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Abstract—Once every five minutes, Twitter publishes a list
of trending topics by monitoring and analyzing tweets from
its users. Similarly, Google makes available hourly a list of
hot queries that have been issued to the search engine. In this
work, we analyze the time series derived from the daily volume
index of each trend, either by Twitter or Google. Our study on a
real-world dataset reveals that about 26% of the trending topics
raising from Twitter “as-is” are also found as hot queries issued
to Google. Also, we find that about 72% of the similar trends
appear first on Twitter. Thus, we assess the relation between
comparable Twitter and Google trends by testing three classes
of time series regression models. We validate the forecasting
power of Twitter by showing that models, which use Google as
the dependent variable and Twitter as the explanatory variable,
retain as significant the past values of Twitter 60% of times.

Keywords-Time series analysis; Time series regression; Social
network analysis; Twitter; Trending topics; Google; Hot trends

I. INTRODUCTION

Twitter1 is one of the most popular online social media
and microblogging platform where people share information
nearly real-time by reading and writing short text messages
called tweets. Twitter may rely on a huge amount of user-
generated data, which can be analyzed to provide better
monetization for the company and new services for the end
users (e.g., personal advertising).

Some analyses aim at showing what are the topics that
users are most interested in (or talking of) by using the
Twitter platform. To this end, Twitter periodically extracts
and publishes a list of the top-10 trending topics, namely
text strings referring to social trends. Each trending topic is
the succinct textual representation of a “standing out fact”,
as extracted from user tweets. It may either refer to a long-
lasting or a sudden effect on the volume of tweets (e.g.,
nba vs. election 2012). Unfortunately, the details about the
technique Twitter uses to generate its lists of trending topics
are not publicly known, even though recent work is able to
infer them with high accuracy [1].

Similarly to Twitter, once every hour Google2 releases a
list of the top-20 trending search keywords (i.e., the so-called
hot trends or hot queries), which we refer to as web trends.
Google allows us to quantitatively examine how trending is

1http://www.twitter.com
2http://www.google.com

a hot query. Specifically, it computes the search fraction of
a given query in a time range and a geographical region.
This analysis indicates the likelihood of a random user to
ask for a query from a certain location at a certain time.

The aim of this work is to investigate whether any
relationship occurs between social trends as extracted from
Twitter and web trends as output by Google. Intuitively, we
claim that the same topics that appear as trending on Twitter
could later become a trending query on Google.

To motivate our research, we show in Fig. 1 a pair of
daily-based time series, referring to the first two weeks
of November 2012, and regarding the U.S. Presidential
Elections event. The main issue concerns the different time
granularity of observations of trend volumes as derivable
from Twitter and Google. Since Google only publishes a
daily-aggregate analysis of its web trend volumes, no finer-
grained time series (e.g., hourly-based) can be produced
from trend data, and this forces us to compare series on
a daily basis only. Despite this issue, the plots in Fig. 1
reveal that a predictive relation exists between each pair of
Twitter’s and Google’s trend time series. As opposed to the
trend time series, the first-time occurrence of a trend can
be derived hourly from both Twitter and Google. Indeed,
Twitter updates its set of trending topics once every five
minutes whereas Google does it every hour. We found that
66% of times the same trend appears first on Twitter and
then on Google.
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Figure 1. Time series of trend volumes: Twitter vs. Google.

The main contributions of this paper are thus the fol-
lowing: (i) a Trend Bipartite Graph (TBG) to represent the
lexical similarity between any pair of social and web trends,

http://www.twitter.com
http://www.google.com


as extracted from real-world Twitter and Google datasets;
(ii) the use of TBG to build the Twitter/Google time series
to analyze and compare; (iii) a statistic regression analysis
to measure the ability of Twitter in actually predicting and
causing a Google trend to later occur. Models that include
Twitter in the regression function better fit and forecast our
time series data.

