
P
�
L� a Structured High�level Parallel Language� and its

Structured Support

Bruno Bacci�� Marco Danelutto�� Salvatore Orlando��

Susanna Pelagatti�� Marco Vanneschi�

���Dipartimento di Informatica ���Pisa Science Center
Universit�a di Pisa Hewlett Packard Laboratories
Corso Italia �� Vicolo del Ruschi� �
Pisa � Italy Pisa � Italy

Abstract

This paper presents a parallel programming methodology that ensures easy programming�
e�ciency� and portability of programs to di�erent machines belonging to the class of the
general	purpose� distributed memory� MIMD architectures
 The methodology is based on the
de�nition of a new� high	level� explicitly parallel language� called P �

L� and of a set of static
tools that automatically adapt the program features for each target architecture

P
�
L does not require programmers to specify process activations� the actual parallelism

degree� scheduling� or interprocess communications� i
e
 all those features that need to be
adjusted to harness each speci�c target machine
 Parallelism is� on the other hand� expressed
in a structured and qualitative way� by hierarchical composition of a restricted set of language
constructs� corresponding to those forms of parallelism that are frequently encountered in
parallel applications� and that can be e�ciently implemented

The e�cient portability of P �
L applications is guaranteed by the compiler along with the

novel structure of the support
 The compiler automatically adapts the program features for
each speci�c architecture� using the costs �in terms of performance of the low	level mecha	
nisms exported by the architecture itself
 In our methodology� these costs� along with other
features of the architecture� are viewed through an abstract machine� whose interface is used
by the compiler to produce the �nal object code

Keywords� Parallel Processing� Parallel Languages� Compilers� DM	MIMD Architectures

� Introduction

Although a lot of parallel architectures exist on the market� a programming methodology and�or
a computational model that allow programs to be e�ciently ported to di�erent machines is still a
subject of research� In particular� a big challenge is the de�nition of a programming methodology
for massively parallel processing that is characterized by ease of use� and guarantees portability
without needing heavy interventions of programmers to tune the performance of each application�

Whilst ease of use depends on the high�level features of a parallel language� i�e� on the ability
to abstract enough from implementation details of the actual target machine� the concept of
portability is twofold� It requires not only that a program runs on di�erent machines without any
source modi�cations� but also that the porting is able to exploit the speci�c architectural features
of each machine� In fact� even when two parallel systems are based upon the same architectural
model �e�g� they have the same memory model� or the same interconnection network topology	�
it is known that degree of parallelism� task granularity� and data�process mapping have to be
adjusted to exploit the speci�c features of each machine �e�g� number of processing elements�
computation�communication ratio� memory size� etc�	�

In this paper we present a new programmingmethodology that ensures both easy programming
and e�cient portability of programs to di�erent machines belonging to the class of the general�
purpose� distributed memory� MIMD architectures �DM�MIMD	� The methodology is based on

� a high�level� structured� explicitly parallel language� called P �L �Pisa Parallel Programming

Language	 �
��

� a set of compiling tools that� exploiting the structured features of P �L� realizes the e�cient
portability of applications� and

� an abstract machine �AM	� called P �M ��� which exports all those features of the under�
lying architecture that the compiling tools need to restructure the implementation of each
application�

P �L is a high�level parallel language since programmers can ignore low�level implementation
details� such as process activations� interprocess communications� mapping and scheduling issues�
and so on� and can concentrate on the forms of parallelism �i�e�� paradigms of parallel computation	
that must be exploited to parallelize a given application� Some examples of these forms are the
pipeline� the processor farm� the map� etc� P �L supplies distinct language constructs for each
of them� These constructs can be hierarchically composed to express� in a structured way� more
complex forms of parallel computation�

The P �L constructs are the only means that a programmer has to give parallel structure to an
application� We have been supported in our choice by the evolution of sequential programming
languages� In fact� a look at the history of imperative languages shows the progressive discard�
ing of elementary constructs� e�g� goto�s� in favour of a set of constructs with de�nite control
�ow behaviour� e�g� while� if� for� etc� The same evolution can be observed in �eld of the
data�structures� The introduction of these new constructs�data�structures has not only improved
programmers� productivity �software development and maintenance	� but has also made a lot of
compiling optimizations possible� allowing more e�cient implementations to be devised� Thus�
we decided to dismiss low�level parallel constructs from P �L� such as send�receive or parallel
process activation� in favour of a set of high�level parallel constructs� each expressing a speci�c
form of parallelism� Using P �L to design parallel applications� programmers have to declare the
kind of parallelism they want to use� by structuring applications by means of the P �L parallel con�
structs and their hierarchical composition� The sequential parts� on the other hand� are expressed
by using a sequential language� henceforth called the host sequential language�

The choice of the forms of parallelism to include as primitive language constructs in P �L

comes from the experience of programmers of parallel applications and related works �
��
��
In fact� applications programmed to exploit massive parallelism make use of a limited number of
forms of parallelism� which exhibit regular structures in terms of both partitioning and replication
of functions and data� and of interconnection structures among the processes� These forms of
parallelism and their compositions can be e�ciently implemented on di�erent massively parallel
architectures� These implementations� henceforth called implementation templates� embody many
strategies to statically solve typical issues like mapping� scheduling� degree and granularity of
parallelism� and also to solve problems deriving from hierarchical composition of di�erent P �L

constructs� Furthermore� they can be modelled analytically� so that their performance can be
estimated at compile time�

In our programming methodology� the e�cient portability of programs relies on the compiler�
which adopts a speci�c template�based approach allowed by the structured features of the language�
In fact� the compiler includes all the knowledge about the implementation templates of the various
P �L constructs and their compositions on di�erent DM�MIMDmachines� and uses these templates
to generate the �nal code�

An implementation template corresponds to a parametric network of processes� along with
mapping information on an abstract network topology� and analytic performance formulae� The
low�level mechanisms of the underlying architecture are employed by the processes making up

�

each implementation template� The formulae associated with the templates are parameterized
with respect to the costs of the same mechanisms� For this purpose� in our methodology� each
target machine is viewed through an AM� which exports the interface of the mechanisms to the
compiler along with the associated costs� The performance formulae are used to optimize the �nal
implementation� and� thus� to choose the best instance of the possible process networks proposed
by the templates�

The aim of this paper is to discuss in more detail the overall design of the P �L compiler�
and� more speci�cally� we want to describe the implementation of our prototype compiler� The
prototype works for a subset of all the P �L constructs� and produces code for a mesh�based AM
that exports a very reduced set of mechanisms� The �nal code runs on an emulator of parallel
architectures ����
�� and on a real parallel machine� a Meiko CS
 based on T��� Transputers�

The paper is organized as follows� Section � brie�y introduces the basic features of the P �L

parallel constructs and their composition� Section � deals with the characterization of the target
parallel machines� and of the corresponding AM� Section � presents the implementation templates
of the P �L constructs and of their composition� Section � describes the overall design of the
compiler� and of each of its modules� Section � compares our programming methodology to other
proposals�

� The P �
L language

The P �L language is a high�level� structured� explicitly parallel language� Using P �L� parallelism
can be expressed only by means of a restricted set of parallel constructs� each corresponding to
a speci�c form of parallelism� Sequential parts are expressed by using an existing language� also
called the host sequential language of P �L�

The P �L constructs can be hierarchically composed to express more complex forms of par�
allelism� This compositional property relies on the semantics associated with the various P �L

constructs and their compositions� In fact� each of them can be thought of as a data��ow module

that computes �in parallel or sequentially	 a function on a given stream of input data� and pro�
duces an output stream of results� The lengths of both the streams have to be identical� and the
ordering must be preserved� i�e�

�in�� � � � � inn � �� M �� �out� � � � � � outn�

where M is the data��ow module corresponding to a generic P �L construct� �in�� � � � � inn is the
input stream� �out�� � � � � outn is the output stream� n is the length of both the streams� and every
output data item outi is obtained by applying the function computed by M on the input data
item ini� The types of the input and the output interface of each P �L construct� i�e� the types
of every ini and every outi� have to be declared statically� In fact� the compiler performs the
type checking on these interfaces when the P �L constructs are to be composed� In the following
we often use the term input task in place of input data item� to emphasize the fact that a new
instance of a given task is ��red� by the incoming data item�

Another feature of P �L is its interface with the host sequential language� The interface has
been designed to make easier portability between di�erent host languages� In fact� sequential
parts are completely encapsulated into the constructs of P �L� Parameter passing between P �L

constructs are handled by linguistic constructs that are external to the speci�c host sequential
language� while the data types that can be used to de�ne the interface of the P �L constructs are
a subset of those usually available in the most common and widespread languages�

In the current prototype of the P �L compiler� the language adopted as host sequential language
is C��� C�� has been chosen to take advantage of the many tools existing in UNIX for C��� and�
above all� because of the success of C�� in the industrial environment for the development of large
applications� In fact� existing sequential C�� software can be reused within P �L applications�

The constructs that are currently included in the P �L prototype compiler are listed below
along with their informal semantics� Other proposed constructs are presented in �
�� while their

�

formal semantics is discussed in �

�

� The farm construct� which models processor farm parallelism� In this form of parallelism� a
set of identical workers execute in parallel the independent tasks which come from an input
stream� and produce an output stream of results�

� The map construct� which models �easy� data parallel computations� In this form of paral�
lelism� each input data item from an input stream is decomposed into a set of partitions� and
assigned to identical and parallel workers� The workers do not need to exchange data to per�
form their data�parallel computations� The results produced by the workers are recomposed
to make up a new data item of an output stream of results�

� The pipe construct� which models pipeline parallelism� In this form of parallelism� a set of
stages execute serially over a stream of input data� producing an output stream of results�

� The loop construct� which models computations where� for each input data item� a loop

body has to be iteratively executed� until a given condition is reached and an output data
item is produced�

� The sequential construct� which corresponds to a sequential process that� for each data
item coming from an input stream� produces a new data item of an output stream�

When describing the various P �L constructs� we have mentioned some other computations� namely
the workers of both the farm and the map� the stages of the pipe� and the body of the loop� All
of these are� in turn� other P �L constructs� Thus hierarchical compositions of several forms
of parallelism can occur� The sequential constructs constitute the leaves of the hierarchical
composition� because the computations performed by them have to be expressed in terms of the
host sequential language�

Figure � shows the syntax of the P �L constructs described above� Next to the various con�
structs� syntax� the �gure also shows a network of communicating processes� called the logical

process structure� of each construct� Even though the logical process structure does not corre�
spond to the actual implementation on the target architecture� it is useful to distinguish the
module�s	 corresponding to the nested construct�s	� as well as the various activities �represented
as particular communicating processes	 to be supplied by the P �L support to implement each
speci�c construct�

Figure ���a	 illustrates the declaration of a farm construct� foo is the user name given to
the farm construct� while p is the user name of the nested construct� Note that� to declare the
farm foo� it is necessary to declare the types of the data items composing the input and the
output streams� i�e� the input list in���� and the output list out���� of the parameters� As
we can see from Figure �� the declaration of the input�output lists must be provided for all the
P �L constructs� The logical structure associated with the farm foo shows two processes� i�e� the
emitter and the collector� which perform the distribution of the data and the collection of the
results� respectively� They are connected to a set of workers� which are instances of the module
corresponding to the nested construct p� Programmers do not have to supply the code of any of
the distribution and the collection activities� Moreover� the actual number of workers used in the
�nal implementation must not be speci�ed� since it will be devised by the support taking into
account the characteristics of the target architecture and of the user code�

Figure ���b	 shows a map construct� Each input data is decomposed and passed to each worker
p� and the data produced by each worker are recomposed to form a new output data item� The
workers are instances of the nested construct p� Looking at the logical structure� the process
map emit performs the decomposition and the distribution of the data� while the process map coll

performs the collection and the recomposition of the results� They are connected to a set of workers�
which are instances of the nested module corresponding to the construct p� Also in this case� the
programmer is requested to specify neither the code for the activities represented by the processes
map emit and map coll� nor the actual number of workers to be employed�

�

farm foo in�float a� int b�

out�int c�

p in�a� b� out�c�

end farm

farm foo

collector
[int, float]

[float, int] [int]

[int]
emitter

p

p

�a�

map foo in�int a����� float b����

out�int c��������

p in�a�	i�� b�	j��

out�c�	i��	j��

end map

map_coll

[int]

[int[10], float[5]] [int[10][5]]

[int, float]

map foo

map_emit

p

p

�b�

pipe foo in�int a� float b�

out�int c� float d�

p� in�a� b� out�int a�� float b��

p
 in�a�� b�� out�int a
� float b
�

p� in�a
� b
� out�c� d�

end pipe

[int, float]

p3
[int, float] [int, float] [int, float]

pipe foo
p1 p2

�c�

loop foo in�float a� out�float b�

feedback�b�

body in�a� out�b�

until �condition

end loop

[float]

loop_out
[float]

[float]

[float] [float]

loop foo

loop_in body

�d�

foo in�int a� out�int b�

�� �seq code ��

end

[int]
foo

[int]

�e�

Figure
� Syntax and logical structure of the P �L constructs� �a	 farm� �b	 map� �c	 pipe� �d	
loop� �e	 sequential�

�

Figure ���c	 shows a pipe construct� It is composed of three stages� corresponding to the
constructs p�� p�� and p�� Note the matching between the output type of each stage and the
input type of the next one� The logical structure is straightforward�

Figure ���d	 shows a loop construct� The programmer is requested to specify the call of the
nested construct p �i�e�� the loop body	� and the guard specifying when the iterated computation of
p terminates� The associated logical structure shows two processes� namely loop in and loop out�
which perform the iterated call of the nested module p� In fact� p has to take its input data items
either from the input stream� or from the stream of the results produced by previous calls of itself�
The process loop out takes the results produced by p� and� in case the �nal condition has been
reached� sends out these results� producing a new item of the output data stream� Whereas� if
the �nal condition has not been reached �thus a new call of the nested module p has to occur	�
the process loop out sends the results to the other process loop in� over the feedback channel�
A feedback���� parameter list� appearing in the syntax of the construct� is associated with
this channel� Finally� the process loop in merges the input and the feedback streams� Here
too� programmers do not have to specify the code for the activities represented by loop in and
loop out�

Figure ���e	 shows a sequential construct� whose user name is foo� As for all the other
P �L constructs� programmers have to declare both the input and the output lists of parameters�
while the function computed by the sequential construct must be expressed in terms of the
host sequential language� In fact� a fragment of sequential code �C�� code� in our case	� whose
instructions refer to the parameters composing the input and the output lists� has to be supplied�
In the syntax� this code appears to be enclosed between two P �L brackets� i�e� �f and g�� This
code can access the data structures in the input�output lists as if these structures have been
declared in the same block as the fragment of code� Alternatively� the sequential code could be
speci�ed by naming a function and the module where this function has been de�ned� Moreover�
even if this is not the case of the example of Figure ���e	� it is possible to de�ne� inside the body
of the sequential construct� other modules and libraries to be linked together to obtain the �nal
process �an example of this is shown in Figure
�	� The logical structure corresponding to the
sequential construct is straightforward� as it consists of a single process with an input and an
output channel�

An example Now we present an example� discuss the computational steps that may be exploited
to solve it� and show how these steps can be naturally translated into a P �L program� Suppose
that we have a stream of tuples� each composed of N �
 �oating point numbers� fy�� � � � � yNg�
Each tuple corresponds to the y coordinates of N�
 points belonging to the graph of a continuous
function� The x coordinates of these points� i�e� fx�� � � � � xNg� are considered to be �xed� as the
functions have been sampled at �xed intervals� For each tuple fy�� � � � � yNg� we want to plot a
di�erently coloured graph corresponding to a continuous function passing through all the points
identi�ed by the tuple� To plot the intermediate points whose x coordinates are contained in each
sample interval �xi� xi��� we determine �rst a polynomial function f � ax� � bx� � cx � d� The
coe�cients fa� b� c� dg are determined by imposing the passage of f through the points �xi� yi	
and �xi��� yi��	� and� moreover� by equating the two derivatives f ��xi	 and f ��xi��	 with a pair
of constants� The constant corresponding to each point xi is the average of the slopes of a pair
of linear functions� the former passing through �xi��� yi��	 and �xi� yi	� and the latter passing
through �xi� yi	 and �xi��� yi��	� For the two end�points �x�� y�	 and �xN � yN 	� we use the slopes
of the two linear functions passing thorough each point and� respectively� the next and the previous
one� Therefore� the computational steps to display a curve can be summarized as follows�

� Find the derivatives in correspondence of the points f�x�� y�	� � � � � �xn� yn	g�

�� Determine the coe�cients a� b� c� d of the polynomial functions corresponding to each of the
n intervals�

�� By using the polynomial functions found in the previous step� determine the intermediate
points needed to draw a �continuous� curve on the screen�

�

pipe comp�crv in�float y�tpl�N���� int colour�

out�char crv�OBJ�SZ��

find�der in�y�tpl� color�

out�y�tpl� colour� float der�N��

find�coeff in�y�tpl� colour� der�

out�colour� float a�N�� float b�N��

float c�N�� float d�N��

find�new�crv in�colour� a� b� c� d�

out�colour� float new�y�tpl�N�������

do�transl in�colour� new�y�tpl�

out�colour� float adj�y�tpl����	N��

transl�driver in�colour� adj�y�tpl�

out�crv�

end pipe

farm mult�comp�crv in�float y�tpl�N���� int colour�

out�char crv�OBJ�SZ��

comp�crv in�y�tpl� color� out�crv�

end farm

�
�
��

�����

HHHHH

�
�
��

seq do transl

farm mult comp crv

map find new crv

pipe comp crv

seq transl driverseq find der

seq find interm p

seq find coeff

�a� �b�

Figure �� �a	 A sample P �L application � �b	 its construct tree�

�� Perform the translation of the axes� and convert the coordinates of the points with respect
the new unit of measure� In fact� the Cartesian system to which our curve refers must be
represented on the speci�c Cartesian system associated with the screen�

�� Translate the curves in a representation that can be processed by the driver of the screen�

The �ve steps illustrated above can be easily written as a P �L pipe� Moreover� since the
computation of each curve is independent of each other� a farm structure can be speci�ed as the
outermost form of parallelism� where the pipe is employed as a worker of the farm� Figure ���a	
illustrates this application� Note that some parameters� e�g� colour in the �rst four steps� are
simply by�passed to the following steps without being modi�ed� For the sake of brevity� we only
show the P �L construct calls� and omit the declaration of the constructs that are used as steps
of pipe comp crv� It is worth noting that these steps can be either sequential constructs� or� in
turn� other parallel constructs� In general� however� a P �L programmer should specify as much
parallelism as possible� In fact the compiler does not parallelize sequential code� but decides about
which and how much of the parallelism speci�ed by the programmer must be actually exploited
to obtain e�ective �nal implementations� For example� the step find new crv� which� for all the
intervals f�xi� xi�� j i � �� � � � � N �
g� computes the ordinates of M points� could be expressed by
means of a map construct� whose nested construct is a sequential one� i�e� find interm p� which
computes only the points of a single interval�

find�interm�p in�float c�� float c
� float c�� float c��

out�float new�points�M��

�� �	 seq� code 	� ��

end

map find�new�crv in�int colour� float a�N�� float b�N�� float c�N�� float d�N��

out�colour� float new�y�tpl�N��M��

find�interm�p in�a�	i�� b�	i�� c�	i�� d�	i��

out�new�y�tpl�	i����

end map

�

transl_driver

farm_emit farm_coll

farm mult_comp_crv

pipe comp_crv

find_der find_coeff map_emit map_coll

map find_new_crv

find_interm_p

do_transl

Figure �� The logical graph of a sample P �L application�

This example shows how the P �L constructs can be hierarchically composed� The hierarchical
structure of the program is depicted by the construct tree that is shown in Figure ���b	� This tree
is extensively used by the P �L compiler for its optimizations� Figure � shows the logical process
structure of this program� produced automatically by a tool of the environment from the P �L

source code� The possibility to visualize the logical structure of a complex program� and thus also
the composition of various constructs� is very useful during the development of a program�

� The target architecture� and its abstract machine

P �L has been designed to easily program massively parallel architectures� which we can identify
with the class of the DM�MIMD architectures ���� Since the class of the k�ary n�cubes �� includes
the most interesting DM�MIMD architectures� e�g� two and three�dimensional meshes� hypercubes�
etc��� we refer to this class as the main target of the P �L compiler�

Within our methodology all the members of the k�ary n�cubes class are viewed through an
AM� called P �M ��� One of the main feature of P �M is its ability to subdivide the machine
resources� i�e� processing nodes and interconnection network� into two layers� One� the pro�

cessing surface� is used to run processes that can use message�passing to communicate between
them� the other� the data surface� is employed for implementing an associative shared�memory� to
which the processes mapped on the processing surface can also access� P �M exports to the P �L

compiler �
	 the topology of the processing surface� ��	 a de�nite mechanism interface �
�� e�g�
synchronous�asynchronous blocking�unblocking message passing mechanisms� and mechanisms to
access a shared memory organized as a tuple space� and� �nally� ��	 a measure of the costs of the
mechanisms exported�

It is worth pointing out that� in our methodology� the mechanisms exported by P �M are not
directly used by P �L programmers� but are employed by the implementation templates of the
P �L constructs and their compositions� To guarantee the e�ciency of porting� the compiler has
to choose among these various templates� and has to tune each implementation to better exploit
the features of each speci�c target architecture� These features are summed up by the mechanism
costs exported by P �M �

�

The prototype In the rest of the paper we illustrate the design of our prototype compiler�
which only produces code for the processing surface of P �M � More speci�cally� for this prototype
we have considered that the P �M AM provides a very reduced set of mechanisms� standard
sequential operations� process abstraction� and simple message passing between processes allocated
to directly connected nodes� We show how this reduced set of mechanisms� similar to those o�ered
by Transputer�based DM�MIMD machines� su�ces to implement the support of a subset of P �L�
i�e� the implementation templates of some P �L constructs and their composition� The advantages
of using such a reduced set of mechanisms are

� more accurate costs associated with the mechanisms �non�local communications are usually
associated with costs that range between a worst and a best case	�

� simpler and� at the same time� more e�ective compiling optimizations� In fact� since the
performance models associated with the implementations of each P �L construct are very
simple� the choices made by the compiler are more e�ective�

� simpler and more e�ective implementations of the mechanisms� as more complex and infre�
quently�used mechanisms are not supplied by the AM�

� better performance of P �L parallel applications� because they use patterns of parallelism
that exploit locality of communications�

Of the various k�ary n�cubes� the �rst architectures we have considered as target machines
are those which adopt the two�dimensional mesh as network topology� The mesh is a particular
low�dimensional k�ary n�cube network �i�e� the k�ary ��cube	 that is easily realizable� and has
been adopted by many of the commercial multicomputer vendors� From the technological point of
view� the adoption of the mesh makes a massively parallel architecture highly scalable� To exploit
the potential scalability of mesh�based machines� however� it is needed a programming style that
exploit locality of computation ��� As we will see in the following� the programming methodology
based upon P �L can e�ectively exploit the features of mesh�based architectures�

� Implementation templates for mesh�based architectures

Several issues must be taken into account to achieve an e�cient implementation of a parallel
program� they are strongly interrelated� and� each of them� is computationally hard� Some of
these issues concern function and data granularity� as well as scheduling and communication
strategies to be employed� Suppose� for example� that we adopt a static approach� in which �rst
a static network of communicating process is generated� then this network is mapped onto the
actual processor network� Several policies may be embedded within the process network� a�ecting�
for example� the scheduling of the computation units� or the handling of the messages� All these
policies may be nulli�ed when this network is mapped onto a real machine� First of all� we
have to consider that the general mapping problem is known to be NP�hard� and no measure
exists to understand how far a solution is from the optimal one� In other words� the problem is
also non�approximateable ���
�� Moreover� since the mapped processes must interact with the
routing sub�system� it is possible that a speci�c communication pattern� decided during a previous
phase� may generate a degradation of the overall performance of the routing sub�system when the
mapping choices are actually made�

The solution adopted by P �L consists in restricting the forms of parallel computation allowed�
This restriction leads to the de�nition of a set of parallel constructs� for which� given a particular
AM� it is possible to devise implementations which embodies strategies to solve� at the same time�
typical issues like mapping� scheduling� message routing� degree�granularity of parallelism� These
implementations� called implementation templates� are integral part of the P �L compiler�

Note that� with this prototype� the aim is to show the use of the templates in our programming
methodology� In general� in fact� other� even better implementation templates might be devised

�

for each P �L construct� These templates� however� should be general enough to e�ciently imple�
ment the corresponding constructs in every P �L programs� and should be endowed with accurate
performance formulae�

Now we introduce the terminology used in the following� The compiler maintains the knowl�
edge about the implementation templates as a two�level information� One is concerned with the
interconnection and the mapping of processes and channels� We refer to them asmapping template�
The actual code of the processes is maintained as a separated information� within the so�called
process templates� This distinction is due to the compiler organization� since each of the two kinds
of information are used during two successive passes of the compiler�

Note that the implementation templates must not be considered as particular networks of
communicating processes� On the other hand� they maintain� in a parametric way� the informa�
tion about which processes to use� the way in which these processes must be interconnected and
mapped� the solution to implementation issues related to the hierarchical composition allowed by
P �L� For example� the template of the farm does not �x the parallelism degree to be actually
exploited� i�e� the number of parallel workers of farm� but it determines the processes to be em�
ployed� and the way in which these processes must be interconnected and mapped� The compiler�
using the performance formulae associated with the template itself� determines a speci�c instance
of the template� i�e� a speci�c static network of communicating processes where the number of
parallel workers has been decided� These formulae are parametric with respect to the costs of the
AM mechanisms� where the costs are dependent� in turn� on problem parameters� e�g the size of
the data to be transmitted during a given message exchange� or the average number of sequential
instructions executed by a sequential function�

In the following of this section we brie�y illustrate the templates used in our prototype compiler
for mesh�based architectures�

��� Process networks implementing the P �
L constructs

We illustrate the implementation templates for a mesh�based architecture by means of directed
graphs� which represent the �mapping� of both processes and channels onto a portion of a mesh
network �a sub�mesh	� These graphs are related to the mapping templates of the P �L constructs�
In particular� each graph� simply called mapping� corresponds to the process network associated
with an instance of the template�

Before presenting the templates implementing the P �L parallel constructs� we illustrate the
simple template associated with the sequential construct� It is a single process� with an input
channel �corresponding to the input parameter list	� and an output one �corresponding to the
output parameter list	� The process is structured as an in�nite loop� in which it receives a data
item on which a new task must be started� executes the task and assigns the output parameters
�this is performed by the sequential code written by the P �L programmer	� and �nally sends out
the output data item so produced�

����� The farm construct

The logical structure of the farm shown in Figure ���a	 highlights three main activities� �
	 the
items of the input data stream �on which the tasks have to be computed	 arrive at the emitter

process� and are distributed to the workers� ��	 the workers compute the tasks and produce the
results� ��	 the items of the output data stream �the results of the task computation	 are received
by the collector process� which sends out the output data stream of the farm construct�

In the actual implementation� further requirements have been taken into account� In fact� the
distribution activity has to perform the dynamic load�balancing between the workers �due to the
variable completion times of the tasks	� while the collection activity has to reorder the task results�

The logical structure of Figure ���a	 cannot be directly mapped onto a mesh� In fact� both
fan�in and fan�out of some processes may be greater than four� i�e� the node degree of the mesh
topology� Thus� the implementation template adopts a solution in which the activities of the
emitter and the collector are distributed to rows of processes� Moreover� the distribution of

�

ro_coll

emitter ro_dis_fin

workerworkerworkerworkerworker

ro_coll_fin ro_coll collector

ro_dis ro_dis ro_dis ro_dis

ro_coll ro_coll

Figure �� A mapping of a farm�

the emitter activity prevents the slow�down due to the� otherwise centralized� scheduling policy�
Figure � shows a particular instance of the mapping template of the farm construct� characterized
by �ve copies of the nested sequential worker� The task distribution activity is implemented by
the processes emitter �emitter process	� ro dis �distributing router process	 and ro dis fin

��nal distributing router process	� The result collection activity is performed by the processes
collector �collector process	� ro coll �collector router process	 and ro coll fin ��nal collector
router process	� The details of this implementation template for the farm are reported in Appendix
A�

Note that some general purpose processing nodes are exclusively used to route and schedule
data packets� and to balance� at the same time� the computational load between the workers� This
template is very e�ective� and� for its generality� has been included in the prototype compiler�
This� however� is one of the possible implementations of the farm on an AM without hardware
routing layer� For example� other implementations wasting less resources have been studied� These
other implementations could be used when the resources are limited� a smaller parallelism degree
must be exploited� and� thus� a very high distribution�collection bandwidth is not longer needed�

����� The map construct

The implementation template for the map construct is derived from that of the farm� In fact� we can
see the map as a module that� for each input data item� produces sub�streams �data decomposition	
of independent tasks� which are concurrently executed� while the results corresponding to these
sub�stream are combined to form a single output data item �data recomposition	�

The following diagram shows how the map implementation works�

�in�� � � � � inn�
�

��in��� � � � � in
m
� �� � � � � �in�n� � � � � in

m
n ��

�
M
�

��out��� � � � � out
m
� �� � � � � �out�n� � � � � out

m
n ��

�
�out�� � � � � outn�

where M represents the module corresponding to the nested construct of the map �i�e� a worker

of the map	� n is the length of both the input and the output streams� while m is the number
of partitions into which each input and output data item has to be decomposed� In fact� ini
and outi� i � f
� � � � � ng� represent generic data items of the input and the output data streams�
respectively� while in

j
i and out

j
i � i � f
� � � � � ng and j � f
� � � � �mg� represent data partitions of

these data items�
The di�erence between the farm and the map templates concerns the processes emitter

and collector� which are replaced by map emit and map coll� respectively� In fact� besides

the task distribution� and the ordered collection of the results� map emit has to implement
the decomposition of the input data� i�e� the transformation ini � �in�i � � � � � in

m
i for all

i � f
� � � � � ng� while map coll has to implement the recomposition of the output� i�e� the trans�
formation �out�i � � � � � out

m
i � outi for all i � f
� � � � � ng�

The data packets that �ow from map emit to the workers� and from the workers to map coll�
include other information concerning the speci�c partitions of the input and the output data�
respectively� In other words� a tag i is associated with each partition inki and outki to distinguish
the task� and another tag k is associated with them to distinguish the speci�c partition�

����� The pipe construct

To generate the mapping template of a pipe construct� the processes implementing the various
stages of the pipe are glued together by means of channels� Note that� if the stages are not
sequential processes� the implementations corresponding to them are� in turn� other networks of
processes� Figure � shows the mapping of a pipe construct composed of nine sequential stages� A
heuristic is used by the compiler to map all the stages of the pipe on a regular sub�mesh� allocating
the processes that belong to distinct stages and need to communicate � i�e� the processes that
produce the output stream for each stage� and the processes that receive the input stream for
the next stages � as close as possible �e�g� on neighboring processing nodes	� Sometimes� special
routing processes are allocated to implement non�local communications�

����� The loop construct

The goal of the implementation template of the loop construct is to allow the tasks coming from
both the input and the feedback channels of the loop to be concurrently computed� Since distinct
tasks can be concurrently in execution� tasks are tagged �distinct tasks have distinct associated
colors	�

To illustrate how this implementation works� let us consider Figure �� which shows the logical
structure and the mapping of a loop construct� The in l process implements the merging between
the tasks �owing along the input and the feedback channel �which is implemented as a chain
of router processes	� The out l process receives the results from the nested module� and checks
whether the �nal condition has been reached� If the �nal condition is false� it generates a new task
to be sent back to the in l process along the feedback channel� Otherwise� i�e� if the condition
is true� it returns the result of the nested module along the output channel� The ordering of the
stream is maintained by using an ordered structure� in the same way as the collector process of
the farm does� The tagging used to distinguish �to color	 the tasks is also used to keep the output
stream ordered�

stage 8

stage 7stage 6

stage 4 stage 9

stage 1

stage 2

stage 3

stage 5

Figure �� A mapping of a pipe construct composed of nine sequential stages�

�

mapping of the nested module

(a) (b)

loop

in_l out_l

in_l

out_l

feedback

input

input

output

output

rout

rout

nested
module

Figure �� A loop construct� �a	 logical structure� and �b	 mapping�

����� Termination

A special function is performed by the process that reads from the input data stream of the whole
P �L application� When this process encounters the end of the input stream� it sends a special last
packet� called the end�of�stream packet� The processes implementing the P �L sequential con�
structs check whether the received input data items are end�of�stream packets� If it is� the packets
are by�passed� and are not computed� The end�of�stream packet is used to start the distributed
termination of the parallel program� This function is performed by the process that produces
the output data stream of the whole P �L application� It begins the distributed termination of
the program on the reception of the end�of�stream packet� but only after the reception of all the
packets with smaller tag than the end�of�stream one�

��� Composition and mapping

In this section we ilustrate the solution adopted by our prototype compiler to map P �L program
that comprise several� hierarchical composed� constructs on a mesh� The compiler associates with
the mapping of a given construct a ��dimensional box� with a pair of input�output channels� This
box is the smallest one that encloses the graph� If the compiler has to deal with architectures
characterized by di�erent interconnection network topologies� the dimension number of the boxes
is di�erent� For example� if the architecture belongs to the class of the k�ary ��cubes� we have to
adopt three�dimensional boxes�

The box abstraction is used by the compiler to maintain� in a parametric way� the knowledge

worker

emitter ro_dis ro_dis_mid ro_dis_fin

ro_coll_fin ro_collro_coll_mid collector

worker

Figure �� A mapping template of the farm�

�

input

outputoutput

input

Figure �� Possible boxes enclosing mapping templates�

on each mapping template� In fact� the parameters of each mapping template are exactly the
features of the boxes corresponding to nested constructs� For example� Figure � shows a mapping
of a farm with �ve workers� where each worker is a sequential process� This is the limiting case
of the general mapping template of the farm� shown in Figure �� where the workers are regarded
as �identical	 boxes with the input and the output channels connected to processes placed on two
opposite sides of the box� Note the new processes� ro dis mid and ro coll mid� which bypass
the data �owing on the distributing ring and the collecting chain� respectively�

The current prototype compiler exploits boxes with some restrictions� Figure � shows the
boxes allowed� They have a pair of input�output channels placed either on two opposite corners�
or on the two corners of the same side of the box� Moreover� they may have di�erent height�width
ratios� In order to compose the P �L constructs� the compiler may also consider rotating and
�ipping each box �i�e� the processes and the channels contained in the box	�

The next section shows how several mapping templates must be supplied to the compiler for
each P �L construct� These mapping templates are di�erent in the features of the enclosing box�
For example� another general mapping template for the farm construct is included in the compiler�
This other template can be obtained by changing the orientation of the collection chain in the
mapping template in Figure �� In this new template the input and the output channels are both
placed on the same side of the enclosing box� Note that� to realize this new mapping template�
no new processes need to be introduced besides those presented above�

��� The analytical performance models

As previously stated� the compiler tunes the implementation of each construct by using the an�
alytical performance formulae associated with each template� Our prototype compiler uses some
performance models that allows the compiler to determine the best parallelism degree in order to
minimize the service time �or� equivalently� to maximize the speedup	 of each implementation in
computing a stream of tasks ��
� This approach permits the compiler to allocate statically all
the resources needed to run a given program� We are also devising some heuristics that� when the
number of processing node is limited� reduce the parallelism exploited in the implementation of a
P �L program in order to achieve the best service time and the best resource utilization ���

In Appendix B we illustrate in more detail the analytical performance models associated with
the implementation template of the farm� and brie�y discuss the models associated with the others�
The models depend on a set of parameters relative to the costs of the P �M mechanisms� and the
performance of the nested construct�s	� Some examples of the P �M mechanism costs are the time
taken by communications� or the time taken by certain processes produced by the compiler �e�g�
emitter� collector� etc�	 to perform some particular actions� such as bu�er copies� �ag check�
etc� Some of these costs are supplied as a function of the problem data size� Other important
costs are concerned with the average time spent by user�provided sequential code� The kwoledge
of these costs is necessary when sequential constructs are nested in other parallel constructs�
Currently� our prototype derives the average time taken to execute a sequential construct by
pro�ling an implementation of the P �L program� However� we are devising a static tool that�

�

on the basis of the average time spent to compute the sequential instructions of an intermediate
language �related to the speci�c AM	� computes the average execution time of a fragment of
sequential code� If the tool fails to obtain this cost statically� it returns some dependencies of
this cost from the distribution of the input data� This information is used to select suitable data
samples for the pro�ling of the sequential code�

� The structure of the compiler

In the previous section� we have discussed in detail the implementation templates of the various
P �L constructs� The compiler maintains the information concerning these implementation tem�
plates and the strategies to access them within a set of libraries� This library�based organization
is useful for reducing the parts of the compiler that need to be changed when other architectures�
with di�erent interconnection network topologies� are considered as possible targets of P �L�

The most important library accessed by the compiler is called mapping library� which contains
the mapping templates of each construct along with the analytic performance formulae associated
with them� The mapping library is accessed by the compiler through a set of rules� All these rules
are arranged in another library� called the optimization library�

Finally� the compiler access another library called process template library� It contains the
code of the sequential processes� i�e� the process templates� which are referred by the mapping
templates included in the mapping library� For example� the emitter and the collector are two
of the processes included in the process template library� To discuss in more detail how all these
libraries are actually exploited� it is useful to refer to the general design of the P �L compiler�
which is composed of the three following passes�

� The front�end parses the source code� checks the types� and produces an internal data struc�
ture� representing the construct tree of the application� An example of this tree is shown
in Figure ���b	� Each node of the tree is annotated with information about the parameter
passing between the hierarchically composed constructs� and� for the sequential constructs�
with the �les and of the procedures containing the user�provided code�

�� The middle�end processes the information contained in the construct tree� and produces
an internal data structure� mainly stating the names of processes and channels� the types
of the data �owing over the channels� and the mapping of processes and channels onto an
abstract representation of the target architecture� To accomplish this task� it accesses the
mapping library through the rules contained in the optimization library� These rules call the
mapping entries taking into account the composition patterns found in the construct tree�
Some other rules are used to transform the construct tree in case the parallelism expressed
by some construct is not useful for improving the speedup� or further parallelism can be
exploited by introducing other parallel constructs�

�� The back�end� taking the data structures produced by the middle�end� generates the actual
code for P �M � This task is carried out by using the prede�ned process templates included
in the process template library�

The general design of the P �L compiler is shown in Figure �� which also illustrates the inter�
actions of each part of the compiler with the libraries and the P �M �

��� The libraries

Below we describe in more detail the libraries� assuming that they all relate to an AM exporting
a given network topology�

�

Middle-end

AM code

P3L Application

Abstract machine

Target machine

Optimization libs

performance formulae
Mapping libs and

Process Templates libs

Front-end

Back-end

Figure �� The structure of the P �L compiler�

Mapping library The mapping library contains several entries for each P �L construct� each
corresponding to a di�erent mapping template� Each entry of the library can be selected by
means of the tuple � C�N �B�A �� where

� C is name of the construct �e�g� farm� pipe� etc	�

� N is the data structure representing the process network implementing the nested construct
of C �in case C�pipe� since the pipe has several nested constructs� more of these structures
are included in N 	� As discussed above� at this level the nested constructs are thought of as
boxes with some constraints on the input�output channels�

� B corresponds to the bandwidths of the nested construct �if C�pipe� B includes the band�
widths of several nested constructs	�

� A is a set of attributes on the shape of the requested mapping� i�e� the shape of the box
that will have to enclose the process structure implementing the construct C�

The call of each library entry returns a pair �N ��B�	� where

� N � is the data structure representing the optimized process network implementing C� The
performance formulae associated with the speci�c library entry are used to optimizeN �� Note
that the same N � can be used �as an N parameter	 to query the library if the construct C
is� in turn� nested in another P �L construct�

� B� gives the bandwidth of the �nal mapping� Note that it can be used �as a B parameter	
to query the library if the construct C is� in turn� nested in another P �L construct�

Both N and N � are data structures of the same type as those generated by the middle�end as
�nal output�

Process template library The code corresponding to each process template is written by using
the host sequential language� plus the concurrency mechanisms exported by P �M � Basically� this
code refers to a set of channels� which are used by the communication mechanisms� and a set of
data structures� which corresponds to the data types transmitted over the channels�

Depending on the speci�c process template� di�erent operations may be performed on these
data structures� For example� map emit has to decompose the input data structure� which is

�

transformed into a collection of other �smaller	 data structures� Unfortunately� all these operations
di�er because of the type associated with the data structures in distinct map constructs� So� to
make the code of the process template independent of the speci�c construct� macros are used
for each operation� In order to complete the code of each process template� the back�end of the
compiler has to supply the macro de�nitions� Since the same kind of operation recurs in several
process templates� the compiler only has to be able to provide a few types of macro de�nitions�

Optimization library This library� used by the compiler to optimize the implementation of the
P �L applications� contains a set of rules� These rules are exploited for selecting the most suitable
entries from the mapping library� as well as for transforming the construct tree when some of the
constructs introduce parallelismwhich is of no use with respect to that speci�c target architecture�
or further parallelism can be exploited by introducing other parallel constructs� The two kinds of
rules included in the optimization library can be formally described by

R� �
P M

OptMap

R� �
P M

OptTree

where

� P is a precondition concerning the bandwidth of the nested construct�s	� This precondition
has to hold in order to apply the rule�

� M is a precondition concerning the structure of the construct tree� Thus� M may be
regarded as a sort of pattern matching over the tree� which has to hold in order to apply the
rule�

� OptMap corresponds to an action that is activated only if both P and M hold� OptMap

annotates the construct tree in such a way that� later on� a speci�c entry of the mapping

library can be selected� It also determines how this entry has to be called� i�e� the attributes
A used to query the library�

� OptTree also corresponds to an action that is activated only if both P and M hold� It
is concerned with the transformation of the piece of the construct tree identi�ed by the
matching rule M�

��� The front�end

The front�end of the compiler parses the P �L part of the source program� performs the type
checking on the input�output parameters lists of each P �L construct involved� and produces the
construct tree of the program� which describes the hierarchical composition of the P �L constructs�
In addition� the fragments of C�� code provided by the programmer for each sequential con�
struct �enclosed in �f g�	 are included in C�� void functions� stored in special �les� These �les
are separately compiled using the host language compiler to check their syntactical correctness�

The front�end has been realized by using the standard lex and yacc tools� The construct tree
is exported as a set of Prolog data structures� In fact� for easy prototyping� all the other parts of
the compiler have been written in Prolog�

Figure
� shows the output of the front�end for a simple P �L program� For each construct� we
have a Prolog fact� called construct��� that speci�es the name� the kind of the P �L construct�
and the types of the input and output parameters� The called�� component included in this
fact is used to de�ne the hierarchical structure of the construct tree� Moreover� for each construct
there exists a Prolog fact that de�nes either the parameter passing to the nested constructs �e�g��
the Prolog fact farm���� in Figure
�	� or the host language �les including the user�provided
code �this only occurs for the sequential constructs� e�g� the Prolog fact seq���� in Figure
�	�

�

w in�int a� out�int b�

��

int f�int��

b � f�a��

��

src�m�C�

end

farm f in�int x� out�int y�

w in�x� out�y�

end farm

front � end

��

construct��w��

type�seq��

inlist��var�formal��a�� int����

outlist��var�formal��b�� int����

called����

��

construct��f��

type�pure�farm��

inlist��var�formal��x�� int����

outlist��var�formal��y�� int����

called���w���

��

seq��w�� �p�l������� ���p�l������C��

src���m�C����

libs������

farm��f�� �

call��w��

inlist��var��x�� actual����

outlist��var��y�� actual����

���

Figure
�� Example of parsing a simple P �L program�

farm

(a) (b)

loop

farm

pipe

Figure

� A mapping of a farm depending on the type of its parent� �a	 loop� or �b	 pipe�

The most interesting Prolog facts are the seq���� ones� which are associated with the
sequential constructs� These facts are structures composed of several �elds� The �rst �eld
is the user�name of the sequential construct� The second is the call of a C�� void function
including the user�provided code� The third �eld identi�es the �le that includes the C�� func�
tion� The fourth �eld corresponds to other host language modules to be linked together in order
to obtain the �nal process �in this example� we have the m�C module� which includes the de�nition
of the function f�� used by the user�provided code	� Finally� the �fth �eld de�nes particular host
language libraries to be used to produce the �nal process �in this case� no libraries have been
speci�ed by the user	�

��� The middle�end

The middle�end takes the construct tree generated by the front�end� and produces other Prolog
structures� namely the mapping data structures� The algorithm adopted is based on a depth��rst

visit of the construct tree� The algorithm visits the tree from the leaves to the root� and� for
each node of the tree �corresponding to a given P �L construct	� selects and calls an entry of the
mapping library using the rules included in the optimization library� For each entry selected� the
library returns a given process network� represented by a mapping data structure� In some cases�
instead of selecting a mapping library entry� the rule employed modi�es the construct tree�

Now we show how the middle�end works by means of an example� Suppose that� during the
visit of the construct tree� a farm is encountered� Since the visit is depth��rst� we can assume
that� at this point� the process network implementing the descendants of the farm has already

�

loop

<worker>

farm

loop

pipe

farm

pipe

<worker>

<worker><worker>

(a) (b)

Figure
�� Tree transformations involving a farm� whose parent is �a	 a loop� or �b	 a pipe�

been generated� and is enclosed in a given box� It is now useful to consider two di�erent constructs
in which the farm can be nested� a pipe and a loop� Figure

 illustrates a portions of the two
trees� where� in place of the worker of the farm� the associated box is shown�

The middle�end uses the rules �R
	� included in the optimization library� to select a given
mapping template for the two farm constructs� The rules applied have� of course� a distict matching
preconditionM� i�e� either loop�farm�� or pipe�farm�� Moreover� since the P preconditions are
concerned with the bandwidth of the nested construct implementation� in both the rules P holds if
and only if the bandwidth of the worker is low enough to make it useful to exploit farm parallelism�
Finally� each of the two rules selects a di�erent entry of the mapping libraries through its own
OptMap action� The �nal process network is shown on the right of the two trees in Figure

� Note
the di�erent features of the boxes enclosing the �nal process networks� For example� the box of
Figure

��a	 has the input and output channels placed on the same side of the box� In fact� if we
consider the mapping template of the loop construct �shown in Figure �	� we can understand that
the goal of this rule is to attain a feedback channel �implemented by a chain of routing processes�
and going from the loop out to the loop in process	 as short as possible�

If no rules �R
	 can be applied� the middle�end algorithm tries to apply a rules �R�	� As regards
our example� the rules �R�	 can be selected only if the bandwidth of the worker of the farm is very
high� so that the farm parallelism can be considered as not useful� Thus� the P preconditions are
the negation of those appearing in the rules �R
	� The OptTree action of the selected rule removes
the farm construct from the tree� preserving� at the same time� the semantics of the program�
Figure
� shows the tree�to�tree transformations for both the examples in Figure

�

Mapping data�structures produced by the middle�end During the visit of the tree� each
time a given construct is encountered� the middle�end generates some data structures� called
mapping data structures� representing a process network implementing that construct� A very
small subset of these structures speci�es the mapping of processes and channels� while the other
structures� whose meaning is discussed below� are bound with this subset by means of special
identi�ers� Flippings and rotations that may be needed to map the various constructs only change
this small subset of data�structures� Furthermore� if more instances of the same construct are to
be inserted into a mapping �e�g�� because that construct is� in turn� a worker of a farm	� only this
subset needs to be replicated�

Consider the simple program shown in Figure
�� The middle�end receives the tree represen�
tation of the program� and produces the process network shown in Figure
�� Figure
� shows a
small subset of these data structures� describing the mapping of the process network� It consists of
a map���� Prolog fact� which contains a list whose elements are� in turn� map real���� structures
describing the mapping of a single process along with its channels�

map�real�proc�Ind�� Ind
�� process�Templ�id�� param�������

�receive�proc�Ind��in� Ind
�in�� Channel�name�rec� Type�id�� �����

�send�proc�Ind��out� Ind
�out�� Channel�name�send� Type�id�� �����

The �rst component� proc�Ind�	 Ind��� identi�es the processing node onto which
process�Templ id� �appearing as the second component of the structure	 is mapped� Ind� and

�

w345w345w345

ro_coll363 ro_coll363 ro_coll_fin361

ro_dis367ro_dis367

coll355

emitt354

[int]

ro_dis_fin369

0,0 0,1 0,2 0,3

1,1 1,2 1,3

2,32,22,12,02

1

0

0 1 2 3

[int]

[int]

[int] [int]

[int] [int]

[int]

[int][int][int][int]

[bool]

[int] [int] [int]

[int] [int][bool] [bool]

Figure
�� A mapped process network implementing a P �L program�

Ind� are two numerical indexes identifying a given processing node of a ��dimensional mesh�� The
Templ id key is used to identify all the processes characterized by the same code and the same
channel types� The third component of a map real����� structure determines speci�c parameters
to be passed to each process� In the example above� a constant parameter is passed to each process
that implements the distributing ring of the farm� This parameter states the relative position of
each process in the ring� and is exploited by these processes for the initial distribution of the
tasks� The fourth and the �fth components are two lists� describing the channels used to receive
and send messages� respectively� from neighbouring nodes� Symbolic names are associated with
the channels� i�e� Channel name rec and Channel name send� These names are the ones used in
the actual code of the processes to refer to these channels� Finally� a Type id is associated with
each channel� identifying the type of the data to be sent�received over the channel�

Besides the data structure presented above� the middle�end generates other data structures�
which complete the set of the mapping data structures� For example� there are Prolog facts that�
for each Type id� specify the type of the data to be transmitted over the channels� while there are
others that specify the process template corresponding to each Templ id key� Note that� for each
process template included in the corresponding library� we can have several di�erent processes�
each identi�ed by a distinct Templ id� For example� two emitter processes implementing two
farm constructs are not identi�ed by the same Templ id�s� even if they are implemented by using
the same process template� In fact� the types of the channels and the data structured handled by
the two processes are not the same� in general� but depend on the input parameter list of both
the farm construct and its nested worker�

��� The back�end

The last part of the compiler is the back�end� which heavily depends on the interface provided
by P �M � The library�based structure given to the compiler has allowed us to make this part
independent of the new constructs added to the language� In fact� the back�end takes the mapping

data structures produced by the middle�end� and performs a per�process translation� taking into
account the process template library entries involved�

The translation process performed by the back
end produces the static con�guration of P �M �
as well as the actual code for the process �with the relative channels	 to be mapped on each
processing node� Therefore� one of the main activities performed by the back�end consists in
translating from the mapping data structures generated by the middle�end into the AM con�gu�
ration language of P �M � Another other important task deals with the production of the actual
code for each process� determining the host�language modules and libraries to be linked together�
The process template library provides this code that� however� needs to be completed adding the

�The number of indexes needed to identify a given processing node depends on the number of dimensions of the
speci�c k�ary n�cube network topology�

��

map�f� farm�

param��proc�in��� ���� �proc�out�
� ���� �link�io�mitt��� ���� dest�
� ������

����

��

� map�real�proc��� ��� process�emitt����� param��ring�pos������

�receive�proc��� ���� in� type�����

receive�proc��� ��� back�in� type��
���

�send�proc��� ��� forw�out� type��
����

map�real�proc�
� ��� process�coll����� param�����

�receive�proc�
� ��� coll�bus�in� type������

�send�proc�
� ���� out� type�������

map�real�proc��� ��� process�ro�dis����� param��ring�pos�
����

�receive�proc��� ��� forw�in� type��
��

receive�proc���
�� back�in� type��
��

receive�proc��� ��� synch� type������

�send�proc���
�� forw�out� type��
��

send�proc��� ��� back�out� type��
��

send�proc��� ��� in� type�������

����

�

��

Figure
�� An example of the data structures generated by the middle�end�

de�nitions of the speci�c data structures and the macros used inside this code�
Currently� the back�end produce code for an emulator of parallel architectures� and for a real

parallel machine� a Meiko CS
 based on T��� Transputer�

� Related work

The purpose of our research is to make the parallel architectures easily programmable� and at the
same time� to supply tools to exploit the speci�c features of each target architecture� maximizing�
for example� the �useful� parallelism of each application� Thus� due to its generality� we can
identify several research tracks that share this goal with us�

A research track related with our work is the so�called universal models for parallel compu�

tation proposed by Valiant ���� In this case� the goal is very ambitious� It consists in �nding a
computational model that can be simulated onto di�erent target architecture with a bounded and
predictable slow�down� thus keeping constant the product between the number of processors used
and the total execution time� In this way� programmers can develop their programs in a machine
independent way� and can evaluate the performance of their programs without running them� Un�
fortunately� as pointed out by Bilardi and Preparata ��� the architectures that seem to be more
promising for the future parallel systems� like low�dimensional k�ary n�cubes� are exactly those for
which it is more di�cult to simulate such universal models� Our approach is more pragmatical�
in the sense that we are interested in developing powerful and e�ective tools especially for those
low�dimensional �di�cult� architectures�

Our approach appears more related to the work in progress on the e�cient massively parallel
implementation of functional languages based on a restricted set of second order functionals ���

�� ��� In this case the idea consists of encapsulating certain common algorithmic forms in
higher�order functions to facilitate parallel program development�

In particular� Cole �� and Darlington et al� �
� propose systems in which the user is provided
with a library of skeletons� Each skeleton is implemented by a set of templates on di�erent target
architectures� but the program restructuring� needed to match di�erent hardware requirements� is

�

totally in charge of programmers�
The approach proposed by Skillicorn ��� addresses the issue of composing paradigms� but it

only considers data parallel computations� restricting the control �ow to a single thread expressed
as a sequence of function compositions� Since the approach is based on strong and clear semantic
properties� it also allows program transformation techniques to be devised� and allows a program
implementation to be derived from an initial high�level speci�cation using algebraic identities
between higher order functionals�

Finally� we discuss some relationships with the approach followed by researchers working on
Fortran dialects for programming DM�MIMD machines �
��
�� Considering the features of High
Performance Fortran �HPF	� we can deduce that HPF allows parallel programs to be expressed in
a su�ciently machine�independent way� Moreover� its FORALL construct and some of its intrinsic
functions resemble some P �L constructs �or compositions of some P �L constructs	� The purpose
of HPF is� however� to permit a programmer to easily express data�parallel computations� while
P �L also covers control parallel ones� Another di�erence is related to the role of the compiler�
which� in our methodology� uses a cost model to predict the performance and� thus� to restructure
the program implementations to harness each speci�c target architecture� Therefore� the lacking
of a cost model for HPF implementations may prevent several compiling optimizations allowed by
P �L� and may make it di�cult to adopt a solution in which HPF is used as P �L host language�

Finally let us assess our methodology with respect to the coordination languages and the cor�
responding computational models� Linda �
� which is one of the most important examples of
this kind of languages� provides the abstraction of a shared� content�addressable memory that
can be accessed by any process� While Linda is architecture independent� and thus holds those
characteristics of high�levelness that facilitate the parallel programming job and the portability of
programs� the tuning of each Linda application for each speci�c target machine is the responsi�
bility of the programmer� Moreover� the Linda supports may incur in high overheads due to the
emulation of an unrestrictedly accessed shared address space�

The same lack of performance portability is� in our opinion� the main drawback of high�level
programming environments based on graphical development tools� In fact� even if they provide a
friendly interface for parallel systems running libraries and run�time software such as PVM ����
performance tuning is always the responsibility of the programmer�

	 Conclusions and future work

The prototype of the P �L compiler described in this paper has been developed during a joint
project� called P� ��� involving the Department of Computer Science of the University of Pisa�
and the Hewlett Packard Laboratories�Pisa Science Center�

Within this project� the P �M AM interface has been implemented on top of an emulator of
parallel architectures� i�e� Proteus ��� ���
�� which is able to produce performance pro�ling �gures
for each program run� This emulator can be con�gured� so that di�erent costs can be associated
with each mechanism of the AM� and di�erent interconnection network topologies can be tested�
The emulator was very e�ective in validating the performance models associated with the various
P �L constructs and their composition� and thus� to show the feasibility of the general methodology
adopted in the project� Moreover� we have just completed the porting of the whole programming
environment� and thus also of the AM without the shared address space� to an actual machine�
the Meiko CS
� a DM�MIMD machine based on T��� Transputers�

Other current activities are concerned with devising implementation templates� performance
models� and process templates for the parallel P �L constructs that haven�t been included yet �

�
These other constructs model

� reduce computation� which consists of the application of an associative operation on a vector
T � �T is a P �L type	 to produce a single item of type T �

� tree computations� of which a computation built of a map followed by a reduce is a particular
case�

��

� geometric computations� i�e� data�parallel computations where data are decomposed in a
geometric way to vectors or arrays of processing nodes� and some limited exchanges of data
occur during computation�

� MISD farm computations� where distinct functions are computed for each input data item�
i�e� distinct P �L constructs are to be provided as nested modules�

� dedicated
farm computations� where distinct functions are provided� but� on the basis of
distinct guards� only one is selected for each item of the input data stream�

� divide
et
conquer computations� where each item of the input data stream is partitioned
by using a dividing function� a computing function is executed in parallel on each partition
producing many parallel results� and� �nally� a combining function is applied on these results
to recompose an item of the output data stream�

Further activities on P �L are concerned with porting the language and its environment to
architectures with network topologies di�erent from the mesh� This work requires theoretical
studies on the implementation templates of the various P �L constructs� and their compositions�
Taking into account the same technological constraints� we hope that it will be possible to compare
the architectural models with respect to their ability to run parallel application structured as
hierarchical compositions of P �L constructs�

Acknowledgements

We would like to thank Milon Mackey� for implementing the front�end of the P �L compiler� and
for the useful discussion about the interface with the host sequential language �C��	 of P �L� We
also thank Mark Syrett� who implemented the graphical tools of the environment� Our research
also bene�ted from discussions with Roberto Di Meglio� who was one the �rst users of the P �L

programming environment� We also thank Fabio Piazzai and Francesco Chiaravalloti for porting
the P �L environment to the Meiko� We are grateful to the Hewlett Packard Laboratories� which
supported this research� and all the P� team at the HP Pisa Science Center� Finally� we thank
the anonymous reviewers for many useful comments and suggestions�

References

�
 S� Ahuja� N� Carriero� D� Gelernter� and V� Krishnswamy� Matching Languages and Hardware
for Parallel Computation in the Linda Machine� IEEE Transactions on Computers� ����	���
�
���� August
����

�� S� Antonelli and S� Pelagatti� On the Complexity of the Mapping Problem for Massively
Parallel Architectures� Int� Journal of Foundation of Computer Science� ���	���������
����

�� B� Bacci� M� Danelutto� and S� Pelagatti� Resource optimization via structured parallel
programming� Technical Report TR������� Dipartimento di Informatica�
����

�� F� Baiardi� M� Danelutto� R� Di Meglio� M� Jazayeri� M� Mackey� S� Pelagatti� F� Petrini�
T� Sullivan� and M� Vanneschi� Pisa Parallel Processing Project on general�purpose highly�
parallel computers� In Proc� of COMPSAC ��� pages �������� Tokyo� Japan�
��
�

�� F� Baiardi and M� Jazayeri� P �M � a Virtual Machine Approach to Massively Parallel Com�
putation� In Int� Conf� on Parallel Processing� August
����

�� G� Bilardi and F�P� Preparata� Horizons of Parallel Computation� Technical Report CS�������
Dept� of Computer Science � Brown University� May
����

��

�� E�A� Brewer and C�N� Dellarocas� Proteus User Documentation Version ���� Technical report�
Massachusetts Institute of Technology� October
��
�

�� M� Cole� Algorithmic Skeletons� Structured Management of Parallel Computation� Pit�
mann�MIT Press�
����

�� W� Dally� Performance Analisys of k�ary n�cube Interconnection Networks� IEEE Transac�

tions on Computers� ����	��������� June
����

�
� M� Danelutto� R� Di Meglio� S� Orlando� S� Pelagatti� and M� Vanneschi� A Methodology
for the Development and the Support of Massively Parallel Programs� Future Generation

Computer Systems J�� ����������
����

�

 M� Danelutto� S� Orlando� and S� Pelagatti� P �L� The Pisa Parallel Programming Language
�Ver�
��	� Technical Report HPL�PSC��
���� Hewlett Packard Laboratories� Pisa Science
Center �Italy	�
��
�

�
� J� Darlington� A�J� Field� P�G� Harrison� P�H�J� Kelly� D�W�N� Sharp� Q� Wu� and R�L� While�
Parallel Programming Using Skeleton Functions� In Proc� of PARLE ��	 �
th Int� PARLE

