we are
pursuing to organize users’ query terms into a hierarchical

structure and construct a query taxonomy in an automatic
way. The query taxonomy is defined as the classification
tree constituted by the concept hierarchies of users’ requests
and categorized query terms that are automatically gener-
ated. As the example illustrated in Figure 1, a query taxon-
omy is a classification tree in which similar user queries (as
leaf nodes) are grouped to form basic query clusters (as in-
terior nodes), and similar query clusters form super clusters
recursively to characterize the associations between com-
posed clusters. Each of the query clusters can represent a
certain concept of users’ information requests.
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Figure 1. An example query taxonomy.

With the query taxonomy, deeper analysis of domain-
specific terminology and further discovery of term relation-
ships can then be performed under the corresponding sub-
ject domain of each cluster. Manually collecting and or-
ganizing such term vocabularies is cost-ineffective and in-
applicable especially for organizing Web queries. For the
above purpose, this paper presents a hierarchical query clus-
tering approach. The proposed approach is extended from
Hierarchical Agglomerative Clustering algorithm (HAC) to
cluster similar queries and to generate appropriate cluster
hierarchies. Since a query term is short in length and sim-
ple in structure, there is a lack of information to judge the
query term’s corresponding subject domains. The proposed
approach combines with the search processes of real-world
search engines to obtain the highly ranked Web documents
from which the features for each query term are extracted.
With the huge amount of Web pages indexed by the search
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engines, most of the users’ query terms can retrieve relevant
documents and create feature sets, and therefore be clus-
tered properly. A hierarchical cluster partitioning technique
based on a heuristic quality measure of any particular parti-
tion is further applied on the binary-tree hierarchy produced
by the HAC algorithm to generate a natural and comprehen-
sive multi-way-tree hierarchy. The preliminary experiments
and observations also show the promising results.

In the rest of this paper, we first review some related
work and introduce the proposed approach. Then the con-
ducted experiments and their results are presented. Finally,
we discuss some applications and conclude our results.

2. Related Work

Some researches on clustering indexed terms are in cer-
tain degree related to our research, such as the works on la-
tent semantics, SVD, term relationship analysis, etc [3, 6].
Most of them dealt with the automatic clustering of con-
trolled indexed terms into clusters and used them to assist
information retrieval systems in the query expansion pro-
cess to improve the precision and recall ratios. Query clus-
tering and the construction of concept hierarchies for users’
queries were not the main subjects of these investigations.

The characteristics of short Web query and noisy search
results have led researchers to investigate the query cluster-
ing problem. Beeferman and Berger [1] proposed a query
clustering method based on “click-through data,” which is
a collection of user transactions with queries and their cor-
responding clicked URLs, to discover correlations between
queries and the clicked pages. Query terms with more com-
mon clicked URLs were taken as similar and being grouped.
Without merely using the clicked URLs, Wen et. al. [10]
developed a similar method to combine the indexed terms
from the clicked pages to estimate the similarity between
queries and achieved better performance. However, the
number of distinct URLs is often huge in a Web search
service. This might cause many similar queries not to be
grouped together due to a lack of common clicked URLs.
With fewer clicked URLs as the feature sets, it is more dif-
ficult to find similar terms for those new query terms or
queries with lower usages. To allow most of users’ queries
with appropriate features to characterize intended search in-
terests, the proposed approach exploits the highly ranked
documents retrieved by a query term as the data source and
designs an effective algorithm for query clustering.

3. Overview of the Proposed Approach

Hierarchical query clustering is loosely defined as a
problem of automatically grouping similar query terms into
disjoint clusters and organizing them into a hierarchical

structure with the association strengths between clusters.
The diagram depicted in Figure 2 shows the overall con-
cept of the proposed approach, which is mainly composed
of three computational processes: relevant document re-
trieval, feature extraction, and query clustering. The rele-
vant document retrieval process is to retrieve the most rel-
evant document sets for candidate query terms by combin-
ing with the search processes of real-world search engines.
The retrieved document set is then passed to the feature ex-
traction process to extract the features for each candidate
query term. The query clustering process is to cluster sim-
ilar queries and generate appropriate cluster hierarchies. It
consists of two cascaded processing steps: generation of
a binary-tree hierarchy and hierarchical cluster partition-
ing. The former step is to construct an initial binary-tree
hierarchy by HAC algorithm to organize query clusters for
the input query terms, and the latter step is to partition the
hierarchy into a more natural multi-way tree according to
the quality of each sub-hierarchy. In the following para-
graphs, we will describe the details of these computational
processes.