II. RELATED WORK

In the recent years, we have seen an exponential growth
of many online social network applications, such as Flickr,
MySpace, Facebook, Google+, just to name a few. Among
them Twitter has emerged as one of the most influential
online social media service. Thereby, several studies have
started analyzing data from Twitter. Many work aim at
classifying different types of users, their behaviors, and
the relationships occurring among them according to the
following/follower pattern [2]–[5]. Other studies focus on
analyzing the content of the tweets and the way these are
related to trending topics. In this last regard, one of the most
representative and exhaustive study is proposed by Kwak
et al. [6]. Among other contributions, the authors describe
the relation between tweets and trending topics extracted
from Twitter, and trends derived from other media, i.e.,
search queries on Google and CNN headlines. Although
the subject above seems to be highly similar to the one we
tackle in this paper, we compare Twitter and Google trends
from a very different perspective. Specifically, Kwak et al.
aim at checking if Twitter trends and Google hot queries
overlap (in fact, the authors consider a trending topic and a
search keyword a match if the length of the longest common
substring is more than 70% of either string). Instead, our
goal is to test – through time series regression analysis – if
Twitter trending topics can be used to model, explain, and
predict the volume of Google hot queries.

Ruiz et al. [7] exploit the general findings on Twitter
discussed in [6] yet studying the problem of correlating
microblogging activity with stock market events.

Using Web data for predicting the behavior of a real time
series is another well-investigated topic. However, to the best
of our knowledge, the present work is the first attempt trying
to relate time series derived both from Web search and social
network data.

Liu et al. [8] propose a unified model to predict the
upcoming query trends on the basis of observations extracted
from the query log of a commercial search engine. Recent
work prove that Web search volume can predict the values of
some economic indicators. For instance, Bordino et al. [9]
show that daily trading volumes of NASDAQ-100 stocks
are correlated with daily volumes of queries about the same
stocks. Ettredge et al. [10] use search logs to predict the
job market while Choi and Varian [11] show how Google
trends may be used to forecast unemployment levels, car and

home sales, and disease prevalence in near real-time [11].
Goel et al. [12] show that what users are searching for
online can also predict their collective future behavior days
or even weeks in advance. Furthermore, Ginsberg et al. [13]
propose to approximate the flu cases in the U.S. by using a
search engine query log whereas Corely et al. [14] address
a similar problem yet exploiting blog content. Finally, Goel
et al. [15] claim also that, though correct, these prediction
models are not really competitive when compared to models
that exploit domain knowledge, and that social media data
– though usually very large – are not always statistically
representative of the population [16]. In [17] Goel et al.
show evidence of differences between the distribution of
demographic characteristics of a country and that of Twitter
users from that country.

III. SOCIAL VS. WEB TRENDS ANALYSIS

In this section, we introduce and formalize the main
elements and techniques used in our research.
Trend Vocabularies. Let VX = {x1, x2, . . . , xn} be the
vocabulary set of all the trending topics as provided by
Twitter. Similarly, we denote by VY = {y1, y2, . . . , ym} the
vocabulary set of all the hot queries released by Google.
It is worth remarking that the keywords of both vocabularies
are not necessarily single-term, but may be composed of a
sequence of terms.
Trend Scores. We refer to T = 〈t1, t2, . . . , tT 〉 as a
discrete time interval. Functions sX and sY assign scores
to vocabulary keywords over time T :

sX : VX × T 7−→ N, sY : VY × T 7−→ N.

For each keywords, they indicate the “strength” of its
trending in a given time slot, as measured by Twitter and
Google.
Trend Time Series. Each Twitter/Google trend can be
modeled as a time series, composed of tT random variables,
namely X = {Xt}tTt=t1 for Twitter, and Y = {Yt}tTt=t1 for
Google. Each random variable evaluates to a trending score
of a given trend. More formally, let sX(xi, t) be the trending
score of xi ∈ VX , and sY (yj , t) be the trending score of
yj ∈ VY , as measured at time t ∈ T . The observed time
series for xi ∈ VX and yj ∈ VY correspond to the sequences
of values assumed by each Xt and Yt:

Xi = {Xt = sX(xi, t)}tTt=t1 , Yj = {Yt = sY (yj , t)}tTt=t1 .