Conf�� pages
���
��� Munich� Germany� June
���� LNCS ��� Spinger�Verlag�

�
� D� Fernandez�Baca� Allocating Modules to Processors in Distributed Systems� IEEE Trans�

actions on Software Engineering� SE�
��

	�
����
���� November
����

�
� A�J�G� Hey� Experiments in MIMD Parallelism� In Proc� of Int� Conf� PARLE ���� pages
������ Eindhoven� The Netherlands� June
���� LNCS ��� Spinger�Verlag�

�
� High Performance Fortran Forum� High Performance Fortran Language Speci�cation� May

���� Version
���

�
� S� Hiranandani� K� Kennedy� and C� Tseng� Compiling Fortran D for MIMD Distributed�
Memory Machines� Communications of the ACM� ����	������� August
����

�
� H�T� Kung� Computational Models for Parallel Computers� In C�A�R� Hoare Series edi�
tor� editor� Scienti�c applications of multiprocessors� pages
�
�� Prentice�Hall International�

����

�
� M� Mackey� The p�m command� Technical Report HPL�PSC������� Hewlett Packard Labo�
ratories� Pisa Science Center �Italy	� September
����

�
� M� Mackey and T� Sullivan� P �M machine interface de�nition� Technical Report HPL�PSC�
������ Hewlett Packard Laboratories� Pisa Science Center �Italy	� August
����

��� M� Mackey and T� Sullivan� Proteus user manual �PA�RISC	� Technical Report HPL�PSC�
������ Hewlett Packard Laboratories� Pisa Science Center �Italy	� August
����

��
 S� Pelagatti� A Methodology for the Development and the Support of Massively Parallel Pro�

grams� PhD thesis� Dipartimento di Informatica� Universit�a di Pisa � Italy� March
����
TD�

����

��� C�L� Seitz� Concurrent Architectures� In R� Suaya and G� Bithwistle� editors� VLSI and

Parallel Computation� chapter
� pages
���� Morgan Kaufmann Publisher� Inc� � San Mateo�
California�
��
�

��� D�B� Skillicorn� Architecture�Independent Parallel Computation� IEEE Computer� pages
������ December
����

��� V�S� Sunderam� PVM� a Framework for Parallel Distributed Computing� Concurrency�

Practice and Experience� ���	��
������ December
����

��� L�G� Valiant� A Bridging Model for Parallel Computation� Communications of the ACM�
����	�
���

� August
����

��

Appendix A
 The implementation of the farm

This appendix illustrates in detail the three activities� namely task distribution� computation�
and result collection� which we can recognize in the farm implementation template� A particular
mapping of this template is shown in Figure ��

Implementation of the task distribution The emitter� ro dis and ro dis fin realize the
distribution of the tasks by implementing a slotted ring� The emitter process inserts the task into
the ring� while ro dis and ro dis fin extract these tasks� and distribute them to the workers�
No scheduling information is provided for any of the tasks� but they are tagged with an increasing
mark �tag	 to maintain the input�output ordering� Figure
� shows the ring in more detail� where
the black circles in each process represent the slots� The tasks moves on the ring according to the
directions of the channels�

At the steady state� all the processes that implement the ring communicate simultaneously
with their neighbours� so that the contents of the slots are moved by a single position� After� if
the emitter process holds an empty slot� it copies an incoming data item �from the input stream	
to this slot� Moreover� if if the ro dis and ro dis fin processes receive �or have received	 from
the corresponding worker a request for a new task� and some of their slots are not empty� they
send to that worker the contents of a slot� The slots are emptied by selecting �rst the data item
associated with the oldest tag�

Implementation of the task computation The worker of a farm �i�e� its nested construct	
may be every P �L constructs� Assume that it is a sequential construct� The sequential process
implementing the sequential workers of the farm is structured as a sequential loop� in which the
process �
	 receives a new task to be executed from the corresponding ro dis �or ro dis fin	�
��	 sends a new request for further tasks� ��	 executes the task �the sequential code written by
the P �L programmer	� and ��	 sends the result of the computation to the corresponding ro coll

�or ro coll fin	�
Note the synch channel shown in Figure
�� used to request a new task� The same channel

is also necessary when the nested construct of the farm is a parallel one� In this case� the nested
construct will be implemented by a process network� and the process that receives the input stream
for this network will need a synch channel to request a new task�

Implementation of the collections of the task results The collector� ro coll and
ro coll fin collect the task results� They implement a slotted chain� where each slot may be

output
stream

backward_in

emit ro_dis ro_dis ro_dis_fin

ro_coll ro_coll ro_coll_fin collector

worker

input
stream

synch

input

to_worker

to_coll

output

forward_in forward_out

backward_out

Figure
�� Implementation of the task distribution and result collection�

��

empty or may contain a result to deliver to the collector process� Figure
� shows these pro�
cesses and the channels between them� The black circles represent the slots� The results move on
the chain following the direction of the channels�

The collector receives the contents of a slot at each movement of the chain� If the received
slot is not empty� its contents are inserted into an ordered structure� This avoids sending out the
results of the tasks with a di�erent order from the input stream order�

Appendix B
 The analytical performance models

In this appendix we introduce the analytical performance models which are associated with each
implementation template� and which allow synthetic formulae to be derived and used by the com�
piler� In particular� we describe in more detail the analytical model used to derive the performance
formulae associated with the farm� These formulae are used to devise �
	 the useful parallelism
degree �i�e� the number of workers in the farm	� and ��	 to return the bandwidth of the �nal
implementation�

As discussed in Appendix A� in the implementation of the farm we can distinguish three
pipelined stages� i�e� the distribution� the computation� and the collection stage� In order to
maximize the bandwidth� we have to make faster the stages that appear to be the bottlenecks
of this pipeline� When the bandwidths of the three stages are balanced� to improve the total
bandwidth we have to make faster all the three stages� If this is impossible for only one of the
stages� we can deduce that the best total bandwidth has been achieved� These requirements are
exactly those needed for optimizing the bandwidth of a general pipeline structure �in fact� the
same model is used to attain the performance and to optimize the implementation of the pipe

construct	�
In this case� the bandwidth of the distributing �collecting	 stage is �

�p
� because one data item

is inserted into �extracted from	 the distributing ring �collecting chain	 at each time interval �p�
�p can be express as a function of the AM mechanism cost� such as the time spent to copy a data
item in an empty slot� to test some �ags� and to perform message exchanges between neighbouring
processing nodes� In addition� the bandwidth of nw workers is nw�w� where �w is the average
bandwidth of each worker� If the worker is a sequential process� and �w is the time taken by the
worker to compute a single task� we have that �w � �

�w
�

To balance the bandwidth of the three functional stages of this farm implementation� we have
to �nd an nw such that �

�p
� nw�w � which holds i�

nw � d
	

�p�w
e
	�

Roughly speaking� the number of workers nw determined by �
	 may be thought of as the useful
parallelism degree that this implementation is able to exploit� In fact� if we used more workers�
the distributing ring would not be able to keep all the workers busy� while� if we employed less
workers� sometimes some tasks would not inserted in the distributing ring because the slots are
still full�

The latter formula associated with this farm implementation corresponds to the rate by which
the input �output	 stream is computed �produced	� and thus corresponds to the total bandwidth
of the farm�

�farm �
	

�p

��

In order to apply the formula �
	� the compiler needs to know the bandwidth of the workers�
namely �w� In particular� if these workers are sequential processes� the time �w taken by the
workers to compute a single task has to be known� In any case� only an average measure of
�w needs to be known� This average is used to �nd the optimal number of workers nw� The
implementation of the distribution stage performs the dynamic scheduling and guarantees an
optimal load balancing even if there is a very large variance of �w� An example of this feature

��

Processor execution modes

Time (x 1000)

P
ro

ce
ss

o
r

Idle
Interrupt handler
User code
Channel send

Channel receive
Process startup/cleanup

90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165
11

12

13

14

15

Figure
�� Example of load balancing obtained by a farm implementation�

is shown in Figure
�� which illustrates the behaviour of the three workers of a farm construct�
This diagram is one of the graphical statistical outputs that can be visualized by the emulator
of parallel architectures ���� on top of which P �Mhas been implemented� Note that the tasks
of the farm� represented by the user code bars� do not take the same time to execute� In fact�
the execution times range uniformly over a given time interval� The number of workers has been
found by using �
	 w�r�t� to the average value of �w� i�e� the midpoint of the distribution interval�

Similar formulae are used by the compiler for the other P �L constructs� The map formulae
are the same as the ones used for the farm� but take into account the further overheads derived
from the decomposition�recomposition tasks� The pipe formulae are exploited to balance the
granularity of the various stages� while the �nal bandwidth is the smallest of the bandwidths of all
the stages� The loop formulae take into account the recursive call of the nested module� and the
overheads incurred in the non�deterministic merging performed by in l and in the �nal condition
check performed by out l�

��

