Routing overlay case of study: PASTRY

Andrea Marin

Università Ca’ Foscari di Venezia
Dipartimento di Informatica
Corso di Sistemi Distribuiti

2009
Introduction

Design overview

Self-adaptation
- Node join
- Node departure

Improving the routing performance

Presentation based on the original paper: A. Rowstorn and P. Druschel.

PASTRY: Scalable, decentralized object location and routing for large-scale peer-to-peer systems.
What is PASTRY?

- PASTRY is an implementation of a Distributed Hash Table (DHT) algorithm for P2P routing overlay.
- Defined by Rowstron (Microsoft Research) and Druschel (Rice University) in 2001.
- Salient features:
 - Fully decentralized
 - Scalable
 - High fault tolerance
- Used as middleware by several applications:
 - PAST storage utility
 -SCRIBE publish/subscribe system
 - ...
Any computer connected to the Internet and running PASTRY node software can be a PASTRY node.

Application specific security policies may be applied.

Each node is identified by a unique 128 bit node identifier (NodeId).
- The node identifier is assumed to be generated randomly.
- Each NodeId is assumed to have the same probability of being chosen.
- Node with similar NodeId may be geographically far.

Given a key, PASTRY can deliver a message to the node with the closest NodeId to key within \(\lceil \log_2 b \cdot N \rceil \) steps, where \(b \) is a configuration parameter (usually \(b = 4 \)) and \(N \) is the number of nodes.
Sketch of the routing algorithm

- Assume we want to find the node in the PASTRY network with the NodeId closest to a given key.
 - Note that NodeId and key are both 128 bit sequences.
- Both NodeId and the key can be thought as sequence of digits with base 2^b.

Routing idea

In each routing step, a node normally forwards the message to a node whose NodeId shares with the key a prefix that is at least one digit longer than than the key shares with the present node. If such a node is not known, the message is forwarded to a node that shares the same prefix of the actual node but its NodeId is numerically closer to the key.
State of a node

Each PASTRY node has a state consisting of:

- a **routing table**
 - used in the first phase of the routing (long distances)
- a **neighborhood set** M
 - contains the NodeId and IP addresses of the $|M|$ nodes which are closest (according to a metric) to the considered node
- a **leaf set** L
 - contains the NodeId and IP addresses of the $|L|/2$ nodes whose NodeId are numerically closest smaller than the present NodeId, and the $|L|/2$ nodes whose NodeId are numerically closest larger than the present NodeId.
The routing table

- The routing table is a $\lceil \log_2 b(N) \rceil \times (2^b - 1)$ table
 - b is the configuration parameter
 - N is the number of PASTRY nodes in the network
- The $2^b - 1$ entries at row n each refers to a node whose NodeId shares the present node NodeId in the first n digits but whose $(n + 1)$th digit has one of the $2^b - 1$ possible values other than $(n + 1)$th digit in the present node id.
Assuming 16 bit Nodeld, \(b = 2 \), number are expressed in base \(2^b = 4 \).

Nodeld 10233102

0 2212102	2 2301203	3 1203203
10 0 31203	12 230203	13 021022
10 1 32102	10 3 23302	
10 2 0230	102 2 2302	
1023 0 322	1023 2 121	
10233 0 01	10233 2 32	
102331 2 0		

Unknown Nodeld
The choice of b and N determine the routing table size.
The size is approximatively $\lceil \log_2 b \cdot N \rceil \times (2^b - 1)$.
The maximum number of hops between any pair of nodes is $\lceil \log_2 b \cdot N \rceil$.
Larger b increases the routing table size but reduces the number of hops.
With 10^6 nodes and $b = 4$ we have around 75 table entries.
The Neighborhood set M contains the NodeIds and IP addresses of the $|M|$ nodes that are closest (according to a metric that usually depends on the network topology) to the local node.

- This set is not normally used in the routing process.
- It is useful in maintaining local properties.
The leaf set contain the $|L|$ NodeIds closest to the current node’s NodeId.

Leaf Set

<table>
<thead>
<tr>
<th>10233033</th>
<th>10233021</th>
<th>10233120</th>
<th>10233122</th>
</tr>
</thead>
<tbody>
<tr>
<td>10233001</td>
<td>10233000</td>
<td>10233230</td>
<td>10233232</td>
</tr>
</tbody>
</table>

Routing Table

<table>
<thead>
<tr>
<th>0 2212102</th>
<th>11301233</th>
<th>2 2301203</th>
<th>3 1203203</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 031203</td>
<td>1 132102</td>
<td>1 2230203</td>
<td>1 3021022</td>
</tr>
<tr>
<td>102 00230</td>
<td>102 11302</td>
<td>102 22302</td>
<td>10 323302</td>
</tr>
<tr>
<td>1023 0322</td>
<td>1023 1000</td>
<td>1023 2121</td>
<td></td>
</tr>
<tr>
<td>10233 001</td>
<td></td>
<td>10233 232</td>
<td>102331 20</td>
</tr>
</tbody>
</table>
Routing algorithm: notation

- D: key to route
- $R_{i \ell}$: the entry in the routing table R at column i with $0 \leq i \leq 2^b$ and row ℓ, $0 \leq \ell \leq \lfloor 128/b \rfloor$
- L_i: the i-th closest nodeId in the leaf set L, $-\lfloor |L|/2 \rfloor \leq i \leq \lfloor |L|/2 \rfloor$
- D_ℓ: the value of the l's digit in the key D
- $\text{shl}(A, B)$: the length of the prefix shared among A and B in digits
- A: address of the current node
Routing algorithm

\[
\text{if } L - \lfloor |L|/2 \rfloor \leq D \leq L + \lfloor |L|/2 \rfloor \text{ then}
\]

/* Route to a leaf */
forward to \(L_i \) s.th. \(|D - L_i|\) is minimal

end

else

\(\ell \leftarrow \text{shl}(D, A) \)

if \(R^D_\ell \neq \text{null} \) then

/* Route to a node in the routing table */
forward to \(R^D_\ell \)

end

else

/* Get as close as you can ... */
forward to \(T \in L \cup R \cup M \) s.th. \(\text{shl}(T, D) \geq \ell, |T - D| < |A - D| \)

end
Example: how do we route?

NodeId 10233102

<table>
<thead>
<tr>
<th>10233033</th>
<th>10233021</th>
<th>10233120</th>
<th>10233122</th>
</tr>
</thead>
<tbody>
<tr>
<td>10233001</td>
<td>10233000</td>
<td>10233230</td>
<td>10233232</td>
</tr>
</tbody>
</table>

LEAF SET

<table>
<thead>
<tr>
<th>0 2212102</th>
<th>2 2301203</th>
<th>3 1203203</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 301233</td>
<td>1 2 230203</td>
<td>1 3 021022</td>
</tr>
<tr>
<td>10 0 31203</td>
<td>10 1 32102</td>
<td>10 3 23302</td>
</tr>
<tr>
<td>102 0 0230</td>
<td>102 1 1302</td>
<td>102 2 2302</td>
</tr>
<tr>
<td>1023 0 322</td>
<td>1023 1 000</td>
<td>1023 2 121</td>
</tr>
<tr>
<td>1023 3 001</td>
<td></td>
<td>10233 2 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10233 2 0</td>
</tr>
</tbody>
</table>

ROUTING TABLE

- **10233131** \Rightarrow **10233122** (leaf)
- **10210221** \Rightarrow **10211302**
 - Target not in L because $10233102_4 - 10210221_4 = 222214_4$ and $10233102_4 - 12330004_4 = 1024_4$ and $10233232_4 - 10233102_4 = 1304_4$
 - $shl(10233102, 10210221) = 3$
Routing performance

Theorem (Expected number of routing steps)

The expected number of routing steps with PASTRY algorithm is \(\lceil \log_2 b N \rceil \).

Proof

- If the target node is reached using the routing table, each step reduces the set of possible target of \(2^b \).
- If the target node is in \(L \), then we need 1 step.
- The third case is more difficult to treat. It is unlikely to happen, experimental results with uniform NodeId, give:
 - If \(|L| = 2^b \), probability < 0.02
 - If \(|L|2^{b+1} \), probability = < 0.006

When case 3 happens it adds an additional step.
In the event of many simultaneous node failures the number of routing steps may be at worst linear with \(N \) (loose upper bound)

Message delivery is guaranteed unless \([|L|/2]\) nodes with consecutive NodeIds fails simultaneously. (Very rare event)
PASTRY exports the following operations:

- **nodeId = pastryInit(Credentials, Application)**
 - Join a PASTRY network or create a new one
 - Credentials: needed to authenticate the new node
 - Application: handle to the application that requires the services

- **route(msg,key)**
 - PASTRY routes message \(msg \) to the node with Nodeld numerically closest to \(key \)
An application that uses PASTRY services must export the following operations:

- **deliver(msg, key)**
 - PASTRY calls this method to deliver a message arrived to destination

- **forward(msg, key, nextId)**
 - PASTRY calls this method before forwarding a message. The application may change the message, or `nextId`. Setting `nextId` to null terminates the delivering.