Moreover, we define the aggregate time series resulting from
each pair of Twitter series Xi and Xj , as follows:

Xi ] Xj = {sX(xi, t)⊕ sX(xj , t)}tTt=t1 ,

where ⊕ is a normalized sum.
Trend Bipartite Graph (TBG). Analyzing any pair of time
series derived from a Twitter trend (xi) and a Google hot
query (yj) might be useless or even misleading. In this study,
we focus on series associated with trends that are likely



related, namely to vocabulary keywords that are somehow
“similar”. In addition, we aim at combining groups of series
referring to Twitter trends that are alike. To this end, we
introduce the Trend Bipartite Graph (TBG), as follows.

Definition 3.1 (Trend Bipartite Graph):
Let TBG = (VX ,VY , E, w, η) be a bipartite graph where:

– VX and VY , the vocabularies of Twitter and Google trends,
respectively, are the two disjoint sets of graph nodes3;
– E ⊆ VX × VY is the set of graph edges;
– w : VX × VY 7−→ [0, 1] is an edge weighting function;
– η ∈ [0, 1] is a weight threshold, such that E = {(xi, yj) ∈
(VX ,VY ) | w(xi, yj) ≥ η}.
Intuitively, the TBG links any pair of trends from Twitter
and Google with an edge weighted by a function w, which
measures the pairwise trend similarity. The threshold η is in
turn used to avoid linking those trends that are low related
to each other.
Several trend similarity functions can be used. The simplest
approach only looks at the lexical surfaces of trends, thereby
computing a string similarity score (e.g., Levenshtein dis-
tance, longest common substring, n-gram similarity, etc.).
Advanced solutions might take into account the semantics
of each trend (e.g., by linking trends to referent entities of
an external knowledge base like Wikipedia [18], [19]).
The TBG allows us to identify a set of “comparable” time
series pairs, whose associated trends are similar, and which
are defined by S = {(Xi,Yj) | (xi, yj) ∈ E}.
In a nutshell, for each Yj we retrieve a set of related series
Xi according to the TBG, and we aggregate them together
obtaining SYj

=
⊎

(Xi,Yj)∈S Xi. We can finally define a set
of comparable time series, where the first element of each
pair results from the aggregation of several Twitter series:
D = {(SYj ,Yj) | SYj 6= ∅}. It is worth remarking that we
combine only Twitter series because it is more likely that
multiple trending topics refer to the same Google hot query
than vice versa. Furthermore, if η = 1 then S includes only
those xi that exactly matches yj , namely those trends that
are actually shared “as-is” between Twitter and Google. If
this is the case, it holds that D = S .
Trend Time Series Regression. Our final goal is to check
whether the evolution of a trend from Twitter is significant
to explain and predict the behavior of its counterpart trend
as extracted from Google.
Concretely, given a TBG = (VX ,VY , E, w, η) and the
dataset of related pairs of time series D, for each (Xi,Yj) ∈
D we evaluate the capability of Xi (Twitter) in forecast-
ing/causing Yj (Google). To perform this step, we validate
the following time series regression models to fit our data:

• Autoregressive Models: AR(p);
• Distributed Lag Models: DL(q);
• Autoregressive Distributed Lag Models: ADL(p, q).

3Though the same string may occur in both vocabularies, elements of those two
sets are conceptually separated.

Roughly speaking, AR(p) tries to fit the time series data from
the dependent variable (Google) using a linear combination
of up to its own p past observations, i.e., Yt = α+φ1Yt−1+
φ2Yt−2 + . . . + φpYt−p + εt. It turns out that this model
does not take into account any Twitter explanatory variable
at all. Conversely, DL(q) models the dependent variable
only using a linear combination of up to q past observa-
tions from a hypothetical explanatory variable (Twitter), i.e.,
Yt = α+ ψ1Xt + ψ2Xt−1 + . . .+ ψq+1Xt−q + εt. Finally,
ADL(p, q) uses past observations from both the dependent
and the explanatory variables:

Yt = α+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p+

+ ψ1Xt + ψ2Xt−1 + . . .+ ψq+1Xt−q + δt+ εt.

