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Abstract. In [BCC00], we presented a general framework for extending
calculi of mobile agents with object-oriented features, and we studied
a typed instance of that model based on Cardelli and Gordon’s Mobile
Ambients. Here, we refine our earlier work and define a new calculus
which is based on Remote Procedure Call as the underlying protocol for
method invocation, and on a different typing technique for method bod-
ies. The new type system is equipped with a subtyping and a matching
relation: the combination of matching with subtyping provides new in-
sight into the relationship between ambient opening in the new calculus
and method overriding in object-oriented calculi.

1 Introduction

Calculi of mobile agents are receiving increasing interest in the programming
language community as advances in computer communications and hardware
enhance the development of large-scale distributed programming. Agents are
effective entities that perform computation and interact with other agents: the
term “mobile” implies that agents are bound to locations and that this binding
may vary over time; agent interaction, in turn, is achieved using resources such
as communication channels.

Independently of the new trends in communication technology, object-oriented
programming has established itself as the de-facto standard for a principled de-
sign of complex software systems.

Drawing on our earlier work [BC00,BCC00], in this paper we study a formal
calculus that integrates object-oriented constructs into calculi of mobile agents.
The resulting calculus provides foundations for a computation model for dis-
tributed applications, where conventional client-server technology —based on
remote exchange of messages between static sites— and mobile agents coexist
in a uniform way.

The model results from extending the structure of named agents in the style
of Mobile Ambients [CG98] with method definitions and primitive constructs for
self denotation and message passing. The extension has interesting payoffs, as
it leads to a principled approach to structuring agents: specifically, introducing
methods and message passing as primitive, rather than encoding them on top
of the underlying calculus of agents leads to a rich and precise notion of agent
interface and type. Furthermore, it opens the way to reusing the advances in
type system of object-oriented programming and static analysis.
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munications: “Collaborative, distributed, and secure programming for Internet”, and by
Galileo Action n. 02841UD



With respect to our earlier work [BC00,BCC00] this paper brings two main
contributions to the calculus. For the operational semantics, we study a new
model of message passing and method invocation based on Remote Procedure
Call (RPC)1. For the type system, we discuss a non-trivial blend of matching
and subtyping relations. Method invocation based on RPC fits nicely the design
of a typed distributed calculus as it allows method bodies to be type-checked
locally, in the object where they are defined, independently of the caller. As a
consequence, the choice of RPC as the underlying semantics of method invoca-
tion yields a notion of interface-type for our mobile objects that is substantially
simpler and more tractable than the corresponding notion defined in [BCC00].
The combination of subtyping and matching, in turn, conveys new insight into
the relationship between method overriding in object-oriented calculi and the
open capability in our mobile objects. As we show, matching is necessary in
the type system to ensure type soundness for object opening in the presence of
subtping2.

Plan of the paper In Section 2 we introduce the calculus of mobile objects,
named MA++ , based on the calculus of Mobile Ambients by [Car99,CG98].
Section 3 illustrates the expressive power of the calculus with several, diversified,
examples. In Section 4 we study the type theory of our calculus, and state
relevant properties. Related work is discussed in Section 5. Final remarks in
Section 6 conclude our presentation with a discussion on current and future
work.

2 MA++

The syntax of the calculus is essentially the same as that originally defined
in [BCC00], and results from generalizing the structure of ambients to include
method definitions, or interfaces, as in a[[ I ; P ]] , where P is a process and I is a
list of method definitions, defined by the following productions:

Processes P ::= 0 inactivity

 P | P parallel composition

 a[[ I ; P ]] ambient

 (νx)P restriction

 M.P action

Interfaces I ::= `(x) . ς(z)P method

 I :: J sequence

 ε empty interface

Patterns x ::= x variable

 (x1, . . . , xn) tuple (n > 1)

1 RPC is often referred to as Remote Method Invocation (RMI) in this context.
2 The new version of the type system also rectifies a flaw of the type system we presented in

[BCC00].



The syntax of processes is a generalization of the combinatorial kernel of the
Ambient Calculus: 0 denotes the inactive process, P | Q the parallel composition
of two processes P and Q, a[[ I ; P ]] denotes the object named a with interface
I and enclosed process P , (νx)P restricts the name x to P , and finally M.P
performs the action described by the term M and then continues as P .

Interfaces are lists of labels with associated processes: the syntactic form
`(x) . ς(z)P denotes a method labeled ` whose associated body is the process
P where the ς-bounded variable z is the self parameter distinctive of object
calculi, representing the method’s host object. Finally, the pattern x is the tuple
of input parameters for P .

Terms M, N ::= a, b, . . . , x, y . . . name/variable

 (M1, . . . , Mn) tuple (n > 0)

 M.M path

 ε empty path

 in a enter a

 out a exit a

 open a open a

 a send `〈M〉 remote invocation

Terms include the capabilities distinctive of Mobile Ambients. In addition, our
ambients are equipped with a capability for remote method invocation: the ex-
pression a send `〈M〉 invokes the method labeled ` residing on the object denoted
by a with arguments M .

In the following we let P, Q, R, . . . range over processes, I, J over (possibly
empty) interfaces, and use lower case letters to denote generic names, reserv-
ing a, b, . . . for ambient names, and x, y, . . . for parameters, whenever possible.
Method names, denoted `, range over a disjoint alphabet and have a different
status: they are fixed labels that may not be restricted, abstracted upon, nor
passed as values (they are similar to field labels in record-based calculi). We omit
trailing or isolated 0 processes and empty interfaces, using M , a[[ I ]] , a[[P ]] , and
a[[ ]] as shorthands for, respectively, M.0, a[[ I ; 0 ]] , a[[∅ ; P ]] , and a[[∅ ; 0 ]] .
Throughout, we use the terms “ambient” and “object” interchangeably.