Search Engines

Relevant Doc.
Retrieval

Relevant Doc.
Retrieval

Binary-Tree 
Hierarchy Generation

Hierarchical
Cluster Partitioning

Feature
Extraction

Feature
Extraction

Doc. Set
Query
Terms

Query Clustering

. . .

Query
Taxonomy

Search Engines

Relevant Doc.
Retrieval

Relevant Doc.
Retrieval

Binary-Tree 
Hierarchy Generation

Hierarchical
Cluster Partitioning

Feature
Extraction

Feature
Extraction

Doc. Set
Query
Terms

Query Clustering

. . .

Query
Taxonomy

Figure 2. An abstract diagram showing the
concept of the proposed approach.

4. Data Set

To instantiate the research, a three-month query term
log collected in 1998 from Dreamer search engine1 in Tai-
wan is used as the basis for our analysis. This data set
contains 228,566 distinct query terms with total frequency
2,184,256. The most-frequent 18,017 queries have been
manually categorized into a two-level hierarchy, consisting
of fourteen major categories together with one hundred sub-
categories, by five Library & Information Science students
together with a professional reference librarian for three
months. This most-frequent query set, which only repre-
sented 8% of the distinct queries, totally formed 81% of the

1http://www.dreamer.com.tw/
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search requests in the test log and has been used on analysis
of search behavior and several research studies [9].

4.1. Collecting Retrieval Documents

As we mentioned previously, a query term is short in
length and simple in structure. In order to judge the rele-
vance of query terms, we take the highly-ranked documents
retrieved from on-line search engines by the query terms as
their feature source. To collect the contents each query term
can retrieve, we adopt Google Chinese2 as the back-end en-
gine. Each query term is submitted to Google, and then up
to 100 search result entries are collected. The title and de-
scription of each entry are extracted as the representation of
the corresponding document. In the final result, only 107
queries among 18,017 total queries have no retrieved doc-
uments. By combining the search processes of real-world
search engines, our query clustering hypothesis can be intu-
itively stated as: That two queries are clustered together is
due to that they can retrieve similar contents.

4.2. Feature Set

It is a crucial step to determine a set of feature terms
for characterizing the feature space of users’ queries. The
feature term set should be both as broad in coverage and
as modest in size as possible. Query terms from search en-
gine logs or the document terms extracted from the retrieved
Web documents are two alternatives that can be taken as
feature terms.

Since many queries may be related to ephemeral inter-
ests, such as a new movie or some recent events, the feature
terms are pursuing to be sustainable. Another two-week
query term log collected in 1999 from GAIS search engine3

is used to filter out those ephemeral queries. Only 9,751
queries among our 18,017 queries still appear in the new
query log. It is also found that query terms affected by time
are mostly proper nouns. On the other hand, terms not af-
fected by time, except for some proper nouns like the names
of famous websites and people, are mostly subject terms
like “movie,” “baseball,” or “flight ticket.” These terms are
considered to be core terms because they are long-lasting,
modest in size, and rich in content. From our observations,
core terms are more comprehensive in meaning and are of-
ten used by Web users to express popular search interests.
Using them as features is believed to be more effective.

In order to reveal the effects of different feature sets, we
prepare four kinds of features: (1) the 9,751 core terms
(coreterm); (2) 10,000 most-frequent query terms in our
data set (freqterm); (3) randomly-selected 10,000 terms

2http://www.google.com/
3http://www.gais.cs.ccu.edu.tw

from the 18,017 queries (randterm); (4) the Chinese char-
acter bi-, tri-grams and English words extracted from the
retrieved documents (2,3-gram). The comparison will be
made in a later section.