IV. EXPERIMENTS

In this section, we describe the experiments we conducted
on a real-world dataset of trends from Google and Twitter.
The experimental phase is divided into three separate tasks:

A. Raw Data Crawling: to collect both Google and Twit-
ter data, thereby deriving the actual time series of trends.

B. Time Series Datasets Building: to build the time series
datasets from the “raw” Google and Twitter data crawled.

C. Time Series Regression Analysis: to conduct the re-
gression analysis for exploring relation between Twitter and
Google trends.

A. Raw Data Crawling

In the very first step, we crawl all the data both from
Google and Twitter, which are necessary for deriving the
final datasets of time series. Concretely, we collect data
for fifteen consecutive days, namely from 2012-11-01 at
00:00AM UTC to 2012-11-15 at 11:59PM UTC. However,
since Google and Twitter have their own services and access
policies for getting data, we describe this task separately.

1) Google Hot Queries: Google has recently released
Google Hot Trends4, which is a tool displaying the top-20
hot, i.e., fastest rising, queries (search-terms) of the past hour
in the United States.

Furthermore, Google provides each hot query with a
daily search volume index, which is a normalized integer
score ranging from 0 to 100 computed as follows. Given a
specific range of dates, i.e., [dstart, dend], and a hot query
q, we denote by svi(q, d) the search volume index of q
on day d, such that dstart ≤ d ≤ dend. Google assigns
svi(q, d∗) = 100 on day d∗ with the highest search volume
traffic of q. For any other day d′ 6= d∗, svi(q, d′) results
from normalizing the search volume of q on d′ with respect
to d∗, and svi(q, d∗).

At the end of the crawling step, we collect 24 daily lists,
thereby resulting in 15∗24 = 288 lists, each one containing
20 hot queries. After in-depth pre-processing and cleaning

4http://www.google.com/trends/hottrends/atom/hourly

http://www.google.com/trends/hottrends/atom/hourly


stages, we derive a final vocabulary of 190 unique hot
queries, i.e., |VY | = 190, which is available for download.5

2) Twitter Data: Twitter allows to interact with its
platform by exposing a useful REST Application Program-
ming Interface (API).6 Roughly, two main functionalities are
available throughout this API: Search and Streaming.

We perform two crawling tasks running in parallel: from
a side, we use the Search API to retrieve the list of top-10
trending topics, once every 5 minutes. It is worth noting that
Twitter refreshes the list of trends exactly every 5 minutes,
thereby no trend data are lost during this step. On the other
hand, we collect a sample of the public tweets throughout
the Streaming API.

i) Trending Topics. This crawling task collects 12 top-10
lists of U.S. trending topics for each hour, thereby resulting
in a total of up to 12 ∗ 10 = 120 hourly trends. However, to
align this dataset of trends with that provided by Google, we
need to “collapse” each block of top-10 lists into a combined
top-10 hourly list. More generally, this is an instance of the
rank aggregation problem [20], which aims at combining
several ordered lists in a proper and efficient way. However,
we here omit further details on this due to space constraints.
The final vocabulary of Twitter trends contains 892 entries,
i.e., |VX | = 892, and is available for download.7

ii) Public Timelines. The other crawling task we perform
concerns the retrieval of a sample of tweets from the public
timelines of Twitter. To be consistent with other collections,
we focus only on tweets coming from the U.S., which
are almost all written in English. As a result, we obtain
a total amount of about 260 million tweets, which means
that more than 17 million tweets have been crawled per day
on average.

B. Time Series Datasets Building
In this section, we discuss how actual time series of trends

have been built from the raw datasets collected from Google
and Twitter, as detailed above.

Each trend associated with xi ∈ VX , yj ∈ VY is observed
during a time interval T , which corresponds to the range of
dates used to crawl our data.

However, only Google provides each hot query with
a score sY (yj , t), namely the daily search volume index
denoted by svi(yj , t) (see Section IV-A1). Thus, T can be
divided into single days, i.e., T = {t1, t2, . . . , t15}. For
each hot query yj we obtain 15 daily observations, each
one equals to the daily search volume index:

sY (yj , t) = svi(yj , t), where t = t1, . . . , t15.

Note that these are the finest-grained observations we can
obtain for Google hot queries. Therefore, the resulting time
series for yj is Yj = {Yt = svi(yj , t)}t15t=t1 .

