Composition of product-form Generalized Stochastic Petri Nets: a modular approach

Simonetta Balsamo and Andrea Marin

Università Ca’ Foscari di Venezia
Dipartimento di Informatica
Italy

October 2009
Markov process: steady state analysis

- **Steady-state analysis**: analysis of the system (if possible) when \(t \to \infty \)
- \(\Gamma \): state space
- \(q_{ij} \): transition rate from states \(i \) to \(j \), \(i \neq j \), \(i, j \in \Gamma \). Let \(Q = [q_{ij}] \) with \(q_{ii} = -\sum_{j \neq i} q_{ij} \)
- \(\pi(i) \): probability of observing state \(i \) when \(t \to \infty \) (limiting distribution), \(\pi = [\pi(i)] \)

Theorem (Stationary distribution)

If the CTMC is ergodic the limiting distribution is unique and independent of the initial state. The stationary distribution is given by:

\[
\pi Q = 0 \land \pi 1 = 1
\]
Generalized Stochastic Petri Nets (GSPN)

- Petri net based stochastic models
- Very expressive
 - PNs with inhibitor arcs are Turing-complete
- High modelling power
 - Allow for both immediate and timed transitions
 - Timed transitions have exponentially distributed delays
 - Allow for marking dependent semantics for the firing rates or conflict resolutions
 - Immediate transitions may use priority
- Well-defined underlying stochastic process
- The Semi-Markov process underlying a net can be reduced to a Markov process
Problems in the analysis of GSPNs

Problems...

- Determining the set of all the reachable states of the model (without inhibitor arcs) is an EXPSPACE problem
- Even small models may have huge state spaces (possibly infinite)
- Even when the number of states is finite, solving the GBE system may be computationally infeasible!

Solutions...

- using approximations (e.g. fluid approximations)
- using *Divide et Impera* approach
 - Analysis of small models and then compose them!
Consider model S consisting of sub-models S_1, \ldots, S_N

Let $m = (m_1, \ldots, m_N)$ be a state of model S and $\pi(m)$ its steady state probability

S is in product-form with respect to S_1, \ldots, S_N if:

\[\pi(m) \propto g_1(m_1) \cdot g_2(m_2) \cdot \cdots \cdot g_N(m_N) \]

where $g_i(m_i)$ is the steady state probability distribution of S_i appropriately parametrised

The cardinality of the state space of S is proportional to the product of the state space cardinalities of its sub-models \Rightarrow product-form models can be studied more efficiently!
Identifying product-form solutions

We base our result on two main theoretical results on product-forms:

- The Markov implies Markov property ($M \Rightarrow M$)
- The Reversed Compound Agent Theorem (RCAT)

Peculiarities...

- They consider each sub-model in isolation
- These results are not specific for GSPNs
- They are not structural
- Computationally expensive to check conditions for sub-models with large (infinite) state spaces
The goal of this work is to define a framework in which the modeller...

- has a library of models that are known to be in product-form under a set of conditions
- composes the GSPN models in a simple graphical way
- has not sophisticated skills in solving Markov processes

By using the theoretical results, it is possible to...

- efficiently decide if the conditions for the product-form are satisfied
- compute the stationary distributions by solving the model traffic equations
GSPN modules

What is a GSPN module? (Kindler et al. approach)

- Scope of the names is local
- Input objects must be instantiated
- Places, transitions, and symbols can be imported/exported
Example of GSPN module usage
Embedding product-form information in module description

Consider an *isolated instance* of a module with independent Poisson token arrivals to each input place:

- Rates of \(T_{i1} \) and \(T_{i2} \) are unknowns: \(\mathcal{I} = \{\chi t_1, \chi t_2\} \)
- \(\mathcal{V} = \{\mu\} \) is the set of known parameters
- 3 Functions:
 - \(f_{RCAT}(\mathcal{I}, \mathcal{V}) = \text{true} \) if the module satisfies RCAT product-form for a given parametrisation
 - Similarly \(f_{M\Rightarrow M}(\mathcal{I}, \mathcal{V}) \)
 - \(K_3(\mathcal{I}, \mathcal{V}) \) is the reversed rate of \(T_3 \)
Example of G-queue

\[f_{RCAT}(I, V) = \text{true} \]

\[f_{M\Rightarrow M}(I, V) = (\chi_{t_2} = 0) \]

\[K_3(I, V) = \frac{\chi_{t_1}}{\chi_{t_2} + \mu} \mu \]
Example of module for shared bus contention

- K: number of initial tokens in P_5
- μ: firing rate of T_1 and T_2

Module definition:
\[
\begin{align*}
 f_{RCAT}(I, V) &= (K == 1) \\
 f_{M \Rightarrow M}(I, V) &= \text{true} \\
 K_1(I, V) &= \chi_{t_1} \\
 K_2(I, V) &= \chi_{t_2}
\end{align*}
\]
Allowed module instance connections

Formally...

- If T_i is an input transition then it is associated with just one output transition of another instance or a transition with null input and output vector.
- Each place of the net is associated with one input place and an output transition which is not associated with an input transition can have an outgoing arc to just one place.
- All arcs connecting the instances have weight 1.

Informally...

- Only pairwise cooperation is allowed among module instances.
 - Fork and join constructs can still be modelled but within a module.
- No batch token movements are allowed between modules.
- Probabilistic module connections can be easily introduced.
The solution of the traffic equations gives us the rates of the transitions needed for isolating the modules

\[m3 \cdot \chi_{t1} = m1 \cdot K_1(m1 \cdot I, m1 \cdot V) + m2 \cdot K_2(m2 \cdot I, m2 \cdot V) \]

where \(I \) is the set of the unknown input rates of an isolated instance, \(V \) an instance parametrisation, \(\chi_{t_i} \) the unknown rates of the systems.
Deciding product-form

- Once the traffic equations are solved product-form property of the network of module instances can be decided.

- Basically the condition is:

 \[
 \left(\forall \text{instances } m_i \quad f_{\text{RCAT}}(m_i.I, m_i.V) = \text{true} \right) \lor
 \left(\forall \text{instances } m_i \quad f_{\text{M} \Rightarrow M}(m_i.I, m_i.V) = \text{true} \right)
 \]
We propose a framework that integrates the modularity concepts introduced for Petri Nets in order to allow for a modular analysis.

It is possible to mix different formalisms in product-form in a unique model.

- Note that GSPNs are very expressive.
- Every CTMC can be modelled by a GSPN.
- Often compact models can be obtained.

The modeller do not need specific skills about product-form model resolution.

- In this presentation I did not formally introduce RCAT or $M \Rightarrow M$.

Note that GSPNs are very expressive

Every CTMC can be modelled by a GSPN

Often compact models can be obtained

The modeller do not need specific skills about product-form model resolution

In this presentation I did not formally introduce RCAT or $M \Rightarrow M$.
Open problems and future works

- Non-linear traffic equations may be derived applying RCAT
 - How to solve the system efficiently?
- For closed systems the computation of the normalizing constant is required to obtain the performance measures
 - Any efficient algorithm can be formulated?
 - Possibility to generalize Convolution or MVA algorithms?
- How to integrate this framework with existing tools?

Thanks for the attention... Questions?