5. The Query Clustering Algorithm

Clustering can be loosely defined as the process of orga-
nizing objects into groups whose members are closely as-
sociated in some way. The problem has been studied ex-
tensively in the literature, and there exist many different
clustering algorithms. They are mainly in two major styles:
partitioning and hierarchical clustering. K-means and hier-
archical agglomerative clustering (HAC) are representatives
of these two styles [4].

According to the literature, the HAC approach is more
common and well-performed on the problems dealing with
text-represented data such as clustering documents or Web
search results [11, 12]. Hence we adopt HAC as the basic
mechanism to our on-hand clustering problem. Perhaps one
of the most important criteria to choose a clustering algo-
rithm is the nature of the data and the anticipated clusters.
Except common and extensive adoption of the algorithm,
there are other considerations that lead us to this decision,
and they will be briefly mentioned furthermost in the next
subsection.

5.1. HAC Algorithm

An HAC algorithm operates on a set of objects with a
matrix of inter-object distances and builds a binary-tree hi-
erarchy where each node is a cluster and the clusters corre-
sponding to the node’s immediate children form a complete
partition of that cluster [8]. First, the objects are placed
into a list of singleton clusters C1, C2, : : :, Cn. Then the
closest pair of clusters fCi; Cjg from the list is chosen to
merge. Finally, Ci and Cj are removed from the list and
replaced with a new cluster fCi [ Cjg (here we treat clus-
ters as sets). This process is repeated until there is only one
cluster remaining.

Inter-object distance
For the clustering approach, we have to measure the dis-
tances between instances to be grouped. We adopt the
vector-space model as our data representation. As stated
previously, each candidate query term is converted to a
bag of feature terms via the content retrieved from on-line
search engines by the query term. Let T be the feature term
vocabulary, i.e., the set of all distinct terms in the whole
data collection, and tj be the j-th term in T . With simple
processing, the i-th query term can be represented as a term
vector vi in a jT j-dimensional space. Let V be the set of
all distinct query term vectors v1, v2, : : :, vn and vi;j be the
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weight tj in vi. The term weights in this work are deter-
mined according to the conventional tf-idf term weighting
scheme,in which each term weight vi;j is defined as:

vi;j =

�
0:5 + 0:5

tfi;j
maxtk2T tfi;k

�
log

n

nj

where tfi;j , the term frequency, is the number of occur-
rences of term tj in the vi’s corresponding feature term bag,
n is the total number of query terms, and nj is the number
of query terms which contain tj in their corresponding bags
of feature terms. The similarity between a pair of query
terms is computed as the cosine of the angle between the
corresponding vector (cos�), i.e.,

sim(va; vb) =

P
tj2T

va;jvb;jqP
tj2T

v2a;j

qP
tj2T v

2
b;j

:

In this study, the distance between a pair of candidate query
terms is defined as one minus the cosine measure:

dist(va; vb) = 1� sim(va; vb):

Inter-cluster distance
The core of an HAC algorithm is to choose a specific dis-
tance function for clusters. Table 1 lists three most well-
known inter-cluster distance functions.

Table 1. Three well-known cluster distance
functions.

Method Distance function
Single-linkage (SL) min

va2Ci;vb2Cj

dist(va; vb)

Average-linkage (AL) 1

jCijjCj j

P
va2Ci

P
vb2Cj

dist(va; vb)

Complete-linkage (CL) max
va2Ci;vb2Cj

dist(va; vb)

Intuitively speaking, the single-linkage method defines
the distance between two clusters as the smallest distance
between two objects in both clusters, and the complete-
linkage uses the largest distance instead. Usually, the clus-
ters produced by the single-linkage method are isolated but
not cohesive, and there may be some undesirably “elon-
gated” clusters. On the other extreme, the complete-linkage
method produces cohesive clusters that may not be isolated
at all. The average-linkage method represents a compro-
mise between the two extremes.