5http://bit.ly/YiO6AD
6https://dev.twitter.com/docs/api
7http://bit.ly/120h0tQ

Since Twitter trends do not come with any score, in order
to make Google and Twitter time series comparable, we have
to figure out a score also for each Twitter trend, which is
similar to the Google’s daily search volume index. Thereby,
we exploit the whole collection of public tweets obtained
as described in Section IV-A2, and for each trend xi ∈ VX
we compute the daily trend volume index tvi(xi, t), t ∈ T ,
as follows. Let count(xi, t) be the number of occurrences
of the trend xi in the public set of tweets during the day t.
Then, the daily trend volume index is:

tvi(xi, t) =

⌈
count(xi, t)

max
⋃

t∈T count(xi, t)

⌉
∗ 100, (1)

where max
⋃

t∈T count(xi, t) is the maximum daily count
of xi, as measured across all the days in the interval.

Like Google’s search volume index, also Twitter’s trend
volume index is a normalized integer score ranging from 0 to
100. For each Twitter trend xi we have 15 daily observations,
each one equals to the daily trend volume index:

sX(xi, t) = tvi(xi, t), where t = t1, . . . , t15.

Finally, the resulting time series for the Twitter trending
topic xi is Xi = {Xt = tvi(xi, t)}t15t=t1 .

To compare Twitter’s and Google’s time series, we pair
those derived from similar trends. To this end, we build
the Trend Bipartite Graph (TBG) starting from the trend
vocabularies VX and VY , according to Section III. We
define the edge weighting function w as the string similarity
between any pair of Twitter and Google trends xi and
yj , respectively. Specifically, we use a normalized longest
common substring score (nlcs), defined as follows:

nlcs(xi, yj) =
|lcs(xi, yj)|2

|xi||yj |
,

where |lcs(xi, yj)| is the length of the longest string of
characters that is a substring of both xi and yj .

Actually, we use two similarity thresholds, i.e., η1 = 1.0
and η2 = 0.6, thereby obtaining two graphs TBG1 =
(VX ,VY , E1, nlcs, η1) and TBG2 = (VX ,VY , E2, nlcs, η2).
We denote by S1 = {(Xi,Yj) | (xi, yj) ∈ E1} and
S2 = {(Xi,Yj) | (xi, yj) ∈ E2} the two sets of time
series pairs derived from TBG1 and TBG2, respectively.8 9

Obviously, |S1| ≤ |S2|, since TBG1 contains a less number
of edges: in particular, we find 50 pairs of trends for S1,
and 69 for S2.

In addition, we aggregate and normalize the series associ-
ated with Twitter trends, which are connected to the the same
Google hot query in the bipartite graphs. Thus, for the two
graphs we generate two sets D1 and D2 (see Section III),
where D1 = S1, while D2 contains pairs, each coupling an
aggregate Twitter time series with one derived from Google.

8http://bit.ly/YIEsFD
9http://bit.ly/YrKnwA

http://bit.ly/YiO6AD
https://dev.twitter.com/docs/api
http://bit.ly/120h0tQ
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C. Time Series Regression Analysis