2.1 Operational Semantics

We define the operational semantics of the calculus by means of a structural
congruence and a reduction relation. As usual, the former is used to rearrange
a term in order to apply the latter.

Structural Congruence Structural congruence for processes is defined in terms
of an auxiliary equivalence relation ≡I over interfaces, given in Figure 1. This
relation allows method definitions be reordered without affecting the behavior
of the enclosing object: reordering of methods, in turn, is used to define the
reduction of method invocation.

Definitions for methods with different name and/or arity may freely be per-
muted (Eq Meth Comm); instead, if the same method has multiple definitions,



(Eq Meth Assoc) (I :: J) :: L ≡I I :: (J :: L)
(Eq Meth Comm) I :: m(xm) . P ; `(y

`
) . Q ≡I I :: `(y

`
) . Q :: m(xm) . P ` 6= m

(Eq Meth Over) I :: `(x) . P :: `(x) . Q :: I ≡I I :: `(x) . Q

Fig. 1. Equivalence for Methods

then the right-most definition overrides the remaining ones (Eq Meth Over). Sim-
ilar notions of equivalence can be found in the literature on objects: in fact, our
definition is directly inspired by the bookkeeping relation introduced in [FHM94].

Structural congruence of processes is defined as the smallest congruence that
forms a commutative monoid with product | and unit 0, and is closed under
the rules in Figure 2, where the set fn of free names is defined by a standard
extension of the definition in [Car99].

(Struct Res Dead) (νx)0 ≡ 0
(Struct Res Res) (νx)(νy)P ≡ (νy)(νx)P x 6= y

(Struct Res Par) (νx)(P | Q) ≡ P | (νx)Q x 6∈ fn(P )

(Struct Res Amb) (νp)a[[ I ; P ]] ≡ a[[ I ; (νp)P ]] p 6∈ fn(I) ∪ {a}
(Struct Path Assoc) (M.M ′).P ≡ M.M ′.P

(Struct Empty Path) ε.P ≡ P

(Struct Cong Amb Meth) I ≡I J ⇒ a[[ I ; P ]] ≡ a[[ J ; P ]]

Fig. 2. Structural Congruence for Processes

The first block of clauses are the rules of the π-calculus. The rule (Struct Path
Assoc) is a structural equivalence rule for the Ambient Calculus, while the rule
(Struct Res Amb) modifies the rule for ambients in the Ambient calculus to
account for the presence of methods. Rule (Struct Cong Amb Meth) establishes
ambient equivalence up to reordering of method suites. In addition, we identify
processes up to renaming of bound names: (νp)P = (νq)P{p := q} if q 6∈ fn(P ).

Reduction Relation The reduction semantics of the calculus is given by the
context rules in Figure 3, plus the notions of reduction collected in Figure 4,
that we comment below.

P ′ ≡ P, P Þ Q, Q ≡ Q′ ⇒ P ′ Þ Q′ P Þ Q ⇒ a[[ I ; P ]] Þ a[[ I ; Q ]]
P Þ Q ⇒ (νx)P Þ (νx)Q P Þ Q ⇒ P | R Þ Q | R

Fig. 3. Structural Rules for Reduction



(in) b[[ I ; in a.P | Q ]] | a[[ J ; R ]] Þ a[[ I ; R | b[[ J ; P | Q ]] ]]

(out) a[[ I ; b[[ J ; out a.P | Q ]] | R ]] Þ b[[ J ; P | Q ]] | a[[ I ; R ]]

(open) open a.P | a[[Q ]] Þ P | Q

(update) b[[ I ; open a.P | a[[ J ; Q ]] | R ]] Þ b[[ I :: J ; P | Q | R ]] for J 6= ε

(send) b[[ I ; a send `〈M〉.P | Q ]] | a[[ J :: `(x) . ς(z)R ; S ]]
Þ b[[ I ; P | Q ]] | a[[ J :: `(x) . ς(z)R ; R{z, x := a, M} | S ]]

Fig. 4. MA++ reduction rules

The first three rules are exactly the same as the corresponding rules for Mo-
bile Ambients. Rule (update) is a direct generalization of the open rule that
handles the case when the opened ambient contains a non-empty set of method
definitions. If a is one such ambient, open a may only be reduced within an
enclosing ambient: as a result of reduction, the process local to a is unleashed
within the opening ambient, and the interfaces of the opening and the opened
ambients are merged as shown by the definition of the rule. The rule (send) han-
dles the new syntactic construct for method invocation, implementing the RPC
model. The notation R{z, x := a, M} indicates the simultaneous substitution
in R of a for z and of M for x. Informally, the result of the ambient b sending
message ` to its sibling a, with argument M , is the activation of the process
associated with ` on the receiver a, with M substituted for the input pattern x

and the self parameter dynamically bound to the name of the receiver.

3 Expressive power

We discuss a number of constructs that can be expressed in our calculus, in-
cluding constructs for method overriding distinctive of object calculi, various
forms of process communication, as well as different primitives of method invo-
cation. Some of these examples have been already presented in our earlier work
[BCC00] where, however, they were defined in terms of a different semantics
for method invocation based on Code On Demand. Throughout this section, we
use the terms “protocol” and “encoding” as synonyms: technically, this is an
abuse of terminology, as we don’t claim the protocols to really be encodings, i.e.
interference-free simulations of the constructs in question.