To choose a feasible distance measure for our term-
clustering problem, a major consideration is the heteroge-
neous and diverse nature of Web contents. Many traditional
information retrieval problems such as text categorization

meet big challenges when dealing with Web contents by
directly applying their traditional well-performed methods.
This is because Web in particular encourages diverse au-
thorship, navigational and citation links, and short, frag-
mented documents with objects in various media types. All
of these make the content data in Web noisy. In our ap-
proach, we extract the features from the snippets returned
from search engines, whose quality may be worse and less
trustful. Besides, term-vector-based data representation
makes our clustering problem naturally a data-sparseness
problem with high dimensional feature space. Some noisy
features may make the distance measure not so reliable. So
the method with nature to produce cohesive clusters is pre-
ferred, and the complete- and average-linkage methods are
preferred mainly based on this consideration. The compari-
son of these methods will be made in a later section.

Before we move ahead, let’s define some notations and
formalization of the HAC algorithm for further illustration.
In the HAC clustering process, at each iteration step, two
clusters are merged as a new one, and the whole process
halts when there exists only one un-merged cluster, i.e., the
root node in the binary-tree hierarchy. Let v1, v2, : : :, vn
be the initial input object vectors, and C1, C2, : : :, Cn be
the corresponding singleton clusters. Also let Cn+i be the
new cluster created at the i-th step. The output binary-
tree cluster hierarchy of the HAC algorithm can be un-
doubtedly and unambiguously expressed as a list C1, C2,
. . . , Cn, Cn+1, . . . , C2n�1 with two functions left(Cn+i)
and right(Cn+i), 1 � i < n, indicating the left and right
child of internal cluster node Cn+i, respectively. Figure 3
shows this detailed algorithmic procedure.

HAC(v1; v2; : : : ; vn)
vi , 1 � i � n: the vectors of the objects
1: for all vi; 1 � i � n do
2: Ci  fvig
3: f(i) true ff : whether a cluster can be mergedg
4: calculate the pairwise cluster distance matrix
5: for all 1 � i < n do
6: choose the closest pair fCa; Cbg with f(a) ^ f(b) � true

7: Cn+i  Ca [ Cb , left(Cn+i) Ca; right(Cn+i) Cb

8: f(n+ i) true; f(a)  false; f(b) false

9: update the distance matrix with new cluster Cn+i

10: return C1; C2; : : : ; C2n�1 together with functions left and right

Figure 3. The hierarchical agglomerative clus-
tering procedure.

5.2. Hierarchical Cluster Partitioning

The HAC algorithm produces a binary-tree hierarchy of
clusters. However, we are more interested in an approach to
producing a natural and comprehensive hierarchical organi-
zation such as Yahoo!, in which there are 13-15 major cat-
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egories and each sub-category also contains an appropriate
number of sub-categories. This multi-way-tree representa-
tion, instead of the binary-tree one, is believed to be more
natural, easier, and more suitable for human to browse, in-
terpret, and do some deeper analysis.

To generate a multi-way-tree hierarchy from a binary-
tree one, a top-down approach is to decompose the hierar-
chy into several major sub-hierarchies first, and then, recur-
sively apply the same procedure to each sub-hierarchy. To
create a particular major sub-hierarchy partition from the
binary-tree hierarchy, our approach is to determine a suit-
able level to cut the hierarchy at it. Before we describe
our cutting criterion, let’s illustrate some notations and the
formalization of the problem. The problem of cutting at
a suitable level can be taken as to determine which pair
of adjacent clusters fCn+i�1; Cn+ig, 1 � i < n, in the
binary-tree hierarchy C1, C2, . . . , Cn, Cn+1, . . . , C2n�1 to
put the partition point in between. Let the cut level l be-
tween fCn+i�1; Cn+ig, 1 � i < n, be indexed as number
n � i, e.g., fC2n�2; C2n�1g means cut level l = 1, and
so on (referred to Figure 4). To simplify the further illus-
tration, we also let clusters(l) be the clusters produced at
cut level l, which is the set of remaining unmerged clus-
ters after n � l � 1 iterations of the HAC procedure, and
CH(Ci) be the cluster hierarchy rooted at node Ci, i.e.,
CH(Ci) = Ci

1, Ci
2, : : :, Ci

ni
, Ci

ni+1, : : :, Ci
2ni�1 whereCi

1,
: : :, Ci

ni
are the leaf, singleton clusters, Ci

ni+1, : : :, Ci
2ni�1

are the internal, merged clusters, and Ci
2ni�1 = Ci,. For

example, in Figure 4, clusters(2) is fC5, C6, C7g, and
CH(C8) is fC3, C4, C5, C6, C8g. Note that all the above
information could be obiter collected while the HAC clus-
tering process is proceeding, so they are available without
too much extra computational efforts.

The idea of our approach to this cluster partitioning prob-
lem is to find a proper cut level whose corresponding un-
merged clusters are most qualified. Let QC(C) be a func-
tion to measure the quality of a set of clusters C. Then, to
determine a proper partition level is transfered to the prob-
lem of finding a cut level l with the best quality measure
of clusters at that cut level, i.e., with the maximum value of
QC(clusters(l)). This problem can be easily determined if
the QC function is defined, and next, we will describe our

C1 C2 C3 C4 C5

C6

C8

C9

C7

1

2

3

4

Cut level l

C1 C2 C3 C4 C5

C6

C8

C9

C7

1

2

3

4

Cut level l

Figure 4. An illustrative example for cluster
partitioning.

defintion of QC.
The generally accepted requirement of “natural” clusters

is that they must be cohesive and isolated from the other
clusters [8]. Our criterion to determine the proper cut level
given a binary-tree cluster hierarchy is to heuristically re-
alize this intuition. Our definition of QC(C) is a product
of three components: (a) F (C): A function to measure the
cohesion of the clusters; (b) S(C): A function to measure
the isolation of the clusters; And (c) M(C): A function to
measure whether the number of clusters are proper, i.e., the
number of clusters should be neither too few nor too many.
Thus the formula of QC(C) is defined as

QC(C) = F (C)S(C)M(C):

Next, we will give the definition to each component.
Given a cluster Ci with ni objects, we define the cohe-

sion measure of the cluster as the average similarity mea-
sure of all its object pairs. For a singleton cluster, we define
its cohesion measure as one because a singleton cluster is
undoubtedly most cohesive. The overall cohesion measure
of a set of clusters is defined as the weighted average cohe-
sion measure and its formal definition is given by

F (C) =
1

n

X
Ci2C

nif(Ci)

f(Ci) =

8<
:

2
ni(ni�1)

P
va;vb2Ci
va 6=vb

sim(va; vb); if ni > 1;

1 otherwise.

where ni is the number of objects contained in Ci and n is
the total number of objects in cluster set C.

Given two clusters Ci and Cj , we define the isolation
measure between them as the smallest distance between
two objects in both clusters. Notice that this definition
is equivalent to their single-linkage distance measure, and
its formula is shown in Table 1. Let it be notated as
mindist(Ci; Cj). The overall isolation measure of a clus-
ter set C = fC1; C2; : : : ; Ckg is defined as the average of
this distance measure of all cluster pairs in C:

S(C) =
2

k(k � 1)

X
1�i<k

X
i<j�k

mindist(Ci; Cj)

Usually, a partition with neither too few nor too many
clusters are preferred. Given n objects, there are at least
one cluster and at most n clusters . In a hierarchical par-
titioning approach, we expect that the number of top-level
clusters should be small, but a proper number is really hard
to anticipate automatically because we have no idea of how
many meaningful groups exist among the objects. Here, we
take the square root of n as the expected cluster number.
And then, an ellipse function is used to measure the degree
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of preference on the number of the given clusters. Its defi-
nition is given as follows:

M(C) =

r
1� (jCj � en)2

n2

where n is the total number of objects contained in C and
en is set as

p
n.

Now, all three components of our QC measure are de-
fined. To choose a suitable cut level, we just need to com-
pute QC value for each cut level and then select the one
with maximumQC value. Figure 5 shows the detailed algo-
rithmic procedure of the whole hierarchical clustering pro-
cess, which first constructs a binary-tree cluster hierarchy
of given objects and then, recursively applies the partition-
ing procedure to determine most appropriate cut level on
each sub-hierarchy. To avoid performing the partitioning
procedure on the cluster with too few objects, a constant �
is provided to restrict the size of a cluster to be further pro-
cessed.

HierarchicalClustering(v1 ; v2; : : : ; vn)
vi, 1 � i � n: the vectors of the objects
1: C1; C2; : : : ; C2n�1  HAC(v1; v2; : : : ; vn)
2: return HierarchicalPartitioning(C1 ; C2; : : : ; C2n�1)

HierarchicalPartitioning(C1 ; C2; : : : ; Cn; Cn+1; : : : ; C2n�1)
Ci, 1 � i � 2n� 1: the binary-tree hierarchy
1: if n < � then
2: return C1; C2; : : : ; Cn

3: maxqc 0; bestcut 0
4: for all cut level l; 1 � l < n do
5: qc QC(clusters(l))
6: if maxqc < qc then
7: maxqc qc; bestcut l

8: for all Ci 2 clusters(bestcut) do
9: children(Ci) HierarchicalPartitioning(CH(Ci ))

10: return clusters(bestcut)

Figure 5. Hierarchical clustering algorithm.

In the literature, several criteria to determine the number
of clusters for HAC algorithms have been suggested [7], but
they are typically based on predetermined constants, e.g.,
the number of final clusters or a threshold for distance mea-
sure. Relying on predefined constants is practically harmful
in applying the clustering algorithm because these criteria
are very sensitive to the data set on-hand and hard to be
properly determined. Our approach is automatic to deter-
mine the proper level to cut only based on the data set itself.

5.3. Cluster Naming

It is not easy to determine an appropriate name for a clus-
ter. There are different alternative methods. In our current
stage, we take the most high-frequency co-occurred feature
terms from the composed query terms to name the cluster.

6. Experiment

To assess the performance of the proposed approach, two
categories of experiments have been conducted. The first
one was performed to test the accuracy of query clustering
compared with human analysis under various feature sets
and distance measure strategies, and the second one is to
examine the quality of the hierarchical structure generation.

Two test query term sets are prepared from our data set:
(1) the most-frequent 1,000 query terms (HF) and (2) ran-
domly selected 1,000 query terms from the most-frequent
10,000 queries (RD). Notice that all 18,017 query terms in
our data set (ref. Section 4) have been manually categorized
into a two-level subject hierarchy, and this class information
will be treated as the external information for us to evaluate
the clustering results.

With the available external class information, we adopt
F-measure [5] as the evaluation metric for the generated
clusters. The F-measure of cluster j with respect to class
i is defined as:

Fi;j =
2Ri;jPi;j
Ri;j + Pi;j

where Ri;j and Pi;j are recall and precision and been de-
fined as ni;j=ni and ni;j=nj , respectively, in which ni;j is
the number of members of class i in cluster j, nj is the
number of members in cluster j, and ni is the number of
members of class i. For an entire hierarchical clustering,
the F-measure of any class is the maximum value it attains
at any node in the tree, and an overall F-measure is com-
puted by taking the weighted average of all values for the
F-measure as given by the following:

F =
X
i

ni
n
maxfFi;jg

where the maximum is taken over all clusters at all levels, n
is the total number of query terms, and ni is the number of
query terms in class i.

Table 2 shows the experimental results on the two test
query sets by variant feature term sets and variant distance
measure strategies. This category of experiments was per-
formed by fixing the final cluster number to 100, and the
performance measures were achieved based on the human-
assigned 100 second-level category information. Besides,
in order to reveal the effects of variant size of feature set,
we ran another experiment on HF test set with complete-
linkage method and different core term sets: top 100, 500,
1,000, 3,000, 5,000, and 9,751 core terms in accordance
with the term frequency.

From the experimental results, we found that the
average- and complete-linkage methods perform much bet-
ter than the single-linkage one under the F-measure met-
ric, and the average-linkage method is even slightly bet-
ter. Also using core terms as features is stabler in the two
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Table 2. The experimental results.
(A) With variant feature sets and distance measures.

HF randterm freqterm coreterm 2,3-gram
SL .1277 .1181 .1221 .1421
AL .5217 .4955 .4921 .4977
CL .4757 .4882 .4794 .4390

RD randterm freqterm coreterm 2,3-gram
SL .1092 .1049 .1200 .1295
AL .4370 .3795 .4394 .3732
CL .4097 .2288 .4043 .3747

(B) With variant size of core-term feature set.

HF 100 500 1,000 3,000 5,000 9,751
CL .3443 .4547 .4562 .4634 .4851 .4767

test sets, which confirms our consideration on feature selec-
tion stated in Section 4.2. To provide the readers a more
comprehensive and clearer clustering result, Figure 6 lists
three selected query clusters generated in the experiment.
The headlines of the columns are the cluster IDs which are
attached with the corresponding manually-assigned class
names, achieved precision and recall rates respectively. The
second lines of the columns are clustered query terms. The
class ID assigned by humans is attached after each query
term, and English translations are provided for the Chinese
queries. The meanings of the class IDs could refer to the
bottom part of the figure, in which it lists some of man-
ual classes with their names of major classes, sub-classes,
and symbols, respectively. It would be easy to see that the
terms grouped in the same clusters are most highly relevant.
Although some of the terms whose corresponding classes
are not matched with the generated classes, e.g., “Trend,
Inc.” in Cluster 28 and “Vocational Training Department”
in Cluster 38, their classes ”Software Company” and “Lo-
cal Government” are related to the automatically-assigned
classes “Security Software” and “Job” respectively, and
might not be considered as incorrect clustering.

On the other hand, the second category of experiments
was performed to test the quality of the hierarchical struc-
ture generation. Table 3 shows some statistics on the hi-
erarchies generated from the two test sets based on core-
term feature set and average-linkage distance measure. The
depth of the hierarchy and the number of clusters at each
level seem appropriate. Notice that the F-measure values
are better than the ones in the previous experiments. The
achieved high F-measures reveal that hierarchically group-
ing the query terms seem more suitable to capture hidden
associations among the query terms than the flat approach.
Although it’s hard to have a quantitative approach to mea-
sure the goodness of the generated hierarchy structure, we
believe this multi-way-tree representation is more natural

Cluster 44 (Airlines class, 
Precision: 1, Recall: 1) 

Cluster 28 (Security software 
class, Precision: 0.78, Recall 
0.55) 

Cluster 38 (Job class, Precision: 0.8; Recall: 
0.75) 

Eva (Airline name) tp 
 (Airline ) tp 

 (EVA) tp 
 (Flight Ticket ) tp 

 (FAT Airline) tp 
 (Formosa Airline)  tp 

 (China Airline ab.) tp  
 (China Airline) tp  

 (Airplane) tp  
 (Airway Co.) tp  

 (Airway) tp  
 

 (Virus) cd  
norton  cd 

 (Virus Scanning) cd  
 (Virus Code) cd 

 (Anti -virus SW) cd 
 (Anti -virus) cd 

 (Computer Virus) cd  
 (Trends, Inc.) cg  

pc-cillin   cd  
cih    cd 
sscan  cd 

   cd 
 (Hacker ) ck 

 (The Matrix) en 
 

 (Resume) lj  
 (Bio) lj  
 (Employment) lj  
 ( Job Opportunities) lj 

 (Taiwan Job Online) lj 
 (Job) lj  

 (Job Finding)   lj  
 (Human Resource) lj  

104  (HR site) lj 
104  (HR site) lj 

 (HR site) lj 
 (HR) lj 

job   lj 
 (Job Hunting) lj  
 (Head Hunting) lj 

 ( National Youth Commission) pl 
 ( Bureau of Labor) pl 
 ( Vocational Training Department) pl 

 

 
Major category / Sub-category : ID
Computer&Network / Security Software : cd

/ Software Company : cg
/ Hacker/Crack : ck

Entertainment / Movie : en
Life Information / Job : lj
Politics / Local Government : pl
Travel / Airlines : tp

Figure 6. Several example clusters of query
terms.

and easier for human to browse and interpret than a deep
binary-tree hierarchy.

7. Discussions and Applications

Query clustering serves as a first step toward the con-
struction of thesaurus for Web search. For those query terms
grouped in the same clusters, we found they contain many
abbreviations, synonyms, related terms, and even transla-
tions that are hard to be manually organized. In fact, the
proposed approach is very effective and can compete with
conventional document-based methods to obtain thesaurus
information for query terms. Conventional approaches rely
on extracting co-occurring terms from documents and suffer
from term segmentation difficulty. However, more accurate
analysis on the relationships between the clustered terms
need to be further discovered.

Table 3. Results of hierarchical structure gen-
eration.

HF RD
Hierarchy depth 6 5

# 1st-level clusters 34 35
# 2nd-level clusters 164 132
# 3rd-level clusters 206 216
# 4th-level clusters 79 93
# 5th-level clusters 25 40
# 6th-level clusters 14

F-measure .6048 .5532
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One of the reasons that increases the robustness of the
proposed approach is the representative of the selected fea-
ture sets and the co-occurring feature terms extracted from
the highly ranked documents. It is worthy to note that the F-
measure value can achieve 0.3443 by only using the top 100
core terms as the feature set. This reveals that these most-
frequent core terms might represent some major search in-
terests and are effective features in determining the query
terms into certain clusters. In fact, a small set of core terms,
e.g., 500, is useful to obtain an acceptable performance.
This size is relatively much smaller than the total number
of query terms.

However, there exist weaknesses in our initial study. In
fact, some other factors may affect the accuracy of query
clustering and need to be further studied, such as the rel-
evance and the numbers of the retrieved documents, and
the sufficiency of the surrogates of these documents as de-
scribed in the previous paragraphs etc. Another challenge
is the ambiguous nature of terms. Query terms are usually
very short. This means that some terms might have mul-
tiple information requests. The proposed query clustering
approach only groups such ambiguous query terms into one
appropriate cluster. Clustering ambiguous query terms into
multiple clusters is still unexplored. There are other chal-
lenges regarding the class size of query terms. With the
automatic approach, we found both too large classes and
too small classes are difficult to be successfully grouped. A
larger class is easier to be clustered into separate clusters,
such as adult classes. A small class is easier to be merged
with other larger classes, such as academic-related classes.
These classes will decrease the obtained F-measure value
compared with the manual classes.

By the proposed query clustering approach for real-
world query terms, there are some applications that can ben-
efit from. Our work provides a good startup for construct-
ing Web thesauri. With such thesaurus information, several
applications, such as term suggestion for interactive Web
search, can be applied in the search process. On the other
hand, our approach is very helpful to know more about the
information needs of Web users. With our approach to sub-
ject clustering of query terms, it’s straightforward to con-
struct an automatic system for Web search engines or digital
library systems to monitor the changes of users’ search re-
quests, such as the distributions of users’ search subject cat-
egories, and up-to-date frequencies of query terms in each
class. The proposed approach has been successful applied
to some of the above applications [2].

8. Concluding Remarks

In this work, we have proposed a hierarchical query clus-
tering approach to organizing users’ query terms into a hi-
erarchical structure and construct a query taxonomy in an

automatic way. To assess the performance of the proposed
approach, two categories of experiments have been con-
ducted. The first one was performed to test the accuracy of
the query clustering compared with human analysis, and the
second one is to test the quality of the hierarchical structure
generation. The obtained experimental results have shown
the possibility of the automatic approach to grouping sim-
ilar query terms and generate concept hierarchies of users’
search interests. The approach was also proven useful in
various Web information retrieval applications.
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