We are interested in evaluating two phenomena about
social and web trends: (i) forecasting and (ii) causality. The
former refers to the power of Twitter trends in predicting
their counterpart Google hot queries whereas the latter goes
a step further and tries to determine causality between
Twitter and Google. Both issues require dealing with time
series regression models introduced in Section III.
To assess the first aspect, we consider each pair of time series
(Xi,Yj) in our running datasets D1 and D2, individually.
We start fitting each series to autoregressive models, i.e.,
AR(p). Intuitively, this means that we are trying to explain
the behavior of a trend time series from Google Yj,t at
day t, by only considering the values of the same series
as measured up to p days before (i.e., Yj,t−1, . . . , Yj,t−p).
Thereby, these models assume Google trends depending only
on themselves, and Twitter having no influence at all.
On the other hand, we introduce the second class of re-
gression models, namely distributed lag DL(q). As opposed
to AR(p), DL(q) models try to fit a Google time series
from Yj,t at day t, by only looking at the paired time
series from Twitter as measured up to q days before (i.e.,
Xj,t, . . . Xj,t−q).
We measure how many AR(p) models retain as significant
their p-lagged component, and, similarly, how many DL(q)
models keep as significant their q-lagged component. In our
experiments, we set the significance level α = 0.05, and for
each class we limit the lag order of the model p and q up
to a maximum of 3 days.
As the last step, for each tested model we compute the
adjusted coefficient of determination, denoted by R̂2 ∈ [0, 1]
and averaged by all the pairs of time series. This is generally
used to describe how well a regression line fits a dataset,
and provides a measure of how well future outcomes are
likely to be predicted by the model yet penalizing models
with too many explanatory terms. In Tab. I, we show the
results for both the two datasets D1 and D2, which can be
interpreted as follows. Each entry in the table measures the
percentage of models AR(p) and DL(q) where the p- and q-
lagged component was significant. Very unlikely, time series
derived from Google hot queries can be explained by AR(p)
models, namely only using their past values. Indeed, only
10% of the times the negative lag-1 component is significant.
Conversely, when DL(q) models are used, the negative lag-1
component of Twitter is significant 60% of the times.
Furthermore, we check if there is any causality between
Twitter and Google trends. This is achieved by comparing
AR(p) models with autoregressive distributed lag models,
i.e., ADL(p, q). These models use up to p and q values from
both the dependent (i.e., Google) and explanatory (i.e., Twit-
ter) trend time series, respectively. Concretely, we measure
the ratio of ADL(p, q) models where q-lagged component of
the explanatory variable is significant. Clearly, this value is

AR (%) R̂2 p DL (%) R̂2 q

D1

10.0 0.02 1 60.0 0.75 1
18.0 0.04 2 30.0 0.72 2
14.0 0.03 3 16.0 0.71 3

D2

13.3 0.02 1 56.7 0.75 1
15.0 0.03 2 25.0 0.73 2
13.3 0.01 3 18.3 0.73 3

Table I
TIME SERIES REGRESSION: AR(p) VS. DL(q).

less than (or at most equal to) that we find when comparing
AR(p) with DL(q) models because we are now evaluating a
relation that is “stronger” than forecasting. Tab. II shows that
in more than 40% pairs of time series Twitter trend “causes”
Google hot queries if we limit to q = −1. This percentage
evaluates to about 70% if we restrict only to those pairs who
have already shown a significant q-lagged component in the
corresponding DL(q) model.

D1 D2

(p, q) ADL (%) R̂2 ADL (%) R̂2

(1, 1) 42.0 0.79 43.3 0.80
(2, 2) 18.0 0.76 16.7 0.79
(3, 3) 18.0 0.76 18.3 0.78

Table II
TEST FOR CAUSALITY USING ADL(p, q).

By looking at the values of R̂2, ADL(1, 1) is the model that
best fit our data, on average. This result sounds reasonable
because it mixes the autoregressive component of Google
with the prediction of Twitter, as captured one day before.

V. CONCLUSION AND FUTURE WORK

In this work, we explored possible relations between
trending topics rising from Twitter (i.e., social trends) and
hot queries issued to Google (i.e., web trends). We claimed
that a trending topic on Twitter could later become a hot
query on Google as well. Indeed, information flooding
nearly real-time across the Twitter social network could
anticipate the set of topics that users will be interested in –
thereby will search for – in the near future.

To validate our claim, we provided the following con-
tributions. First, we introduced the Trend Bipartite Graph
(TBG) to represent the lexical similarity between any pair
of social and web trends, as extracted from real-world
Twitter and Google datasets. The TBG used a threshold
to link those trends that were most likely related. Then,
we measured the ability of Twitter in actually predicting
and causing a Google trend to later occur by conducting
an exhaustive comparison of several time series regression
models. This step showed that models including Twitter in
the regression function better fit and forecast our time series
data. Specifically, we found that models, which used Google



as the dependent variable and Twitter as the explanatory
variable, retained as significant the past values of Twitter
60% of times. Moreover, we discovered that a Twitter trend
caused a similar Google trend to later occur about 43% of
times. Finally, we showed that the best-performing models
were those using past values of both Twitter and Google.

As future work, we plan to extend this study by consid-
ering trending signals coming from other social and web
platforms.
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