- **newLeafs(leafSet)**
 - Used by PASTRY to inform the application about a change in the leaf set
Scenario and assumptions

- Node X wants to join a PASTRY network
- X’s NodeId is computed by the application
 - E.g. may be a SHA-1 of its IP address or its public key
- X knows a close (according to the proximity metric) node A
Join message

- Node X sends to A a message of join whose key is X’s NodeId
- The message is treated by A like all the other messages
 - A tries to deliver the message to send the message to node Z whose NodeId is closest to key, i.e., closest to X’s NodeId
- Each node in the path from A to Z sends its state tables to X
- X may require additional information to other nodes
- X builds its own tables
- The interested nodes update their state tables
Neighbourhood set and leaf set

- A is assumed to be close to X so X uses A’s neighbourhood set to initialise its own
- Z leaf set is used as base leaf set of X
Building the routing table

- Let $\ell = shl(X, A) \geq 0$
- Rows from 0 to ℓ of A become rows from 0 to ℓ of X
- Row $\ell + 1$ of X is row $\ell + 1$ of B, where B is the node after A in the path to Z
- X sends M, L and the routing table to each node from A to Z. These update their states
- Simultaneous arrivals cause contention solved using timestamp
- Messages sent for a node join are $\mathcal{O}(\log_2 b \ N)$
Dealing with node departures

- Node can fail or depart from the network without warnings
- A node is considered failed when its immediate neighbours (in Nodeld space) cannot communicate with it:
- In this case the state of the nodes that refer to the failed node must be updated
Scenario:

- Node X fails
- Node A has X in the leaf set

Actions performed by A to repair its leaf set:

- If NodeId_A > NodeId_X then A requires the leaf set of the leaf node with lowest NodeId
- If NodeId_A < NodeId_A then A requires the leaf set of the leaf node with highest NodeId
- A uses the received set to repair its own
Repairing the routing table

Scenario:
- Node \(X \) fails
- Node \(A \) has \(X \) as target in the routing table in position \(R^d_\ell \)

Actions performed by \(A \) to repair its routing table:
- \(A \) asks the entry \(R^d_\ell \) for each target in its routing table \(R^i_\ell \) with \(i \neq d \)
- If none answers with a live node then it passes to row \(R^{\ell+1}_\ell \) and repeats the procedure
- If a node exists this procedure finds it with high probability
Repairing the neighbourhood set

- Note that the neighbourhood set is not used in the routing, yet it plays a pivotal role in improving the performance of PASTRY algorithm.

- A PASTRY node periodically tests if the nodes in M are live.

- When a node does not answer the polling node asks for the neighbourhood set of the other nodes in its M. Then it replaces the failed node with the closest (according to the proximity metric) live one.
Main idea

- PASTRY routing algorithm may result inefficient because few steps in the routing procedure may require long time.
- The distribution of NodeIds does not take in account locality.
 - Close NodeIds may be geographically far ⇒ long delays for message delivering.
- The neighbourhood set is used to improve the performance.
Assumptions and goal

Assumptions:

- Scalar proximity metric
 - E.g.: number of routing hops, geographic distance
- The proximity space given by the proximity metric is Euclidean
 - Triangulation inequality holds
- If the metric is not Euclidean PASTRY routing keeps working but it may be not optimized

Goal:

- The nodes in the path of a message delivery from A to B are close according to the proximity metric.
Scenario:

- Assume a network satisfies the required property
- We show that when a new node \(X \) joins the network the property is maintained
- \(X \) knows \(A \) that is assumed to be close to \(X \)

Idea:

- \(R_0 \) of \(A \) is used for \(X \). If the property holds for \(A \) and \(A \) is close to \(X \) then the property holds for \(S \)
- \(R_1 \) of \(X \) is \(R_1 \) of \(B \), i.e., the node reached from \(A \). Why can \(B \) be considered close to \(X \)? The distance should be weighted on the number of possible targets!
- The same argument applies to the other routing table rows
Further improvements

- The quality of the described approximation may degrade due to cascade errors.
- PASTRY incorporates a second stage in building the locality route tables.
 - Node X joining the network requires the state from each of the nodes mentioned in the routing table and in the neighbourhood set.
 - Node X replaces in its state the nodes in case it receives better information.
 - E.g. R^d_ℓ of X may be replaced if node addressed by R^i_ℓ has a closest address (according to the proximity metric) that fits in R^d_ℓ.
Locality property

- PASTRY locality features grant that a good route is found but not that the **best** route is found
- The process approximates the best routing to the destination
- The routing decisions are taken locally!
- Recall that a resource is present in the network with \(k \) replicas. But the addressed one could be not the closest (according to the proximity metric)