3.1 Parent-child and Local communications

As a first example, we look at alternative models for method invocation. Having
having chosen RPC as our primitive semantics, we now discuss other models,
such as those described in Figure 5, for sending messages from an ambient to its
parent or children, or to its own methods.



(downsend) a downsend `〈M〉.P | a[[ I :: `(x) . ς(z)Q ; R ]]

Þ P | a[[ I :: `(x) . ς(z)Q ; R | Q{z := a, x := M} ]]

(upsend) a[[ I :: `(x) . ς(z)Q ; R | b[[ J ; a upsend `〈M〉.P ]] ]]

Þ a[[ I :: `(x) . ς(z)Q ; R | Q{z := a, x := M} | b[[ J ; P ]] ]]

(local) a[[ I :: `(x) . ς(z)Q ; a local `〈M〉.P1 | P2 ]]

Þ a[[ I :: `(x) . ς(z)Q ; Q{z, x := M, a} | P1 | P2 ]]

Fig. 5. Other Constructs for Method Invocation

Parent-to-child invocation. The intended behavior for this form of method invo-
cation can be obtained by defining the construct for downward method invoca-
tion as follows, where p, q /∈ fn(M) ∪ fn(P )):

a downsend `〈M〉.P
4
= (νp, q) (p[[ a send `〈M〉.q[[ out p ]] ]] | open q.open p.P )

Informally, we temporarily create a new ambient p that becomes a sibling of the
receiver a on which it invokes the method; the ambient q is used for synchroniza-
tion, to guarantee that the ambient p be destroyed only after the receiver has
served the invocation. It is a routine check to verify that the desired effect of the
invocation is achieved by a sequence of reduction steps. To ease the notation,
we give the reduction steps in the simplified case of a method which does not
have parameters and does not depend on self (neither of the two simplifications
affects the protocol):

a downsend `.P | a[[ ` . Q ; R ]]

≡ (νp, q)
(

p[[ a send `〈M〉.q[[ out p ]] ]] | open q.open p.P
)

| a[[ ` . Q ; R ]]

Þ (νp, q)
(

p[[ q[[ out p ]] ]] | open q.open p.P
)

| a[[ ` . Q ; R | Q ]]

Þ (νp, q)
(

p[[ ]] | q[[ ]] | open q.open p.P
)

| a[[ ` . Q ; R | Q ]]

Þ∗P | a[[ ` . Q ; R | Q ]]

Local and Self Invocation. Local method invocation within an ambient a is en-
coded similarly to the previous case. Choosing p, q /∈ fn(M)∪ fn(P ), one defines:

a local `〈M〉.P
4
= (νp, q) (p[[ out a.a send `〈M〉.in a.q[[ out p ]] ]] | open q.open p.P )

Relying upon this definition, it is then easy to define self-invocation within
method bodies. To exemplify, consider the following process:

a[[ `1(x) . ς(z)z local `2〈x〉 :: `2(x) . P ; R ]]

Invoking the method `1 from outside the object a results in the execution of the
process P in parallel with R within a.



Child-to-parent. We conclude our survey of alternative models of method invo-
cation with a form of upward invocation, whereby an ambient invokes a method
residing in the enclosing ambient. A first definition of the construct is simply

a upsend `〈M〉.P
4
= out a.a send `〈M〉.in a

One problem with this definition is that it requires a move of the sender. As
an alternative, one may envisage a different protocol that relies on an auxiliary
ambient. Assume that the invocation occurs within an object b, and that b is
directly enclosed into a:

a upsend `〈M〉.P
4
=

(ν p, q) (p[[ out b.out a.a send `〈M〉.in a.in b.q[[ out p ]] ]] | open q.open p.P )

The definition is easily understood by simply looking at the chain of capabilities
inside the ambient p. First, the ambient p exits its parent ambient b, then exits
the ambient a (that contains the method to be invoked), then performs the
message send and is finally destroyed after having opened the locking ambient
q. It should be noted that a formal specification of the protocol requires that
the definition be given parametrically with respect to the enclosing ambient (b
in the definition given above).

3.2 Replication

The behavior of replication in concurrent calculi is typically defined by a struc-
tural equivalence rule establishing that !P ≡!P | P . In our calculus, we can
provide a similar construct by relying upon the implicit form of recursion un-
derlying the reduction of method invocation. Let be p, q /∈ fn(P ):

!P
4
= (νp, q) (p downsend !〈〉.open q.P |

p[[ ! . ς(z)(q[[ out z.z downsend !〈〉.open q.P ]] ) ; ]] )

The reduction for the encoding of !P is then the following:

!P
4
= (νp, q)

(

p downsend !〈〉.open q.P | p[[ ! . ς(z)(q[[ · · · ]] ) ; ]]
)

Þ (νp, q)
(

open q.P | p[[ ! . ς(z)(...) ; q[[ out p.p downsend !〈〉.open q.P ]] ]]
)

Þ (νp, q)
(

open q.P | q[[ p downsend !〈〉.open q.P ]] | p[[ ! . ς(z)(...) ; ]]
)

Þ (νp, q) (P | p downsend !〈〉.open q.P | p[[ ! . ς(z)(...) ; ]] )

≡ P | !P

Notice that there is just one capability ready to be exercised at each reduc-
tion step. Furthermore, the process P is activated only after the opening of the
ambient q, hence it does not interfere with the protocol.



3.3 Code on Demand

We continue our series of examples showing a protocol for method invocation
based on Code on Demand (CoD). The behavior CoD can be described as fol-
lows: a client c invokes a method ` on a server s; the server activates the method
and then sends it back to the client for the latter to execute it. Formally this
correspond to the following reduction rule:

c[[ J ; s send cod`〈M〉.R | S ]] | s[[ I :: `(x) . ς(z)Q ; P ]] Þ

c[[ J ; Q{z, x := s, M} | R | S ]] | s[[ I :: `(x) . ς(z)Q ; P ]]

The intended behavior can be obtained by defining the sender and the receiver
ambients as follows:

server
4
= s[[ I :: `(u, v, x) . ς(z)u[[ out z.in v.Q ]] ; P ]]

client
4
= c[[ J ; (νp)s send `〈p, c, M〉.open p.R | S ]]

The protocol relies on the agreement between the server and the client upon
the name of the ambient that carries the activated process back to the client.
This name is decided locally by the client which passes it as an argument of the
call together with its own name. Invoking `〈p, c.M〉 spawns a new process on
the server that simply carries the ambient p out of the server and back into the
client c: once inside c, the transport ambient p is opened thus unleashing the
process Q to be executed on the client.

The protocol can be refined by having the client pass a “return path” rather
than just its name. In that case, the client would be in the position to choose
where to receive and execute the requested method (e.g. , in one of its subam-
bients).

3.4 Updates

The standard notion of method override in formal object calculi [AC96,FHM94]
can be rephrased in our calculus, as follows:

given the ambient a[[ I :: `(x) . ς(z)P ; Q ]] replace the current definition
P of ` by the new definition P ′ to form the ambient a[[ I :: `(x) . ς(z)P ′ ; Q ]] .

Method updates in this form can be expressed in our calculus by means of a pro-
tocol that uses an “updater” ambient to carry the new method body inside the
ambient to be updated. The updater enters the ambient a to be updated, and
the latter has a controlling process that opens the updater thus allowing updates
on its own methods. The protocol is defined precisely below in an asynchronous
setting, with the update defined as a process term: a similar encoding can be
defined for synchronous updates. Moreover, the definition only allows local up-
dates, in that an ambient may only override methods contained in subambients
(of course other kind of updates can be expressed similarly)



A method update is denoted by a update `(x) . ς(z)P , read “the ` method
at a gets definition P ”, and is defined as the following process:

a update `(x) . ς(z)P
4
= upd[[ `(x) . ς(z)P ; in a ]]

The ambient to be updated may now be defined as follows:

a?[[ I ; P ]]
4
= a[[ I ; !(open upd) | P ]]

Now, if we form the composition a update `(x).ς(z)P ′ | a?[[ I :: `(x) . ς(z)P ; Q ]] ,
the reduction for open enforces the expected behavior:

a update `(x).ς(z)P ′ | a?[[ I :: `(x) . ς(z)P ; Q ]] Þ∗ a?[[ I :: `(x) . ς(z)P ′ ; Q ]]

Multiple updates for the same method may occur in parallel, in which case their
relative order is established nondeterministically. The protocol, as defined, relies
on the assumption that the name upd of the updater carrying the new method
body is “well known”. A more realistic assumption is that the ambient to be
updated and the context agree on the name of the updater prior to start the
protocol. This can be accomplished with a different definition of the ambient to
be updated, one that assumes that such ambients come with an ad-hoc method
that sets the appropriate conditions for the actual update to take place. The upd
method below serves this purpose.

a?[[ I ; P ]]
4
= a[[ I :: upd(u) . ς(z)open u ; P ]]

Now, the protocol comprises two steps. First the ambient to be updated receives
the name of the updater, and only then does the update take place:

a update `(x) . ς(z)P
4
= (νp) (a downsend upd〈p〉.p[[ `(x) . ς(z)P ; in a ]] )

3.5 Encoding the π-calculus

As a final example, we define constructs for synchronous and asynchronous com-
munication between processes (all processes, not just ambients) over named
channels. Similar construts for channel-based communication are presented in
[CG98], based on the more primitive form of local and anonymous communi-
cation defined for the Ambient Calculus. Here, instead, we rely on the ability,
distinctive of our ambients, to exchange values between methods. We first give
a construct for synchronous communication.

A named channel n is represented by an “updatable” ambient n, and three
auxiliary ambients ni, no and n̄ used for synchronization. The ambient n defines
a method ch: a process willing to read from n installs itself as the body of this
method, whereas a process willing to write on n invokes ch passing along the
argument of the communication.

(ch n)
4
= n?[[ ch(x) . 0 ]] | n i [[ ]]

n!〈y〉.Q
4
= open no.n downsend ch(y).open n̄.(n i [[ ]] | Q)

n?(x).P
4
= open ni. n update ch(x) . (n̄[[ out n.P ]] ) .no[[ ]]



The steps of the communication protocol are as follows. A process n?(x).P read-
ing from n first grabs the input lock ni provided by the channel, then installs
itself as the body of the ch method in n, and finally releases the output lock no.
Now the writing process can start its computation: after acquiring the lock no, it
sends the message ch(y). The message activates the process n̄[[ out n.P{x := y} ]]
inside n. One further step brings the ambient n̄ outside n where it is opened by
the output process: this last step completes the synchronization phase of the
protocol, and both processes may continue their computation. The output pro-
cess releases a new input lock to reset the channel to its initial condition, and
the protocol is completed.

Asynchronous communications are obtained directly from the protocol above,
by a slight variation of the definition of n!〈A〉.Q. We simply need a different way
of composing Q with the context:

n!〈y〉.Q
4
= (open no.n downsend ch(y).open n̄.(n i [[ ]] )) | Q

Based on this technique, we can encode the synchronous (and similarly, the asyn-
chronous) polyadic π-calculus in ways similar to what is done in [CG99]. Each
name n in the π-calculus becomes a quadruple of names in our calculus: the
name n of the ambient dedicated to the communication, the names ni and no of
the two locks, and the name n̄ of the auxiliary ambient. Therefore, communica-
tion of a π-calculus name becomes the communication of a quadruple of ambient
names.

〈〈 (νn)P 〉〉
4

= (νn, n̄, ni, no)(n i [[ ]] | n?[[ch(x, x̄, xi, xo) . 0]] | 〈〈P 〉〉 ) n̄, ni, no 6∈ fn(〈〈P 〉〉)

〈〈n!〈y〉.Q 〉〉
4

= open no.n downsend ch(y, ȳ, yi, yo).open n̄.(n i [[ ]] | 〈〈Q 〉〉 )

〈〈n?(x).P 〉〉
4

= open ni.n update ch(x, x̄, xi, xo) . (n̄[[ out n. 〈〈P 〉〉 ]] ) .no[[ ]]

〈〈P | Q 〉〉
4

= 〈〈P 〉〉 | 〈〈Q 〉〉

〈〈 !P 〉〉
4

= ! 〈〈P 〉〉

〈〈0 〉〉
4

= 0

Fig. 6. Encoding of the synchronous π-calculus

The initialization of the ch method in the ambient that represents the channel
n could be safely omitted, without affecting the operational properties of the
encoding. However, as given, the definition scales smoothly to the case of a
typed encoding, preserving well-typing.

4 Types and Type Systems

The structure of ambient, capability and process types is similar to that of
companion type systems for Mobile Ambients: their intended meaning, instead,
is different.



Signatures Σ ::= ( `i(Vi) )i∈I

Ambients A ::= Amb[Σ]

Capabilities C ::= Cap[Σ]

Processes P ::= Proc[Σ]

Values V ::= A | C

Types T ::= X | A | C | P

Signatures convey information about the interface of an ambient, by listing the
ambient’s method names and their input types. The type Amb[Σ] is the type of
ambients with methods declared in Σ, while the types Cap[Σ] and Proc[Σ] are
the types of capabilities and processes, respectively, whose enclosing ambient (if
any) has a signature containing at least the methods included in Σ.

The type V identifies the type of the expressions that may occur as arguments
for method invocation, and defines them to be ambient names and capabilities.
The complete syntax of types includes type variables, which are used in the
typing rules for the typing of method bodies, as we explain shortly.

4.1 Subtyping and Matching

To enhance the flexibility of ambient typing and mobility, a subtype relationship
is introduced over capability and process types, as defined by the two following
core rules.

(Sub Cap)

Σ ⊆ Σ′

Cap[Σ] ≤ Cap[Σ′]

(Sub Proc)

Σ ⊆ Σ′

Proc[Σ] ≤ Proc[Σ′]

Informally, the rules state that a capability (resp. process) type Cap[Σ] (resp.
Proc[Σ]) is a subtype of any capability (resp. process) type whose associated
signature (set theoretically) contains Σ. The resulting relation of subtyping is
reminiscent of the relation of subtyping in width distinctive of type systems for
object calculi. Width subtyping is restricted to capability and process types, and
does not extend to ambient types, as the extension would break type soundness in
the presence of ambient opening. The reason is explained, intuitively, as follows:
when opening an ambient, one needs exact knowledge of the contents of that
ambient —specifically, of what exactly is the set its methods and their types—
so as to ensure that the possible method overrides resulting from the opening be
traced in the types.

As a result of capability and process subtyping, it is nevertheless possible,
from within an ambient with interface Σ, to open any enclosed ambient with in-
terface Σ′ ⊆ Σ, where the inclusion may be strict. To account for this flexibility,
we introduce a relation of matching [Bru94] over ambient types to complement
the subtype relation over capability and process types. The relation of matching
is defined by the following rule:

(Match Amb)

Γ ` � Σ′ ⊆ Σ

Γ ` Amb[Σ]<# Amb[Σ ′]



The complete definition of subtyping and matching includes standard rules for
reflexivity and transitivity (not shown). Also, as customary, the subtyping rela-
tion is endowed in the type system via a subsumption rule, while matching is
not.

A further remark is in order to explain the role of type variables in the
syntax of types. As we noted, due to the presence of ambient opening, a method
residing in ambient, say a, may be re-installed inside any ambient, say b, that
opens a; furthermore, the (sub)typing rules provide guarantees that b has “more
methods” than a. Now, in order for the original typing of the methods residing
in a to be sound after the methods have been re-installed in b, one must ensure
that the bodies of these methods be type-checked under appropriate assumptions
for the type of self: specifically, this type should be so defined as to represent
the type of all ambients where the methods may eventually be re-installed, via
opening. This is accomplished in the type system by typing method bodies in
type environments that assume the so-called MyType [Bru94] typing for the self
variable, i.e. a match-bounded type variable X<# A , where A is the type of the
ambient where the methods are initially installed.

Our relation of matching, and the technique of MyType typing of methods we
just outlined are simplified versions of the corresponding relation and technique
originally introduced in [Bru94]. The simplifications result from the syntax of
types, and specifically from our ambient types being simple, i.e. not containing
occurrences of type variables (neither free, nor bound). As a consequence, the
type system does not support MyType method specialization [Bru94,FHM94], the
OO-typing technique that allows method-types to be specialized when methods
are inherited (or, in our context, when they are subsumed in an opening ambi-
ent). Instead, in our calculus a method body has always the same type (the one
declared in Σ), independently of the dynamic binding of its self variable. This is
not surprising, as our method bodies are processes with no return value, hence
they are dealt with essentially as methods with return type unit in imperative
object calculi.

4.2 Judgements and Typing Rules

The typed syntax of the calculus is described by the productions below:

Interfaces I ::= `(x) . ς(z)P | I :: I | ε

Processes P ::= 0 | P |P | a[[ I ; P ]] | (νx:A )P | M.P

Expressions M ::= x | (M1, . . . , Mn) | x send `〈M〉 | in x | out x | open x | ε

The only type annotations in the syntax are those introduced by the restriction
operator: the types for all the other variables are directly inferred from the
existing annotations. Also note that we take method names to be fixed labels
that may not be passed as values, nor restricted. The first restriction is justified
by the fact that method names are part of the structure of ambient (capability
and process) types; as a consequence, lifting this restriction would be possible
but it would make our types (first-order) dependent types. Instead, lifting the
second restriction is possible, and in fact not difficult, even though it complicates



the format of the typing rules. For this reason we will disregard this issue in what
follows.

Type environments are lists of term and type variable declarations, as de-
fined by the following productions: Γ ::= ∅ | Γ, x : W | Γ, X<# A . The typing
rules derive the following judgement forms, where we let W range over the set
{X, A , C } of extended value types:

Γ ` M : W M has type W

Γ ` X<# A X matches A

Γ ` P : P P has type P

Γ ` T well-formed type
Γ ` � well-formed type environment

The complete set of typing rules is presented in Appendix A, the most interesting
are discussed below. We start with the rule for typing ambient opening.

(open)

Γ ` a : Amb[Σ]

Γ ` open a : Cap[Σ]

As we noted earlier, opening an ambient requires precise knowledge of the type
of the ambient being opened: this is expressed in the rule by fact that the type
of the ambient a is an ambient type, not a type variable. Opening a is now legal
under the condition that the signature of the opening ambient be equal to (in
fact, contain, given the presence of subtyping) the signature of the ambient being
opened. This condition is necessary for type soundness, as it guarantees that an
ambient may only update existing methods of the opening ambient, preserving
their original types.

(Message)

Γ ` a : W Γ ` W <# Amb[ `(V ′) ] Γ ` M ′ : V
′

Γ ` a send `〈M ′〉 : Cap[Σ]

The rule (Message) states that invoking method ` on an ambient a requires the
type of a to match an ambient type containing the method `. Note that the type
of a may either be an ambient type matching (i.e. “longer” then) Amb[`(V ′)],
or else an unknown type (i.e. a type variable) occurring match-bounded in the
context Γ . Since the body of the invoked method is activated on the receiver
(rather than on the sender) no constraint is required on the type of the send

capability. Of course, in order for the expression to type check, the message
argument and the method parameters must have the same type3.

(Amb) (Σ = ( `i(Vi) )i∈I)

Γ ` a : Amb[Σ] Γ, Z<# Amb[Σ], z:Z, xi:Vi ` Pi : Proc[Σ] Γ ` P : Proc[Σ]

Γ ` a[(`i(xi) . ς(z)Pi)
i∈I ; P ] : Proc[Σ′]

3 In fact, since capability types can be subtyped, the type of the arguments can be subtypes
of the type of the formal parameters.



The rule (Amb) for typing ambients is similar to the typing rule for objects
in the calculus of extensible objects of [BB99]. Each method of the ambient is
type-checked under the assumptions that (i) the self parameter has a type that
matches the type of the enclosing ambient, (ii) method parameters have the
declared type, and (iii) the type of each method body be consistent with the
type of the enclosing ambient. As we noted earlier, the use of the match-bound
type variable Z as the type of self ensures that methods local to ambient a are
well-typed also within any other ambient that might eventually open a. On the
other hand, the typing rule does not support MyType method specialization, as
the types of method bodies are independent of the type of self .

Also note that the rule requires exact knowledge of the type of the ambient
a: a structural rule allowing the name of the ambient to be typed with a match-
bounded type variable would break type soundness, since we would not have a
precise control of the openings of that ambient (see rule (open)). Finally, no
constraint is imposed on the signature Σ ′, associated with the process type in
the conclusion of the rule, as that signature is (a subset of) the signature of the
ambient enclosing a (if any).

4.3 Subject Reduction and Type Soundness

We conclude the description of the basic type system with a result of subject
reduction. The proof is rather standard, and only sketched due to lack of space.

Lemma 1 (Substitution).

1. If Γ, x : W ` P : P and Γ ` M : W , then Γ ` P{x := M} : P.
2. If Γ, Z<# A , z : Z ` P : P and Γ ` a : A ′, Γ ` A ′<# A ,

then Γ ` P{z := a} : P.

Proof. By induction on the derivation of the first judgment in hypothesis.

Lemma 2 (Subject Congruence).

1. If Γ ` P : Proc[Σ] and P ≡ Q then Γ ` Q : Proc[Σ].
2. If Γ ` P : Proc[Σ] and Q ≡ P then Γ ` Q : Proc[Σ].

Proof. By simultaneous induction on the derivations of P ≡ Q and Q ≡ P .

Lemma 3 (Bounded Weakening).

1. If Γ, x : W ` P : P and Γ ` W ′ ≤ W then Γ, x : W ′ ` P : P.
2. If Γ, Z<# A , z:Z ` P : P and Γ ` A ′<# A then Γ, Z<# A ′, z:Z ` P : P.

Proof. By induction on the derivation of the first judgment in hypothesis.

Theorem 1 (Subject Reduction).
If Γ ` P : Proc[Σ] and PÞQ then Γ ` Q : Proc[Σ].

Proof. By induction on the derivation of PÞQ, and a case analysis on the last
applied rule.



Besides being interesting as a meta-theoretical property of the type system,
subject reduction may be used to derive a type safety theorem ensuring the
absence of run-time (type) errors for well-typed programs. The errors we wish
to statically detect are those of the kind “message not understood”distinctive
of object calculi. With the current definition of the reduction relation such er-
rors may not arise, as not-understood messages simply block: this is somewhat
unrealistic, however, as the result of sending a message to an object (a server)
which does not contain a corresponding method should be (and indeed is, in real
systems) reported as an error.

To state and formalize type safety, we instrument the reduction relation with
an additional error reduction, state as follows:

a[[ I ; P | b send `〈M〉.Q ]] | b[[ J ; R ]] Þ a[[ I ; P | ERR ]] | b[[ J ; R ]] (` 6∈ J)

where ERR is a distinguished process, with no type. The intuitive reading of the
reduction is that a not-understood message causes a local error —for the sender
of that message— rather than a global error for the entire system. The rule
above is meaningful also in the presence of multiple ambients with equal name,
as our type system (like those of [CG99,CGG99,LS00]) ensures that ambients
with the same name have also the same type.

It is easy to verify that no system containing an occurrence of ERR can be
typed in our type system. Type safety, i.e. absence of run-time errors may now
be stated follows:

Theorem 2 (Soundness). Let P be a well-typed MA++ process. Then, there
exist no context C[−] such that P Þ∗ C[ERR].

5 Related work

In the literature on concurrent object-oriented programming, papers can be clas-
sified in two basic categories. The first category includes papers that provide
semantics to objects by encoding them into process calculi. Examples of sys-
tematic translations of objects into the π-calculus can be found, for instance, in
[Wal95,HK96,San98,KS98].

Papers in the second category propose formal calculi where primitive con-
structs for objects and for concurrent processes coexist. Within this class, one
can further distinguish two complementary approaches. In the first, high-level
object-oriented constructs are defined on top of name-passing process calculi
[Vas94,PT95,FMLR00]. In the second, primitives for concurrency are built on
top of imperative object calculi, in ways related to those we have discussed in
this paper. Below we present a detailed discussion on papers closest to ours.

Gorgon and Hankin’s concς-calculus [GH98]. The concς-calculus is a concurrent
object calculus that results from Abadi and Cardelli’s imperative object calculus
by the addition of primitive constructs for parallel composition, restriction and
synchronization via mutexes. Type systems for the calculus may be defined by
sound extensions of existing type systems for the underlying object calculus to
accommodate concurrency.



There are several similarities between concς and our calculus. In particular,
the semantics of method invocation, based on self-substitution was directly in-
spired by [GH98]. As in our semantics, in [GH98] objects are explicitly named,
and what gets substituted for the self variable is the name of the object rather
then the object itself.

The fundamental difference between the work of [GH98] and ours is that
concς does not address process mobility. In [GH98] distribution is completely
disregarded, while in our framework objects may move through a hierarchy of
nested locations, and communication (method invocation) often requires mobil-
ity. Moreover, due to the interplay between the dynamic nesting of ambients and
the communication primitives, more method invocation styles can be modeled
in our framework. A further difference is that the syntax of concς includes se-
quential composition of expressions that return results. This contrasts with the
standard practice in process-based calculi [Vas94,PT95,Wal95,KS98], where the
operation of returning a result is translated into sending a message on a result
channel. Even though we did not explicitly address the problem of returning a
result, it is easy to extend our framework by endowing agent interfaces not only
with methods, but also with fields whose invocation returns an expression.

A distributed version of concς is studied in [Jef00], where the syntax of the
calculus is enriched with a notion of location, and threads are allowed to migrate
across locations. A basic difference with our approach is that in [Jef00] the author
assumes a flat topology of locations, in which no explicit routing is required for
mobility, and locations may not be created dynamically. Furthermore, in [Jef00]
only a subset of objects (serializable objects) can be sent across the network,
and only the so-called located objects can be accessed via remote threads.

The Ojeblik calculus [NHKM99]. Ojeblik is a concurrent object-based language
built on top of Obliq [Car95], Cardelli’s lexically scoped distributed programming
language. In Ojeblik (and Obliq) object mobility is rendered by means of a
migration mechanism that is accomplished by creating a copy of the object
at the target site and then modifying the original (local) object such that it
forwards future requests to the new (remote) object: The lexical scope rules of
Obliq allow the aspects of distribution to safely be disregarded: object migration
is then correct if the behavior of an object is transparent to whether the object
has migrated or not.

Our approach is very different. As in Mobile Ambients, we assume that
the process a[[ I ; P ]] is an abstraction for both an agent (client) and an ob-
ject (server). This implies that in our framework mobile objects move without
the burden of future obligations at the source location. A client agent willing to
invoke a method of a server object, in turn, must approach the server in order to
start the communication protocol. In addition, while the work on Ojeblik does
not address typing issues, as we do for our calculus.



6 Current and Future Work

We have defined a core calculus for distributed and mobile objects on top of
which several extensions can be defined. We conclude our presentation with a
discussion on some of these extensions.

Co-capabilities à la Safe Ambients. In [LS00], Levi and Sangiorgi define a variant
of Mobile Ambients in which the reduction relation requires actions (i.e. capabil-
ities) to synchronize with corresponding co-actions. To exemplify, consider the
ambients a[[ in b.P ]] | b[[Q ]] . In mobile ambients, the move of a into b is “one
sided” as b simply undergoes the action. In Safe Ambients, instead, the move
requires mutual agreement between a and b: in order for the move to take place,
Q inside b must offer the co-capability coin b to signal that it is willing to be
entered. Based on this synchronization mechanisms, Levi and Sangiorgi discuss
a suite of type systems for on top of which they develop a rich algebraic theory
for their Safe Ambients.

Co-capabilities can be included in our calculus with no fundamental difficulty.
In particular, one can include a co-capability listen a, the dual of the capability
a send , whose meaning is that the ambient a is ready to serve an invocation
to one of its methods. For reasons of space, we do not describe the extension
in detail. Nevertheless, it is instructive to point out one of the effects of the
extension, showing how it allows us to derive a simple compositional encoding
of the π-calculus.

〈〈n?(x).P 〉〉
4

= (νp)(n[[ ch(x) . p[[ out n.coopen p. 〈〈P 〉〉 ]] ; listen n.coout n ]] | open p)

〈〈n!〈x〉 〉〉
4

= n downsend ch〈x〉

〈〈 (νx)P 〉〉
4

= (νx) 〈〈P 〉〉

〈〈P | Q 〉〉
4

= 〈〈P 〉〉 | 〈〈Q 〉〉

〈〈 !P 〉〉
4

= ! 〈〈P 〉〉

〈〈0 〉〉
4

= 0

〈〈n 〉〉
4

= n

Every input on a channel n generates a new ambient named n, waiting to syn-
chronize with an output on n. Having received input, the transport ambient p
carries (the encoding of) P out of n. Once outside n, p is dissolved and the
continuation process P unleashed. Notice that the ambient n is left without ca-
pabilities after having let the transport p out. As such, after synchronization, n
is unavailable for interactions with the context, and thus behaviorally equivalent
to the null process (which can be garbage collected). Also, the encoding can be
shown to be interference-free, as the use of co-capabilities allows the definition
of an interference-free encoding of output construct of the π-calculus, based on
downward method invocation.

Other Extensions. Further extensions to the core calculus include the addition
of fields and refinements of the type system.

In object calculi, fields are often represented as parameter-less methods, that
do not depend on self. This direct representation is not possible in our calculus,



as invoking a method spawns a process rather than returning a value, as one
would expect from selecting a field. Nevertheless, it is not difficult of explicitly
include new syntax for fields, and extend the reduction relation so that selecting
a field returns a term rather than triggering a process.

A different extension is to allow method names to be treated as ordinary
names. This would allow one to restrict them, thus obtaining private methods,
and to communicate them, thus obtaining dynamic messages. This is a straight-
forward modification in the untyped calculus but it is quite problematic in the
typed case since the possibility of communicating method names would naturally
give rise to dependent types.

These extensions, together with the study of type-driven security in the cal-
culus are subject of our current and future work.
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A Typing rules

Context formation

(Env-empty)

∅ ` �

(Env-x)

Γ ` W x /∈ Dom(Γ )

Γ, x : W ` �

(Env-X)

Γ ` � X /∈ Dom(Γ )

Γ, X<# A ` �

Type formation

(Type X)

Γ, X<# A , Γ ′ ` �

Γ, X<# A , Γ ′ ` X

(Type Amb)

Γ ` �

Γ ` Amb[Σ]

(Type Cap)

Γ ` �

Γ ` Cap[Σ]

(Type Proc)

Γ ` �

Γ ` Proc[Σ]

Matching : Reflexivity, Transitivity and the following

(Match X)

Γ, X<# A , Γ ′ ` �

Γ, X<# A , Γ ′ ` X<# A

(Match Amb)

Γ ` �

Γ ` Amb[(`i(Vi))
i∈1..n+k ]<# Amb[(`i(Vi))

i∈1..n]

Subtyping and subsumption : Reflexivity, Transitivity and the following

(Sub Cap)

Σ ⊆ Σ′

Cap[Σ] ≤ Cap[Σ′]

(Sub Proc)

Σ ⊆ Σ′

Proc[Σ] ≤ Proc[Σ′]

(Subsumption)

Γ ` A : T T ≤ T
′

Γ ` A : T
′



Expressions

(name/var)

Γ ` �

Γ ` x : Γ (x)

(ε)

Γ ` �

Γ ` ε : Cap[Σ]

(path)

Γ ` M1 : Cap[Σ] Γ ` M2 : Cap[Σ]

Γ ` M1.M2 : Cap[Σ]

(open)

Γ ` a : Amb[Σ]

Γ ` open a : Cap[Σ]

(inout)

Γ ` M : W Γ ` W <# Amb[Σ] (M ′ ∈ {in M, out M})

Γ ` M ′ : Cap[Σ′]

(Message)

Γ ` a : W Γ ` W <# Amb[ `(V ′) ] Γ ` M ′ : V
′

Γ ` a send `〈M ′〉 : Cap[Σ]

Processes

(pref)

Γ ` M : Cap[Σ] Γ ` P : Proc[Σ]

Γ ` M.P : Proc[Σ]

(par)

Γ ` P : Proc[Σ] Γ ` Q : Proc[Σ]

Γ ` P | Q : Proc[Σ]

(restr)

Γ, x:A ` P : Proc[Σ]

Γ ` (νx:A )P : Proc[Σ]

(dead)

Γ ` �

Γ ` 0 : Proc[Σ]

(Amb) (Σ = ( `i(Vi) )i∈I )

Γ ` a : Amb[Σ] Γ, Z<# Amb[Σ], z:Z, xi:Vi ` Pi : Proc[Σ] Γ ` P : Proc[Σ]

Γ ` a[(`i(xi) . ς(z)Pi)
i∈I ; P ] : Proc[Σ′]


